Cancer Vaccines Eun-Wha Son 1, Sang-Whan In 2 and Suhkneung Pyo 2 1 Department of Pharmacognosy Material Development, Samcheok National University, Samcheok, 2 Division of Immunopharmacology, College of Pharmacy, Sungkyunkwan University, Suwon, Korea ABSTRACT Cancer vaccine is an active immunotherapy to stimulate the immune system to mount a response against the tumor specific antigen. Working as a stimulant to the body s own immune system, cancer vaccines help the body recognize and destroy targeted cancers and may help to shrink advanced tumors. Research is currently underway to develop therapeutic cancer vaccines. It is also possible to develop prophylactic vaccines in the future. The whole cell approach to eradicate cancer has used whole cancer cells to make vaccine. In an early stage of this approach, whole cell lysate or a mixture of immunoadjuvant and inactivated cancer cells has been used. Improved vaccines are being developed that utilize cytokines or costimulatory molecules to mount an attack against cancer cells. In case of melanoma, these vaccines are expected to have a therapeutic effect of vaccine. Furthermore, it is attempting to treat stomach cancer, colorectal cancer, pancreatic cancer, and prostate cancer. Other vaccines are being developing that are peptide vaccine, recombinant vaccine and dendritic cell vaccine. Out of them, reintroduction of antigen-specific dendritic cells into patient and DNA vaccine are mostly being conducted. Currently, research and development efforts are underway to develop therapeutic cancer vaccine such as DNA vaccine for the treatment of multiple forms of cancers. (Immune Network 2005;5(2):55-67) Key Words: Cancer vaccine, DNA, dendritic cell, immunotherapy Immune Network 55
56 Eun-Wha Son, et al. Tumor-infiltrating macrophage IL-10 Mature DC HLA I & II B7.1 B7.2 Naive HTL CD28 CTLA-4 Naïve CTL Effector HTL Th1 TCR CD4 CD40-L IL-13 TGFβ IL-10 TCR CD4 CD25 NKT cell Tr cell ROS CD40 CD11b Gr-1 Myeloid suppressor cell NK cell TAA HSP dsdna Perforin Granzyme FAS-L FAS Perforin Granzyme FAS-L TCR CD8 Effector CTL B7-H1 Tolerogenic DC FAS-L PGE2 TGFβ NO Class I HLA & TAA-derived peptide Tumor cells Figure 1. The immune response to tumor cells (full lines: stimulatory effect, dotted lines: inhibitory effect).
Cancer Vaccines 57 Table I. Approach of cancer vaccine Vaccine Components Contents Polyvalent vaccines Whole tumor cell Auogous or allogeneic tumor cells that can be genetically engineered to secrete cytokines No need to know the molecular identity of TAA Lysate tumor cell Mechanical, enzymatic, or viral tumor lysates No need to know the molecular identity of TAA Shared antigens TAA or TAA-derived peptides released in vitro by allogeneic tumor cell lines No need to know the molecular identity of TAA Heat shock proteins Prepared from auogous tumor cells No need to know the molecular identity of TAA Antigen-defined vaccines TAA Proteins (eg., CEA, p53), idiotypes (lymphoma, multiple myeloma), glycoproteins (eg., MUC-1), glycolipids (eg., gangliosides) Peptides HLA class I or class II restricted Recombirart DNA Genetically engineered to express TAA±cytokines Recombinart vins Genetically engineered to express TAA±cytokines Anti-idiotypic antibody Mimicking the natural TAA Dendritic cell-based vaccines Tumor-DC hybrids No need to know the molecular identity of TAA Peptide loaded DC HLA class I or class II restricted Whole tumor cell loaded DC Auogous or allogeneic tumor cells No need to know the molecular identity of TAA Tumor mrna loaded DC No need to know the molecular identity of TAA Genetically engineered DC Engineered to secrete cytokines or express TAA TAA: tumor associated antigens, DC: dendritie cell.
58 Eun-Wha Son, et al. Table II. Tumor-associated antigens Scope Tumor antigen Type of ca Cancer testis MAGE-1 Melanoma, antigens MAGE-2 Brcast, Head/neck MAGE-3 Bladder, gastric, lung MAGE-12 BAGE GAGE NY-ESO-1 Differentiation Tyrosinase Melanoma antigens TRP-1 TRP-2 gp100 MART-1 MCIR Tumour-specific Ig Idiotype B-ceII NHL, MM antigens CDK4 Melanoma Caspase-B Head/neck -catenin Melanoma CLA Bladder BCR/ABL CML Mutated p21/ras Pancreatic, colon, lung Mutated p53 Colorectal, lung, bladder, head/neck Overexpressed Proteinase 3 CML self antigens WT1 CML, ALL, AML MUC-1 Breast adenocarcinoma Nonmal p53 Breast, colon, other cancers Her2/neu Breast, ovary, hung PAP Prostate PSA Prostate PSMA Prostate G250 Renal cell carcinoma Viral antigens HPV E6/E7 Cervical and penile cancer EBV LMP2a EBV+Hodgkin s discase HCV Liver cancer HHV-8 Kaposi sarcoma Onco foetal CEA Colon, breast, antigens pancreatic cancer -Fetoprotein Liver Cancer 5T4 Many Carcinomas Onco-trophoblast (Including colon, glycoprotein gastric, breast, cervix, ovary, lung, renal cell) NHL: non-hodgkin lymphoma, MM: multiple myeloma, CML: chronic myeloid leukaemia, ALL: acute lymphoblastic leukaemia, AML: acute myeloid leukaemia, CEA: carcinoembryonic antigen, HPV: human papilloma virus, EBV: Epstein-Barr virus, HCV: hepatitis C virus, HHv: human herpes virus. proportion of antigen-positive tumour types is very variable.
Cancer Vaccines 59 Table III. The type of cancer vaccines and manufacturing techniques Type Manufacturing techniques (whole cell) Emulsion CTL epitope Liposome CTL epitope Lipopeptide CTL epitope +cytokine adenovirus vaccinia virus, Cytokine B7 gene cytokine gene DNA plasmid
60 Eun-Wha Son, et al.
Cancer Vaccines 61 Table IV. The current development of cancer vaccines using dendritic cells Materials Company Property Dendreon ( ), APC8020 ( ). 1 ( 02)., APC8015 ( 02) Provenge Dendreon ( ). 3 ( 02) Mylovenge. 2 ( 02) APC8024,,. 1 ( 02) Ex vivo Geron ( ). / Genzyme Molecular Melan-A/Mart-1 gp100 Oncology ( ), ex vivo Massachusetts ( ). 1/2 ( 02) Genzyme Molecular Oncology ( ), Beth Israel 1/2 Deaconess ( ), Dana-Farber ( ) Aastrom Biosciences ( ), Stanford ( ), DC-I Aastrom Biosciences ( ), ex vivo DC-I Zellera DCVax-Prostate Northwest Biotherapeutics ( ). 1/2 DCVax-Brain. 2. IL13 Sanofi-Synthelabo ( ),. 2 ( 02) (IDD3) Immuno-Designed. Sanofi Molecules ( ) IDM 20. ( ) CpG Coley Pharmaceutical ( ) CpG.
62 Eun-Wha Son, et al. TK gene Vaccinia Promoter TK gene Vaccinia Promoter Restriction-enzyme cleavage site Plasmid Recombinant plasmid TK gene Cleavage and ligation Gene from tumor cell Transfection TK gene Tissue-culture cells Homologous recombination BUdr selection Recombinant vaccinia Vactor vaccine DNA encoding Ag from tumor cell Vaccine virus Infection Figure 2. The generation of recombinant viral cancer vaccines.
Cancer Vaccines 63 Monitor Immune & Clincal response Immuunogenicity by ELISPOT, ELISA & Proliferation Lymphoma Cellulant Lymph node biopsy DNA Ig Idiotype Vaccine Protein Ig Idiotype Vaccine Vaccinte patients Infection defective adeonvirus with CD40L/ IL-2 Activate on CD40L fibroblast (in vitro expansion of lymphpma cells) Irradiate& preserve Clone idiotype cdna from lymphoma cells Assemble as a scfγ Express in plasmid vector with T helper epitope Make hybridoma with B lymphoma Produce idiotypic immunoglobulin Formulate with adjuvant and helper protein (KLH) Limited Cell Vaccine Unlimited DNA vaccine Unlimited Protein vaccine TIM IL-10 Mature DC HLA Class I & II B7.1 B7.2 Effector HTL Naive HTL CD28 CTLA-4 Naïve CTL Th1 TCR CD4 CD40-L IL-13 TGFβ IL-10 Th2 TCR CD4 CD25 NKT cell Tr cell B cell ROS CD40 CD11b Gr-1 Myeloid suppressor cell Antibodies (IgM, IgG) TAA HSP dsdna TCR CD8 NK cell Perforin Granzyme FAS-L FAS Perforin Granzyme FAS-L Effector CTL B7-H1 Tolerogenic DC FAS-L Class I HLA & TAA-derived peptide Tumor cells PGE2 TGFβ NO Complement-dependent cytotoxicity(cdc) & antibody-dependent cellular cytotoxicity(adcc) Figure 3. The strategy of anti-idiotype vaccine generation to treat lymphoma.
64 Eun-Wha Son, et al. 1. Martin SE, Martin WJ: Anti-tumour antibodies in normal mouse sera. Int J Cancer 15;658-664, 1975 2. Melero I, Bach N, Chen L: Costimulation, and ignorance of cyytic T lymphocytes in immune responses to tumor antigens. Life Sci 60;2035-2041, 1997 3. Mocellin S, Rossi CR, Nitti D: Cancer vaccine development: on the way to break immune to malignant cells. Exp Cell Res 299;267-278, 2004 4. Jager E, Jager D, Knuth A: CTL-defined cancer vaccines: perspectives for active immunotherapeutic interventions in minimal residual disease. Cancer Metastasis Rev 18;143-150,
Cancer Vaccines 65 1999 5. Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM, Anichini A: Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 94;805-818, 2002 6. Finn OJ: Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3;630-641, 2003 7. Sette A, Fikes J: Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol 15;461-470, 2003 8. Parajuli P, Sloan AE: Dendritic cell-based immunotherapy of malignant gliomas. Cancer Invest 22;405-416, 2004 9. Robinson HL: DNA vaccines: basic mechanism and immune responses (Review). Int J Mol Med 4;549-555, 1999 10. Disis ML, Salazar LG, Knutson KL: Peptide-based vaccines in breast cancer. Breast Dis 20;3-11, 2004 11. Kutzler MA, Weiner DB: Developing DNA vaccines that call to dendritic cells. J Clin Invest 114;1241-1244, 2004 12. Coulie PG, van der Bruggen P: T-cell responses of vaccinated cancer patients. Curr Opin Immunol 15;131-137, 2003 13. Pardoll DM: Cancer vaccines. Nat Med 4(5 Suppl);S525-S531, 1998 14. Staveley-O'Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, Pardoll D, Levitsky H: Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci USA 95;1178-1183, 1998 15. Schlecht G, Loucka J, Najar H, Sebo P, Leclerc C: Antigen targeting to CD11b allows efficient presentation of CD4+ and CD8+ T cell epitopes and in vivo Th1-polarized T cell priming. J Immunol 173;6089-6097, 2004 16. Tuting T, Steitz J, Bruck J, Gambotto A, Steinbrink K, DeLeo AB, Robbins P, Knop J, Enk AH: Dendritic cell-based genetic immunization in mice with a recombinant adenovirus encoding murine TRP2 induces effective antimelanoma immunity. J Gene Med 1;400-406, 1999 17. Blum JS, Ma C, Kovats S: Antigen-presenting cells and the selection of immunodominant epitopes. Crit Rev Immunol 17;411-417, 1997 18. Bricks LF: Pneumococcal vaccine: overview about the protective efficacy in different high risk groups and new progress in the development of a conjugate pneumococcal vaccine. J Pediatr (Rio J) 70;75-81, 1994 19. Antonia S, Mule JJ, Weber JS: Current developments of immunotherapy in the clinic. Curr Opin Immunol 16;130-136, 2004 20. Yannelli JR, Wroblewski JM: On the road to a tumor cell vaccine: 20 years of cellular immunotherapy. Vaccine 23; 97-113, 2004 21. Schweighoffer T, Schmidt W, Buschle M, Birnstiel ML: Depletion of naive T cells of the peripheral lymph nodes abrogates systemic antitumor protection conferred by IL-2 secreting cancer vaccines. Gene Ther 3;819-824, 1996 22. Dermime S, Gilham DE, Shaw DM, Davidson EJ, Meziane el-k, Armstrong A, Hawkins RE, Stern PL: Vaccine and antibody-directed T cell tumour immunotherapy. Biochim Biophys Acta 1704;11-35, 2004 23. Maeurer MJ, Storkus WJ, Kirkwood JM, Lotze MT: New treatment options for patients with melanoma: review of melanoma-derived T-cell epitope-based peptide vaccines. Melanoma Res 6;11-24, 1996 24. Mandruzzato S, Brasseur F, Andry G, Boon T, van der Bruggen P: A CASP-8 mutation recognized by cyytic T lymphocytes on a human head and neck carcinoma. J Exp Med 186;785-793, 1997 25. Orme IM, Collins FM: Crossprotection against nontuberculous mycobacterial infections by Mycobacterium tuberculosis memory immune T lymphocytes. J Exp Med 163; 203-208, 1986 26. McCabe WR, Bruins SC, Craven DE, Johns M: Cross-reactive antigens: their potential for immunization-induced immunity to Gram-negative bacteria. J Infect Dis 136(Suppl);S161- S166, 1977 27. Berard F, Blanco P, Davoust J, Neidhart-Berard EM, Nouri- Shirazi M, Taquet N, Rimoldi D, Cerottini JC, Banchereau J, Palucka AK: Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 192;1535-1544, 2000 28. Luiten RM, Demotte N, Tine J, van der Bruggen P: A MAGE-A1 peptide presented to cyytic T lymphocytes by both HLA-B35 and HLA-A1 molecules. Tissue Antigens 56;77-81, 2000 29. Schultz ES, Lethe B, Cambiaso CL, Van Snick J, Chaux P, Corthals J, Heirman C, Thielemans K, Boon T, van der Bruggen P: A MAGE-A3 peptide presented by HLA-DP4 is recognized on tumor cells by CD4+ cyytic T lymphocytes. Cancer Res 60;6272-6275, 2000 30. Van Pel A, van der Bruggen P, Coulie PG, Brichard VG, Lethe B, van den Eynde B, Uyttenhove C, Renauld JC, Boon T: Genes coding for tumor antigens recognized by cyytic T lymphocytes. Immunol Rev 145;229-250, 1995 31. Parkhurst MR, Riley JP, Robbins PF, Rosenberg SA: Induction of CD4+ Th1 lymphocytes that recognize known and novel class II MHC restricted epitopes from the melanoma antigen gp100 by stimulation with recombinant protein. J Immunother 27;79-91, 2004 32. Wang S, Bartido S, Yang G, Qin J, Moroi Y, Panageas KS, Lewis JJ, Houghton AN: A role for a melanosome transport signal in accessing the MHC class II presentation pathway and in eliciting CD4+ T cell responses. J Immunol 163; 5820-5826, 1999 33. Hoashi T, Watabe H, Muller J, Yamaguchi Y, Vieira WD, Hearing VJ: MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes. J Biol Chem 280;14006-14016, 2005 34. Choi C, Kusewitt DF: Comparison of tyrosinase-related protein-2, S-100, and Melan A immunoreactivity in canine amelanotic melanomas. Vet Pathol 40;713-718, 2003 35. Offringa R, Vierboom MP, van der Burg SH, Erdile L, Melief CJ: p53: a potential target antigen for immunotherapy of cancer. Ann N Y Acad Sci 910;223-233, 2000 36. van der Burg SH, Menon AG, Redeker A, Bonnet MC, Drijfhout JW, lenaar RA, van de Velde CJ, Moingeon P, Kuppen PJ, Offringa R, Melief CJ: Induction of p53-specific immune responses in colorectal cancer patients receiving a recombinant ALVAC-p53 candidate vaccine. Clin Cancer Res 8;1019-1027, 2002 37. Liedke M, Karnbach C, Kalinin V, Herbst B, Frilling A, Broelsch CE: Detection of H-ras and K-ras in tumors of gastrointestinal-pancreatic system. Langenbecks Arch Chir Suppl Kongressbd 115(Suppl I);S255-S259, 1998 38. Brembeck FH, Schreiber FS, Deramaudt TB, Craig L, Rhoades B, Swain G, Grippo P, Stoffers DA, Silberg DG, Rustgi AK: The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res 63;2005-2009, 2003 39. Zhou BP, Li Y, Hung MC: HER-2/Neu signaling and therapeutic approaches in breast cancer. Breast Dis 15;13-24, 2002 40. Dela Cruz JS, Lau SY, Ramirez EM, De Giovanni C, Forni
66 Eun-Wha Son, et al. G, Morrison SL, Penichet ML. Protein vaccination with the HER2/neu extracellular domain plus anti-her2/neu antibody-cytokine fusion proteins induces a protective anti- HER2/neu immune response in mice. Vaccine 21;1317-1326, 2003 41. Blumberg BS, Larouze B, London WT, Werner B, Hesser JE, Millman I, Saimot G, Payet M: The relation of infection with the hepatitis B agent to primary hepatic carcinoma. Am J Pathol 81;669-682, 1975 42. Davidson EJ, Faulkner RL, Sehr P, Pawlita M, Smyth LJ, Burt DJ, Tomlinson AE, Hickling J, Kitchener HC, Stern PL: Effect of TA-CIN (HPV 16 L2E6E7) booster immunisation in vulval intraepithelial neoplasia patients previously vaccinated with TA-HPV (vaccinia virus encoding HPV 16/18 E6E7). Vaccine 22;2722-2729, 2004 43. Humphrey LJ, Boehm B, Jewell WR, Boehm OR: Immunologic response of cancer patients modified by immunization with tumor vaccine. Ann Surg 176;554-558, 1972 44. Antonia S, Mule JJ, Weber JS: Current developments of immunotherapy in the clinic. Curr Opin Immunol 16;130-136, 2004 45. Schuler G, Schuler-Thurner B, Steinman RM: The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15;138-147, 2003 46. Kaminski ER, Goddard RV, Prentice AG: Dendritic cells and their potential therapeutic role in haemaogical malignancy. Leuk Lymphoma 44;1657-1666, 2003 47. Ohno T: Auogous cancer vaccine: a novel formulation. Microbiol Immunol 47;255-263, 2003 48. Berd D: Auogous, hapten-modified vaccine as a treatment for human cancers. Vaccine 19;2565-2670, 2001 49. Sondak VK, Sosman JA: Results of clinical trials with an allogenic melanoma tumor cell lysate vaccine: Melacine. Semin Cancer Biol 13;409-415, 2003 50. Lunde E, Western KH, Rasmussen IB, Sandlie I, Bogen B: Efficient delivery of T cell epitopes to APC by use of MHC class II-specific Troybodies. J Immunol 168;2154-2162, 2002 51. Nakamura M, Iwahashi M, Nakamori M, Ueda K, Matsuura I, Noguchi K, Yamaue H: Dendritic cells genetically engineered to simultaneously express endogenous tumor antigen and granulocyte macrophage colony-stimulating factor elicit potent therapeutic antitumor immunity. Clin Cancer Res 8;2742-2749, 2002 52. Homma S, Kikuchi T, Ishiji N, Ochiai K, Takeyama H, Saotome H, Sagawa Y, Hara E, Kufe D, Ryan JL, Ohno T, Toda G: Cancer immunotherapy by fusions of dendritic and tumour cells and rh-il-12. Eur J Clin Invest 35;279-286, 2005 53. Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, Taidi B, Rajapaksa R, Caspar CB, Okada CY, van Beckhoven A, Liles TM, Engleman EG, Levy R: Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99;1517-1526, 2002 54. Rini B: Recent clinical development of dendritic cell-based immunotherapy for prostate cancer. Expert Opin Biol Ther 4;1729-1734, 2004 55. Chang GC, Lan HC, Juang SH, Wu YC, Lee HC, Hung YM, Yang HY, Whang-Peng J, Liu KJ: A pilot clinical trial of vaccination with dendritic cells pulsed with auogous tumor cells derived from malignant pleural effusion in patients with late-stage lung carcinoma. Cancer 103;763-771, 2005 56. Sette A, Fikes J: Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol 15;461-470, 2003 57. Gordan JD, Vonderheide RH: Universal tumor antigens as targets for immunotherapy. Cytotherapy 4;317-327, 2002 58. Hakomori S: Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anticancer vaccines. Adv Exp Med Biol 491;369-402, 2001 59. Van Pel A, van der Bruggen P, Coulie PG, Brichard VG, Lethe B, van den Eynde B, Uyttenhove C, Renauld JC, Boon T: Genes coding for tumor antigens recognized by cyytic T lymphocytes. Immunol Rev 145;229-250, 1995 60. Vierboom MP, Feltkamp MC, Neisig A, Drijfhout JW, ter Schegget J, Neefjes JJ, Melief CJ, Kast WM: Peptide vaccination with an anchor-replaced CTL epitope protects against human papillomavirus type 16-induced tumors expressing the wild-type epitope. J Immunother 21;399-408, 1998 61. Diehl L, den Boer AT, Schoenberger SP, van der Voort EI, Schumacher TN, Melief CJ, Offringa R, Toes RE: CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte and augments anti-tumor vaccine efficacy. Nat Med 5;774-779, 1999 62. Valmori D, Lienard D, Waanders G, Rimoldi D, Cerottini JC, Romero P: Analysis of MAGE-3-specific cyytic T lymphocytes in human leukocyte antigen-a2 melanoma patients. Cancer Res 57;735-741, 1997 63. Hodge JW, Poole DJ, Aarts WM, Gomez Yafal A, Gritz L, Schlom J: Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses. Cancer Res 63;7942-7949, 2003 64. Tatsis N, Ertl HC: Adenoviruses as vaccine vectors. Mol Ther 10;616-629, 2004 65. Essajee S, Kaufman HL: Poxvirus vaccines for cancer and HIV therapy. Expert Opin Biol Ther 4;575-588, 2004 66. Restifo NP: The new vaccines: building viruses that elicit antitumor immunity. Curr Opin Immunol 8;658-663, 1996 67. Starks H, Bruhn KW, Shen H, Barry RA, Dubensky TW, Brockstedt D, Hinrichs DJ, Higgins DE, Miller JF, Giedlin M, Bouwer HG: Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J Immunol 173;420-427, 2004 68. Mandal M, Lee KD: Listeriolysin O-liposome-mediated cytosolic delivery of macromolecule antigen in vivo: enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity, and tumor protection. Biochim Biophys Acta 1563; 7-17, 2002 69. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC: Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 108;669-678, 2001 70. Marshall JL, Gulley JL, Arlen PM, Beetham PK, Tsang KY, Slack R, Hodge JW, Doren S, Grosenbach DW, Hwang J, Fox E, Odogwu L, Park S, Panicali D, Schlom J: Phase I study of sequential vaccinations with fowlpox-cea (6D)- TRICOM alone and sequentially with vaccinia-cea (6D)- TRICOM, with and without granulocyte-macrophage colonystimulating factor, in patients with carcinoembryonic antigenexpressing carcinomas. J Clin Oncol 23;720-731, 2005 71. Morse MA, Clay TM, Hobeika AC, Osada T, Khan S, Chui S, Niedzwiecki D, Panicali D, Schlom J, Lyerly HK: Phase I study of immunization with dendritic cells modified with fowlpox encoding carcinoembryonic antigen and costimulatory molecules. Clin Cancer Res 11;3017-3024, 2005 72. Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S, Tanabe K, Duda R, Mentzer S, Jaklitsch M, Bueno R, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Mihm M, Dranoff G: Vaccination with irradiated, auogous melanoma
Cancer Vaccines 67 cells engineered to secrete granulocyte-macrophage colonystimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 21;3343-3350, 2003 73. Corr M, Lee DJ, Carson DA, Tighe H: Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med 84;1555-1560, 1996 74. Celiker MY, Wang M, Atsidaftos E, Liu X, Liu YE, Jiang Y, Valderrama E, Goldberg ID, Shi YE: Inhibition of Wilms' tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA. Oncogene 20;4337-4343, 2001 75. Schneeberger A, Wagner C, Zemann A, Luhrs P, Kutil R, Goos M, Stingl G, Wagner SN: CpG motifs are efficient adjuvants for DNA cancer vaccines. J Invest Derma 123; 371-379, 2004 76. Yamamoto S, Kuramoto E, Shimada S, Tokunaga T: In vitro augmentation of natural killer cell activity and production of interferon-alpha/beta and -gamma with deoxyribonucleic acid fraction from Mycobacterium bovis BCG. Jpn J Cancer Res 79;866-873, 1988 77. Krieg AM: CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20;709-760, 2002 78. Jakob T, Walker PS, Krieg AM, von Stebut E, Udey MC, Vogel JC: Bacterial DNA and CpG-containing oligodeoxynucleotides activate cutaneous dendritic cells and induce IL- 12 production: implications for the augmentation of Th1 responses. Int Arch Allergy Immunol 118;457-461, 1999 79. Hiraoka K, Yamamoto S, Otsuru S, Nakai S, Tamai K, Morishita R, Ogihara T, Kaneda Y: Enhanced tumor-specific long-term immunity of hemagglutinating [correction of hemaggluttinating] virus of Japan-mediated dendritic cell-tumor fused cell vaccination by coadministration with CpG oligodeoxynucleotides. J Immunol 173;4297-4307, 2004 80. Bianchi A, Massaia M: Idiotypic vaccination in B-cell malignancies. Mol Med Today 3;435-441, 1997 81. McCarthy H, Ottensmeier CH, Hamblin TJ, Stevenson FK: Anti-idiotype vaccines. Br J Haema 123;770-781, 2003