KOREAN JOURNAL OF APPLIED ENTOMOLOGY 한응곤지 50(3): 185~194 (2011) Kor. J. Appl. Entomol. DOI: http://dx.doi.org/10.5656/ksae.2011.07.027 c The Korean Society of Applied Entomology 꽃매미 (Lycorma delicatula ) 의발육단계별표피탄화수소비교 조선란ㆍ이정은ㆍ정진원ㆍ양정오ㆍ윤창만ㆍ김길하 * 충북대학교농업생명환경대학식물의학과 Comparison of Cuticular Hydrocarbons of Different Developmental Stages of the Spot Clothing Wax Cicada, Lycorma delicatula (Hemiptera: Fulgoridae) Sun-Ran Cho, Jeong-Eun Lee, Jin-Won Jeong, Jeong-Oh Yang, Changmann Yoon and Gil-Hah Kim* Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University, Republic of Korea ABSTRACT: Aliphatic cuticular hydrocarbons (CHCs) of different developmental stages of the spot clothing wax cicada, Lycorma delicatula (Hemiptera: Fulgoridae) were analyzed using GC and GC-MS. The numbers of carbons in the major CHCs of each developmental stage 32, 33, 28, 38, 37 in the egg, 1st, 2nd, 3rd, and 4th instar nymphal stages, and adults, respectively. The cuticle of Lycorma delicatula contains mainly methyl-branched 9-methylheptacosane (15.11%) in the egg stage, and a high proportion of n-heptacosane in nymphal stages (15.75, 22.42, 25.04, and 23.11 % in the 1st, 2nd, 3rd and 4th instars, respectively). In contrast, male and female adults had high proportions of n-nonacosane (13.42 and 16.55%). The chemical constituents of CHCs were classified into five groups (n-alkanes, monomethylalkanes, dimethylalkanes, trimethylalkanes, olefins) and group profiles of each developmental stage were compared. Egg surface was composed mainly monomethylalkanes (45.39%), a saturated hydrocarbon. Nymph CHCs consisted primarily of n-alkanes (37.63 to 46.12%). There was a difference between adult male and female CHCs. However, both contained n-alkanes and monomethylalkanes. CHCs with trimethyl or double bonded structure were rare in all stages. Key words: Cuticular hydrocarbons (CHC), Spot clothing wax cicada, Lycorma delicatula, Developmental stage, Composition 초록 : 꽃매미의발육단계별표피탄화수소를비교하기위하여 GC 와 GC-MS 를이용하여분석하였다. 분석된꽃매미의표피탄화수소의종류는알이 32 종, 약충은령별로각각 33, 28, 38, 37 종이었고 2 령약충에서가장적게나타났다. 반면성충은암 수모두 46 종으로동일하였으며, 꽃매미의충태중가장많은종류의탄화수소를함유하고있었다. 발육단계별물질함량을분석한결과, 알은메틸기를갖고있는 9-methylheptacosane 을가장많이함유하고있었으며 (15.11%), 령기별약충은 n-heptacosane 을가장많이함유하고있었다 (15.75, 22.42, 25.04, 23.11%). 반면성충은암 수모두 n-nonacosane 을가장많이함유하고있었다 (13.42, 16.55%). 표피탄화수소의구성물질을 5 개그룹 (n-alkanes, monomethylalkanes, dimethylalkanes, trimethylalkanes, olefins) 으로나누고물질함량을꽃매미발육단계별로비교하였다. 꽃매미의알표피는대부분이 monomethylalkanes 인포화탄화수소로이루어져있고 (45.39%), 약충은포화탄화수소의기본구조인 n-alkanes 이대부분이었다 (37.63-46.12%). 또한성충은암 수에따라차이가있었지만, n-alkanes 과 monomethylalkanes 을고루함유하는것으로나타났다. 반면모든충태에서, 3 개이상의메틸기를갖거나이중결합을포함하는구조는극히적었다. 검색어 : 표피탄화수소, 꽃매미, Lycorma delicatula, 발육단계별, 함량 곤충의외표피층에는곤충의생존과번식에있어서다양한역할을수행하는왁스층이공통적으로존재하며, 탄화수소를비롯한왁스에스테르, 스테롤에스테르및키톤, 알코올, 알데히 *Corresponding author: khkim@chungbuk.ac.kr Received May 31 2011; Revised July 11 2011 Accepted July 20 2011 드의관능기를갖는지방성분으로이루어져있다. 왁스층은곤충의종, 몸부위, 발육단계, 개체간에그조성이양적으로나질적으로다르게존재한다 (Boo, 2001). 그중에서도표피탄화수소는구조와기능면에서많은연구가진행된대표적물질로그중요성이점차강조되고있다 (Lucas et al., 2005). 곤충의표피탄화수소 (CHCs; cuticular hydrocarbons) 는주로탄소수가 21-49개로이루어져있고 185
(Howard, 1993; Nelson, 1993), 그구조가다양하여 long-chain linear alkanes, alkenes, mono-/ di-/ tri-methyl-branched alkanes 과같은 100여종의탄화수소의화합물로구성되어있다 (Nelson et al., 1993). 표피탄화수소는곤충의체내에서합성이되어체벽에분포하면서일차적으로주로탈수를방지하고 (Gibbs et al., 2003), 곤충병원성미생물의침투로부터보호하며 (Blomquist et al., 1987), 외부의환경으로부터일생동안곤충을보호하는기능을수행한다. 표피탄화수소의조성과함량은곤충의종내또는종간에서차이가많이나기때문에종내또는종간차이를인식하고동종또는같은집단내의사소통을하는데중요한기능을수행한다. 사회성곤충의동종또는 nestmate의인식과관련하여가장많이연구가진행되었는데 (Wagner et al., 2000), 동종간에도성별, 연령또는계급 (Nelson and Charlet, 2003; Böröczky et al., 2008), 군집간, 지역, 기후에따라다른종류의탄화수소혹은함유량의차이를보여서로를인식하기도한다 (Uva et al., 2004; Akino, 2006). 더욱이하나의개체에서도촉각, 다리등부위에따라조성비가다르게분석되기도하여화학분류가가능하다 (Lee et al., 2003; Böröczky et al., 2008). 이처럼표피탄화수소의구성성분과함량의차이는종-특이성이매우높아화학적분류법에적용할수있는데 (Bernier et al., 1998; Saïd et al., 2005b; Akino, 2006), 때로는곤충의형태적분류가갖는시각적인분류의한계를극복하기위해이러한화학적분류의특성을이용하여종간, 종내또는성감별을할수도있다 (Carlson and Brenner, 1988). 표피탄화수소는화학적으로안정하고, 휘발성이낮아물리적기능뿐만아니라화학적측면에서도동종의집단내에서특별한화학적신호로써의사소통을가능하게한다 (Blomquist et al.,1987; Lorenzi et al., 2004; Gamboa, 2004; Lucas et al., 2005). 화학적의사소통은개미, 벌, 바퀴와같은대표적인사회성곤충에서모두특정화학물질에의해군집을형성하고질서체계를갖는것으로알려져있다. 예를들어 Saїd et al. (2005a) 은 Periplaneta 속의 4종바퀴들이각각동종의표피탄화수소에의해군집이형성된다는것을증명하였고, 성적의사소통은대부분휘발성페로몬과연관이있는데, Drosophila는구애행동및교미와관련하여표피탄화수소가페로몬과같은역할을하는것으로알려져있고 (Kim et al., 2004), 사회성곤충인개미도똑같은역할을수행할뿐만아니라대부분분화된계급을통해번식과같이복잡한행동을조절하는것으로알려져있다 (Lommelen et al., 2006). 또한곤충의표피탄화수소는양성의동종을유인하는 aggregation pheromone과이성의동종을유인하는 sex pheromone 등 semiochemicals과같은기능을한다 (Kaib et al., 2004). 꽃매미는중국과동남아시아가원산지인아열대성해충으로 (Xiao, 1991), 중국에서국내로유입및정착하였고, 2006년이후전국적으로확산되어포도농가에큰피해를주고있다 (Han et al., 2008; Lee et al., 2009; Park et al., 2009; Shin et al., 2010). 꽃매미성충은특정한기주에상관없이난괴로산란을하고난괴표면을왁스층으로덮어놓는다 (Park et al., 2009). 꽃매미의약충과성충은무리를지으며, 식물을흡즙한후감로를배출하여그을음병을유발시키기도한다 (Lee et al., 2009). Park et al. (2009) 은꽃매미의기초적인생태와약충의약제감수성을보고하였고, Lee et al. (2009) 은꽃매미의섭식행동과섭식자극물질연구를일부식물에대하여수행한결과, 포도나무가꽃매미의피해에감수성이높다고보고한바있다. 그러나, 발육단계별로형태적으로큰차이를많이보이는꽃매미는국내에서한때희조꽃매미로분류되기도하여형태학적특징과미토콘드리아 cytochrome oxidase I 분석을통해지금의 꽃매미 로재동정된바있다 (Han et al., 2008). 꽃매미에대한형태학적, 분자생물학적동정은이루어진바있으나표피탄화수소와같이종간차이를구분할수있는화학조성에관한연구는진행된바없으며, 어느정도중요한의미를갖는지아는바가없다. 따라서본연구는꽃매미를발육단계별로표피탄화수소를추출하고분석하여화학분류의기초자료로제공하고자수행하였다. 재료및방법실험곤충 2010년 1월이후부터꽃매미알을, 5월이후부터 1 ~ 4령약충및성충을충북대학교부근의가죽나무와포도나무에서채집하였다. 표피탄화수소추출에사용한부위는안테나와날개등을포함한몸전체이며, 채집후실험에사용하기전, 건전한각충태만을선별하여영하 18 에서동결보관하였다. 표피탄화수소추출꽃매미의표피탄화수소를추출하기전, 동결보관된꽃매미의각충태를건조시켜체표면수분을제거하였다. 충태별로 5~10마리씩 3 ml의 HPLC grade hexane (J.T. Baker, USA) 에헹궈추출하였다. Glass Pasteur pipette column은 glass wool (Sigma, St. Louis, MO), sodium sulfate (Junsei chemical, Tokyo, Japan) 와 silica gel (Merck, Darmstadt, Germany) 의순서로충진하였고, column을만든후바로사용하였다. 추출된헥산혼합액을 186 Kor. J. Appl. Entomol. 50(3): 185~194 (2011)
glass Pasteur pipette (Poulten & Graf, Barking, UK) 컬럼에흘려정제한후, 농축하였다. 각충태별꽃매미의탄화수소분석은 3반복으로수행하였다. 표피탄화수소분석추출하여얻어진각각의표피탄화수소를 1 ml의 hexane에녹여 gas-chromatography (GC, Agilent Technologies 6890N, Santa Clara, CA) 와 gas chromatography-mass spectrometer(gc-ms, Agilent Technologies 7890A/5975C, Santa Clara, CA) 로분석을하였다. 표피탄화수소의분석은 FID(flame ionization detector) 가장착된 GC를사용하였고, DB-1 (30 m 0.25 mm ID 0.25 μm film thickness, J&W Scientific, Folsom, CA) 컬럼을사용하였다. Oven 온도는초기 150 에서 10분간유지한후, 분당 5 씩상승시켜 310 까지올려주었으며 10분간유지하였다. 주입구와검출기온도는각각 250 와 300 로설정하였고, 이동상으로분당 2 ml의질소를흘려주었다. GC-MS에사용한칼럼은 HP-5MS (30 m 0.25 mm ID 0.25 μm film thickness, J&W Scientific) 를사용하였다. 각온도조건은 GC분석과동일하게설정하였으며, 이동상으로헬륨을사용하였다. 1 ml의 hexane에녹인각각표피탄화수소와표준물질은 1 μl씩주입시켜분석하였으며, nc 20-nC 40 포화탄화수소는 Sigma (St Louis, MO) 에서구입하여표준물질로사용하였고, 분석된피크를확인하였다. 결과및고찰표피탄화수소의추출및조성분석 곤충의표피탄화수소는종마다그구성성분과함량이특이적으로달라화학분류로도이용이가능한데종간차이의구명하는데수없이많은연구에서진행되고있다. Lee et al. (2010) 은 3종의하늘소의암수에서표피탄화수소의개수를비교한결과 Monochamus saltuarius의암수는각각 23, 25개, M. alternatus의암수는각각 25, 32개, Moechotypa diphysis의암수는각각 23, 29개의탄화수소를가지고있는것으로확인되어종간차이가있음을확인하였고, Martin and Drijfhout (2009) 는 5아과 78종개미의표피탄화수소를비교하여종간차이를이용하여계통분류하였다. Page et al. (1997) 는 Grandicollis 아속에속하는 pine engraver beetle을표피탄화수소로화학분류를했고, Urech et al. (2005) 은 Haematobia 속의 H. exigua 와 H. irritans를 11-C 23:1 과 7-C 23:1, (Z)-9-and (Z)-5-C 23:1 의조 성차이로화학적분류를하였다. Torres et al. (2007) 은 Argentine ant (Linepithema humile) 가표피탄화수소를화학적신호로서인식하여침입한 Argentine ant를구별하는것을밝혔고, Lee et al. (2003) 은동양종과서양종꿀벌의안테나, 날개와다리등의몸의부위별로 n-alkanes의함량의차이를구분하기도하였다. 이와같이곤충의체표에분포하는표피탄화수소는종간차이를구별할뿐만아니라같은종내에서도서로를구별하는역할을수행한다. 하지만대부분의연구결과에서보듯이, 곤충의표피탄화수소의연구는화학분류를위해곤충의종간뿐만아니라종내에서특정단계에있는곤충의표피탄화수소를비교하였지만생육의전발육단계에걸쳐표피탄화수소의변화를비교한연구결과를찾지못하였다. 따라서본논문은꽃매미의발육단계에따라표피탄화수소의조성과함량의변화에초점을맞추어분석 비교하였다. 곤충의표피탄화수소는일반적으로곤충의몸전체를유기용매로추출한다음 GC/ GC-MS을이용하여분석하기도하고 (Lee et al., 2010; Yusuf et al., 2010; Kather et al., 2011), 노랑초파리의경우성충의표피탄화수소의변화를실시간이동시보질량분광계 (real-time time-of-flight Mass Spectrometry) 를이용하여분석하거나 (Yew et al., 2008) whole-body 추출법을포함한 SPME 방법 (Everaerts et al., 2010) 으로분석하기도한다. 본실험에서는 whole-body를 hexane으로추출한다음 GC와 GC-MS를이용하여분석하였다. 꽃매미의알, 1령부터 4령까지약충과갓우화한암 수컷성충을구분하여표피탄화수소를추출하였고, GC와 GC-MS를이용하여분석하여조성과함량의차이를비교하였다. 그결과, -C 21:1 부터 8, 13, 16-;9, 13, 17-triMeC 33 까지총 51개의물질을분석하였다 (Fig. 1, Table 1). 분석된표피탄화수소종류는알에서 32개, 약충에서 1령부터 4령까지각각 33, 28, 38, 37개였으며, 2령약충에서가장적게나타났다. 암수성충에서는모두 46 개로동일하였으며, 충태중가장많은종류의탄화수소를함유하였다. 이는표피탄화수소가발육이진행될수록대사과정에따라합성과분해가이루어지면서변하는것으로보인다. 표피탄화수소사슬의탄소수는꽃매미의알에서 C 23 ~ 8, 13, 16-;9, 13, 17-triMeC 33, 1령약충은 C 21:1 ~ 8, 13, 16-;9, 13, 17-triMeC 33, 2령약충은 C 23 ~ 8, 13, 16-;9, 13, 17-triMeC 33, 3령약충은 unknown ~ 8, 13, 16-;9, 13, 17-triMeC 33, 4령약충은 C 23 ~ 8, 13, 16-;9, 13, 17-triMeC 33, 암컷성충은 C 21:1 ~ 8, 13, 16-;9, 13, 17-triMeC 33, 수컷성충은 C 23 ~ 8, 13, 16-;9, 13, 17-triMeC 33 까지로구성되어있음을확인하였고, 표피탄화수소사슬의탄소수는발육이진행되어도큰변화를보이지않았는데, 이는대부분이구조적역할을수행하는포화탄화수소이기때문인것으로 Cuticular hydrocarbons of Lycorma delicatula 187
Fig. 1. Gas chromatograms of cuticular hydrocarbons of Lycorma delicatula eggs, each nymphal instar, and male and female adults. The numbers refer to the following compounds: 1. x-c 21:1, 2. unknown, 3. x-c 22:1, 4. 4-; 7-; 8-MeC 21, 5. unknown, 6. n-c 23, 7. 5, 8-diMeC 24, 8. n-c 25, 9. 11-MeC 25, 10. 8-; 11-; 12-MeC 25, 11. 3-MeC 25, 12. n-c 26, 13. unknown, 14. 4-; 10-MeC 26, 15. 10, 11-; 12-MeC 26, 16. x-c 27:1, 17. n-c 27, 18. 9-MeC 27, 19. 9, 12-diMeC 27, 20. 3-MeC 27, 21. n-c 28, 22. 10-MeC 28, 23. x-mec 28, 24. 9-; 10-; 13-MeC 28, 25. 3-; 12-MeC 28, 26. x-mec 29:1, 27. n-c 29, 28. 9-MeC 29, 29. 9, 16-diMeC 29, 30. 3-MeC 29, 31. n-c 30, 32. 5, 9-; 10, 14-diMeC 30, 33. 10-; 11-MeC 30, 34. 4-MeC 30, 35. 10, 14-diMeC 30, 36. 3-; 14-MeC 30, 37. x-c 31:1, 38. n-c 31, 39. 11-MeC 31, 40. 11, 15-diMeC 31, 41. 7, 11-diMeC 31, 42. 6, 10-; 12, 16-diMeC 31, 43. 4-; 9-; 12-; 16-MeC 32, 44. 5, 8-diMeC 32, 45. 8-; 11-; 14-; 15-MeC 32, 46. unknown, 47. unknown, 48. n-c 33, 49. 8-; 11-; 14-; 15-MeC 33, 50. 11-MeC 33, and 51. 8, 13, 16-; 9, 13, 17-triMeC 33. 188 Kor. J. Appl. Entomol. 50(3): 185~194 (2011)
Table 1. CHC components identified by GC/MS in all stages of Lycorma delicatula Peak No. Compound RI a) CN b) Diagnostic MS ions[m/z] 1 x-c 21:1 2081 21 263, 280, 294 2 unknown 2112 180, 207, 222, 236, 264, 296 3 x-c 22:1 2171 22 207, 220, 263, 281, 308 4 4-; 7-; 8-MeC 21 2179 22 180, 193, 207, 222, 265, 310 5 unknown 2235 82, 97, 250, 278, 296 6 n-c 23 2300 23 324 7 5, 8-diMeC 24 2406 26 82, 97, 250, 278, 306, 355 8 n-c 25 2500 25 352 9 11-MeC 25 2536 26 140, 168, 196, 224, 366 10 8-; 11-; 12-MeC 25 2569 26 140, 196, 211, 239, 267, 365 11 3-MeC 25 2575 26 309, 337, 365 12 n-c 26 2600 26 366 13 unknown 2615 181, 196, 211, 351, 366 14 4-; 10-MeC 26 2636 27 154, 224, 252, 306, 334, 380 15 10, 11-; 12-MeC 26 2666 27 154, 196, 210, 225, 267, 379 16 x-c 27:1 2674 27 323, 351, 378 17 n-c 27 2700 27 380 18 9-MeC 27 2738 28 140, 169, 197, 225, 252, 281, 394 19 9, 12-diMeC 27 2768 29 140, 196, 239, 267, 295, 393 20 3-MeC 27 2775 28 337, 365, 394 21 n-c 28 2800 28 394 22 10-MeC 28 2820 29 154, 257, 281, 393 23 x-mec 28 2836 29 82, 98, 257, 306, 334, 362, 405 24 9-; 10-; 13-MeC 28 2863 29 149, 211, 239, 257, 293, 407 25 3-; 12-MeC 28 2874 29 257, 351, 379, 408 26 x-mec 29:1 2882 29 82, 97,197, 225, 257, 285, 336, 406 27 n-c 29 2900 29 408 28 9-MeC 29 2935 30 140, 280, 309, 407 29 9, 16-diMeC 29 2964 31 140, 183, 211, 252, 295, 323, 421 30 3-MeC 29 2984 30 365, 393, 422 31 n-c 30 3000 30 422 32 5, 9-; 10, 14-diMeC 30 3007 32 85, 155, 255, 252, 323, 393, 435 33 10-; 11-MeC 30 3020 31 154, 168, 281, 294, 309, 421, 435 34 4-MeC 30 3027 31 362, 390, 436 35 10, 14-diMeC 30 3053 32 154, 225, 252, 295, 323, 435 36 3-; 14-MeC 30 3067 31 207, 253, 379, 407, 435 37 x-c 31:1 3073 31 97, 155, 169, 295, 434 38 n-c 31 3100 31 436 39 11-MeC 31 3133 32 168, 280, 309, 435 40 11, 15-diMeC 31 3159 33 168, 239, 252, 323, 449 41 7, 11-diMeC 31 3169 33 112, 183, 281, 308, 351, 379, 449 42 6, 10-; 12, 16-diMeC 31 3196 33 183, 207, 253, 281, 323, 365, 393, 463 43 4-; 9-; 12-; 16-MeC 32 3209 33 155, 225, 253, 280, 323, 351, 393, 421, 463 44 5, 8-diMeC 32 3227 34 362, 390, 418, 477 45 8-; 11-; 14-; 15-MeC 32 3264 33 140, 183, 211, 239, 252, 267, 280, 295, 337, 365, 463 46 unknown 3272 95, 207, 253, 281, 446, 478 47 unknown 3292 183, 205, 225, 253, 275, 295, 450, 477 48 n-c 33 3300 33 464 49 8-; 11-; 14-; 15-MeC 33 3331 34 141, 183, 207, 253, 281, 308, 351, 379, 449, 477 50 11-MeC 33 3347 34 168, 308, 337, 463 51 8, 13, 16-; 9, 13, 17-triMeC 33 3362 36 140, 211, 267, 280, 294, 309, 336, 379, 407, 505 a) Retention Index; b) Carbon number. Cuticular hydrocarbons of Lycorma delicatula 189
생각된다. Cuvillier-Hot et al. (2001) 은여왕개미가없는 Diacamma ceylonense의표피탄화수소를분석한결과, C 25 ~ C 35 로 16개의물질이분석되었는데, 이개미는성, 나이, 생식력에따라표피탄화수소의함량이다르게나타났음을보고하였다. 꽃매미의발육단계별표피탄화수소에서특이적으로존재하거나결여되는조성이있었는데 (Fig. 1, Tables 1 and 2), 알의경우 5, 9-; 10, 14-diMeC 30 (Peak No. 32) 가존재하지만약충에서는존재하지않으며성충에서발견되지만그함량은미미하여의미가없는것으로보인다. 3-MeC 27 (No. 20), C 28 (No. 21), 3-; 14-MeC 30 (No. 36), C 31 (No. 38) 는알을제외한모든발육단계에서비슷한함량으로존재하였다. 약충의경우에는 C 21:1 (No.1), unknown (No. 2) 가 1령약충에서만존재하다가암컷성충에서함량은미미하게나타났으며, C 22:1 (No. 3), 4-; 7-; 8-MeC 21 (No. 4) 가 1령약충에서만, unknown (No. 5) 는 3령약충에서만존재하였고, 다른모든발육단계에서는나타나지않았다. 알과 1-2령약충에는존재하지않다가 3령약충부터나타나기도하였는데 unknown (No. 2), MeC 29:1 (No. 26), C 30 (No. 31), 10-; 11-MeC 30 (No. 33), 8-; 11-; 14-; 15-MeC 33 (No. 49), 11-MeC 33 (No. 50) 는발육단계가증가할수록함량이대부분증가하였고, 5, 8-diMeC 24 (No. 7) 는발육단계가증가할수록함량이감소하였다. 8-; 11-; 12-MeC 25 (No.10), 10, 11-; 12-MeC 26 (No. 15), 5, 9-; 10, 14-diMeC 30 (No. 32), 7, 11-diMeC 31 (No. 41), 6, 10-; 12, 16-diMeC 31 (No. 42), 4-; 9-; 12-; 16-MeC 32 (No. 43) 가알과성충기간에는미량으로존재하였지만, 약충발육기간에는존재하지않았다. 꽃매미의성충을성별로비교하였을때, 암컷성충에서는 unknown (No.46) 과 C 33 (No. 48) 이, 수컷성충에서는 C 21:1 (No. 1) 과 unknown (No. 2) 이존재하지않았지만, 일부약충기간에서발견되어이 peak들이암컷과수컷성충을분류하는기준이되거나페로몬역할을하는의미는없는것으로보인다. Lee et al. (2010) 은 3종의하늘소의수컷과암컷의표피탄화수소개수에있어서도조성에큰차이를보였다고보고하였다. 이들조성은발육단계별로알과약충시기또는성충의우화후시간에따라그함량이변화하지만어떠한발육단계에서특이적으로존재하는함량은없었다. 따라서동종의발육단계별로화학분류를결정하기에는어려움이있을것으로판단되며, 이보다는지역적차이가있는곤충간에표피탄화수소의함량이차이가있는지비교하는쪽으로의미를두고실험을진행해야할것으로보인다. 표피탄화수소의함량분석꽃매미의발육단계별물질함량을분석한결과 (Table 2, Fig. 2), 알은메틸기를갖고있는 9-MeC 27 의함유량이가장많았으며 (15.11%), 약충은 n-c 27 을가장많이함유하였다 (15.75, 22.42, 25.04, 23.11%). 반면성충은암 수모두 n-c 29 를가장많이함유하고있었다 (13.42, 16.55%). 이러한결과에서보듯이물질의함량은발육단계마다변하는것을알수있었다. 3종의하늘소간비교에서는같은종내의수컷과암컷간에도대부분의표피탄화수소의함량이차이가있으나함량이두배이상차이가나기도하였으며, 함량만으로종구별을단정짓기에는어려워보인다. 북방수염하늘소의수컷은암컷보다 2,4-MeC 26 (No. 8) 를두배이상가지고있었고, 반대로 C 27 (No. 11) 는암컷이수컷보다 2.5배이상많이가지고있었다 (Lee et al., 2010). 본실험에서도마찬가지로비슷한결과를얻었는데, 꽃매미의수컷이암컷보다 11-MeC 33 (No. 50) 을 2.6배이상가지고있었고, unknown (No. 47) 은암컷이수컷보다 2.3배이상가지고있었다. 하지만, 단지암수간조성함량만으로는화학적분류가어려울것으로보이며, 전체적으로본연구에서는암수간에표피탄화수소의차이는크지않은것으로생각되며, 표피탄화수소가늘일정한것이아니라환경의상태에따라그조성과함량이변하기때문인것으로판단된다. 실제로, 발육단계에따라함량이변하기도하며, 군집내특성에따라함량이변하기도한다 (Nunes et al., 2009). 하지만본연구에서군집간의차이가보이지않은것은발육단계별표피탄화수소의함량차이가기주식물별이나야외종을실험에사용하여같은군집이아닐가능성이크다. 표피탄화수소의조성은환경적요인의차이, 자연에서발견되는영양분의종류와섭취능력에따라분비하는양이영향을받는것이 Bombus sp. 에서보고되었다 (Hefetz et al., 1993). 꽃매미의표피탄화수소의구성성분을조성별로분류한결과 (Fig. 3), 꽃매미의알표피에서는대부분이 monomethylalkanes (45.39%) 인포화탄화수소로이루어졌으며그다음으로 dimethylalkanes으로이루어져있었다. 모든령기별약충에서는포화탄화수소의기본구조인 n-alkanes(37.63 ~ 46.12%) > monomethylakanes(20.57 ~ 36.91%) 순으로나타났다. 꽃매미성충에서수컷은약충과마찬가지로 n-alkanes(35.47%) > monomethylalkanes(33.40%) 순이었지만, 암컷은 monomethylalkanes (37.72%) > n-alkanes(28.82%) 순으로나타나종내발육단계별, 성에따른표피구성성분의함량에대한차이를나타내었다. Howard et al. (1982) 은 Reticulitermes virginicus 흰개미의모든계급은구성성분은같으나, 함량은차이가있다고보고하였는데, 본실험과비슷한경향을나타내었다. 또한 4개집단의집흰개미는대부분이길이가같은사슬을가진 n-alkanes보다 2-methylalkanes을더풍부하게가지고있으며, 집단및계급에따라구성성분의차이는없었으나, 함량의차이는있었다고보 190 Kor. J. Appl. Entomol. 50(3): 185~194 (2011)
Table 2. Relative distributions of cuticular hydrocarbon fractions from Lycorma delicatula Peak Nymph Adult Egg No. 1st 2nd 3rd 4th 1-5.11 - - - 0.23-2 - 2.26 - - - 0.34-3 - 1.16 - - - - - 4-0.51 - - - - - 5 - - - 0.30 - - - 6-0.74 1.07 1.08-0.30 0.32 7 - - - 0.79 0.38 0.19 0.23 8 1.30 4.86 7.65 7.30 4.97 1.70 1.97 9 1.90 0.80-0.21 0.27 0.64 0.52 10 0.69 - - - - 0.14 0.33 11 0.51 0.42 - - - 0.36 0.45 12 0.43 1.00 0.92 1.35 1.40 0.92 1.50 13 - - - 1.54 0.98 1.54 1.79 14 1.52 0.62-0.26 0.29 0.65 0.74 15 0.91 - - - - 0.19 0.24 16 0.54 0.50 0.77 0.27 0.39 0.38 1.36 17 3.79 15.75 22.42 25.04 23.11 8.20 8.69 18 15.11 7.68 5.84 4.83 5.63 5.90 5.33 19 5.69 1.71 0.85 1.01 1.08 1.75 1.93 20-7.17 5.16 3.37 3.72 5.04 5.21 21-0.88 0.58 1.18 1.37 1.06 0.90 22 0.47 - - 0.54 0.42 2.05 1.56 23 2.23 0.94 0.63 0.47 0.52 1.42 0.66 24 1.55 1.74 1.89 0.28-0.71 0.37 25 0.89 1.07 1.55 1.23 1.72 0.79 1.06 26 - - - 0.67 1.05 0.33 0.33 27 3.36 13.24 9.59 7.09 6.04 13.42 16.55 28 7.42 5.38 6.14 3.70 3.99 3.78 2.92 29 7.66 3.15 3.16 2.28 2.48 2.67 2.85 30 3.02 2.59 2.98 1.76 2.28 2.11 1.66 31 - - - 0.38 0.37 0.81 0.68 32 0.66 - - - - 0.82 0.88 33 - - - 0.34 0.41 1.95 1.59 34 1.69 1.31 1.11 0.76 1.39 1.88 1.47 35 2.93 4.42 5.03 0.67 0.75 1.17 1.00 36 1.41 1.02 0.59 0.92 1.92 1.22 37 0.71 1.00 0.60 1.17 2.25 1.05 0.89 38 1.16 1.65 1.09 2.08 2.40 1.78 39 6.79 2.63 5.36 2.91 4.23 3.23 1.89 40 11.23 3.22 4.15 3.99 7.16 3.25 3.08 41 1.29 - - - - 1.19 1.21 42 0.72 - - - - 0.79 0.83 43 0.68 - - - - 0.98 1.37 44 2.13 0.75 3.74 0.56 0.81 3.47 2.40 45-2.63-0.86 0.92 1.48 1.47 46 2.15-1.41 0.80-1.11 47 - - 1.69 13.76 4.62 9.58 4.21 48 9.06-2.24-2.27-3.08 49 - - - 0.96 1.15 1.67 1.24 50 - - - 0.31 0.33 0.82 2.10 51 0.96 2.18 0.81 5.06 7.45 4.70 7.05 Total (%) 100 100 100 100 100 100 100 Cuticular hydrocarbons of Lycorma delicatula 191
Fig. 2. EI Mass spectra of normal and methyl-branched alkanes from Lycorma delicatula. This mass spectra shows n-heptadecane (GC peak 17) and 9-methylheptadecane (GC peak 18). Fig. 3. Composition (%) of cuticular hydrocarbons of different developmental stages of Lycorma delicatula. 고되어 (Haverty et al., 1990) 본실험의결과와비슷하였다. 꽃매미의모든충태에서 3개이상의메틸기를갖거나이중결합을포함하는 trimethylalkanes(0.81 ~ 7.45%) 과 olefins(1.12 ~ 7.77%) 는극히적게나타났는데, 이결과는 Lee et al. (2010) 에의해보고된 3종하늘소의수컷성충의표피탄화수소와비슷한 경향을나타내었다. Darrouzet et al. (2010) 은기생봉인 Eupelmus vuilleti 성충에서암컷이수컷보다 methyl기가붙은화합물이더많았다고보고하였는데, 이는본실험과비슷한경향을나타내었다. 종합적으로본실험에서는꽃매미의발육단계별로알과약 192 Kor. J. Appl. Entomol. 50(3): 185~194 (2011)
충, 암수성충으로부터표피탄화수소를각각추출하였고, 조성과함량별차이를분석하였다. 본실험의결과로꽃매미는같은종내에서는발육단계별, 성별에따라표피탄화수소가주요구성성분의함량에는차이를보였으나, 조성에는거의차이가없었다. 따라서앞으로화학적분류를위한기초자료로사용할수있을것이다. 사사 이논문은농림수산식품기술기획평과원의과제 꽃매미의친환경적방제제개발 ( 과제번호 : 110003-03-1-HD110) 과교육과학기술부의 2단계 BK21사업의연구비지원에의해수행되었습니다. Literature Cited Akino, T. 2006. Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): Description of new very long chained hydrocarbon components. Appl. Entomol. Zool. 41: 667-677. Bernier, U.R., D.A. Carlson and C.J. Geden. 1998. Gas chromatography/ mass spectrometry analysis of the cuticular hydrocarbons from parasitic wasps of the genus Muscidifurax. J. Am. Soc. Mass Spectrom. 9: 320-332. Barbour, J.D., E.S. Lacey and L.M. Hanks. 2007. Cuticular hydrocarbons mediate mate recognition in a species of longhorned beetle (Coleoptera: Cerambycidae) of the primitive subfamily prioninae. Ann. Entomol. Soc. Am. 100: 333-338. Blomquist, G.J., D.R. Nelson and M. de Renobales. 1987. Chemistry, biochemistry, and physiology of insect cuticular lipids. Arch. Insect Biochem. Physiol. 6: 227-265. Boo, K.S. 2001. Insect physiology. Seongmunsa Co. Publishing. Böröczky, K., K.C. Park, R.D. Minard, T.H. Jones, T.C. Baker and J.H. Tumlinson. 2008. Differences in cuticular lipid composition of the antennae of Helicoverpa zea, Heliothis virescens, and Manduca sexta. J. Insect Physiol. 54: 1385-1391. Cuvillier-Hot, V., M. Cobb, C. Malosse and C. Peeters. 2001. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Chem. Ecol. 47: 485-493. Darrouzet, E., S. Lebreton, N. Gouix, A. Wipf and A.G. Bagneres. 2010. Parasitoids modify their oviposition behavior according to the sexual origin of conspecific cuticular hydrocarbon traces. J. Chem. Ecol. 36: 1092-1100. Everaerts, C., J-P. Farine, M. Cobb and J-F. Ferveur. 2010. Drosophila cuticular hydrocarbons revisited: Mating status alters cuticular profiles. PLoS ONE 5(3): e9607. doi:10.1371/journal. pone.0009607. Fan, Y., D. Eliyahu and C. Schal. 2008. Cuticular hydrocarbons as maternal provisions in embryos and nymphs of the cockroach Blattella germanica. J. Exp. Biol. 211: 548-554. Gamboa, G.J. 2004. Kin recognition in eusocial wasps. Ann. Zool. Fennici 41: 789-808. Gibbs, A.G., F. Fukuzato and L.M. Matzkin. 2003. Evolution of water conservation mechanisms in Drosophila. J. Exp. Biol. 206: 1183-1192. Han, J.M., H. Kim, E.J. Lim, S. Lee, Y.J. Kwon and S. Cho. 2008. Lycorma delicatula (Hemiptera: Auchenorrhyncha: Fulgoridae: Aphaeninae), finally, but suddenly arrived in Korea. Entomol. Res. 38: 281-286. Hefetz, A., J. Tengö, G. Lübke and W. Francke. 1993. Inter-colonial and intra-colonial variation in Dufour s gland secretion in the bumblebee species Bombus hypnorum (Hymenoptera: Apidae). pp. 469-480. In Advances in life sciences. Sensory Systems of Arthropods, eds. by K. Weise, F.G. Gribakin, and G. Renninger. pp. 469-480. Birkhäuse Verlag, Basel, Switzerland. Howard, R.W., C.A. McDaniel, D.R. Nelson, G.J. Blomquist, L.T. Gelbaum and L.H. Zalkow. 1982. Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential speciesand caste-recognition cues. J. Chem. Ecol. 8: 1227-1239. Howard, R.W. 1993. Cuticular hydrocarbons and chemical communication. pp.179-226. In Insectlipids:chemistry, biochemistry and biology eds. D.W. Stanley-Samuelson and D.R. Nelson, University of Nebraska Press, Lincoln, Nebraska. Haverty, M.I., L.J. Nelson and M. Page. 1990. Cuticular hydrocarbons of four populations of Coptotermes formosanus shiraki in the united states similarities and origins of introductions. J. Chem. Ecol. 16: 1635-1647. Jurenka, R.A. and M. Subchev. 2000. Identification of cuticular hydrocarbons and the alkene precursor to the pheromone in hemolymph of the female gypsy moth, Lymantria dispar. Arch. insect Biochem. Physiol. 43: 108-115. Kaib, M., P. Jmhasly, L. Wilfert, W. Durka, S. Franke, W. Francke, R.H. Leuthold and R. Brandl. 2004. Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J. Chem. Ecol. 30: 365-385. Kather, R., F.P. Drijfhout and S.J. Martin. 2011. Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. DOI 10.1007/s10886-011-9909-4. Kim, J.S., M.K. Kim, J.H. Han, C.M. Yoon, K.S. Choi, S.C. Shin and G.H. Kim. 2006. Possible presence of pheromone in mating behavior of the pine sawyer Monochamus saltuarius Gebler (Coleoptera:Cerambycidae). J. Asia-Pacific Entomol. 9: 347-352. Kim, Y.K., D.R. Philips, T. Chao and L. Ehrman. 2004. Developmental isolation and subsequent adult behavior of Drosophila paulistorum. VI. Quantitative variation in cuticular hydrocarbon. Behavior Genetics 34: 385-394. Cuticular hydrocarbons of Lycorma delicatula 193
Lee, C.J., J.Y. Shen, S.C. Park and J.H. Shim. 2003. Chemical analysis of cuticular hydrocarbons in Apis mellifera L. and Apis ceranea F. Korean J. Appl. Entomol. 42: 9-13. Lee, J.E., S.R. Moon, H.G. Ahn, S.R. Cho, J.O. Yang, C.M. Yoon and G.H. Kim. 2009. Feeding behavior of Lycorma delicatula (Hemiptera: Fulgoridae) and response on feeding stimulants of some plants. Korean J. Appl. Entomol. 48: 467-477. Lee, J.E., E.H. Kim, C.M. Yoon and G.H. Kim. 2010. Comparison of cuticular hydrocarbons of the pine sawyer (Monochamus saltuarius), Japanese pine sawyer (Monochamus alternatus) and oak longicorn beetle (Moechotypa diphysis). Korean J. Appl. Entomol. 49: 211-218. Martin, S. and F. Drijfhout. 2009. A review of ant cuticular hydrocarbons. J. Chem. Ecol. 35: 1151-1161. Nelson, D.R. 1993. Methyl-branched lipids in insects. pp. 271-315. In Insect lipids: Chemistry, biochemistry and biology, eds. by D.W. Stanley-samuelson and D.R. Nelson. University of Nebraska Press, Lincoln, Nebraska. Nelson, D.R. and L.D. Charlet. 2003. Cuticular hydrocarbons of the sunflower beetle, Zygogramma exclamationis. Comp. Biochem. Physiol. B 135: 273-284. Lommelen, E., Johnson, C.A., Drijfhout, F.P., Billen, J., Wenseleers, T. and B. Gobin. 2006. Cuticular hydrocarbons provide reliable cues of fertility in the ant Gnamptogenys striatula. J. Chem. Ecol. 32: 2023-2034. Lucas, C., D.B., Pho, J.M. Jallon and D. Fresneau. 2005. Role of cuticular hydrocarbons in the chemical recognition between ant species in the Pachycondyla villosa species complex. J. Insect Physiol. 51: 1148-1157. Nunes, T.M., I.C.C. Turatti, S. Mateus, F.S. Nascimento, N.P. Lopes and R. Zucchi. 2009. Cuticular hydrocarbons in the stingless bee Schwarziana quadripunctata (Hymenoptera, Apidae, Meliponini): differences between colonies, castes and age. Gen. Mol. Res. 2: 589-595. Page, M., L.J. Nelson, G.J. Blomquist and S.J. Seybold. 1997. Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips spp.) in the grandicollis subgeneric group. J. Chem. Ecol. 23: 1053-1099. Park, J.D., M.Y. Kim, S.G. Lee, S.C. Shin, J.H. Kim and I.K. Park. 2009. Biological characteristics of Lycorma delicatula and the control effects of some insecticides. Korean J. Appl. Entomol. 48: 53-57. Saїd, I., G. Costagliola, I. Leoncini and C. Rivault. 2005a. Cuticular hydrocarbon profiles and aggregation in four Periplaneta species (Insecta: Dictyoptera). J. Insect Physiol. 51: 995-1003. Saїd, I., C. Gaertner, M. Renou and C. Rivault. 2005b. Perception of cuticular hydrocarbons by the olfactory organs in Periplaneta americana (L.) (Insecta: Dicyoptera). J. Insect Physiol. 51: 1384-1389. Shin, Y.H., S.R. Moon, C.M. Yoon, K.S. Ahn and G.H. Kim. 2010. Insecticidal Activity of 26 insecticides against eggs and nymphs of Lycorma delicatula (Hemiptera: Fulgoridae). Korean J. Appl. Entomol. 14: 157-163. Smith, A.A., B. Hölldober and J. Liebig. 2009. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Current Biol. 19: 78-81. Torres, C.W., M. Brandt and N.D. Tsutsui. 2007. The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insect. Soc. 54: 363-373. Urech, R., G.W. Brown, C.J. Moore and P.E. Green. 2005. Cuticular hydrocarbons of buffalo fly, Haematobia exigua, and chemotaxonomic differentiation from horn fly, H. irritans. J. Chem. Ecol. 31: 2451-2461. Uva, P., J.-L. Clément and A.-G. Bagnères. 2004. Colonial and geographic variations in agonistic behavior, cuticular hydrocarbons and mtdna of Italian populations of Reticulitermes lucifugus (Isoptera, Rhinotermitidae). Insect Soc. 51: 163-170. Wagner, D., M. Tissot, W. Cuevas and D.M. Gordon. 2000. Harvester ants utilize culticular hydrocarbons in nestmate recognition. J. Chem. Ecol. 26: 2245-2257. Yew, J.Y., R.B. Cody and E.A. Kravitz. 2008. Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. PNAS 105(20): 7135-7140. Yusuf, A.A., C.W.W. Pirk, R.M. Crewe, P.G.N. Njagi, I. Gordon and B. Torto. 2010. Nestmate recognition and the role of cuticular hydrocarbons in the African termite raiding ant Pachycondyla analis. J. Chem. Ecol. 36: 441-448. Xiao, G. 1991. Forest insect of China, forest research institute. 1361pp. Chinese Academy of Forestry, Beijing. 194 Kor. J. Appl. Entomol. 50(3): 185~194 (2011)