Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006, pp. 216-226 k i Š m Çm k, *Ç y Çmm Çm kç n e l 143-200 ne v p 130-1 * ne 130-743 ne r 90 (2005 12o 28p r, 2006 3o 5p }ˆ) Characteristics of Disinfection Byproducts in Tap Water of Seoul Hyun Seong Chang, G Do Weon Lee, *, Chang Mo Kim, In Suk Lee, Su Won Lee and Hyeon Park Waterworks Research Institute, Seoul Metropolitan Government, 130-1, Guui-dong, Gwangjin-gu, Seoul 143-200, Korea *Department of Chemical Engineering, University of Seoul, 90, Cheonnong-dong, Dongdaemun-gu, Seoul 130-743, Korea (Received 28 December 2005; accepted 5 March 2006) k h (chloroform), k Žle (dichloroacetic acid; DCAA), k Žle (trichloroacetic acid; TCAA) p p m e tn p. p t DCAA k v l pl pl l nep p kr p Ž o tn. 2002~2004 p 3 k p m. p t ˆ(total trihalomethanes; THMs)p r ql l 0.015 mg/l, vr rp v l 0.019 mg/l, o rp l 0.023 mg/l ~ e p v l p v p ˆ., mp m p p l ~l r p l. THMs pnp le o p ˆ l. p kp v tp 1/4~1/6 r p p tp l ne p l pl kr p ˆ. Abstract Total trihalomethanes (THMs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) that are the major disinfection byproducts (DBPs) are monitored continuously in drinking water in Seoul. Study on characteristics of DBPs is crucial to judge the safety of drinking water in Seoul. Analysis of THMs, haloacetonitriles (HANs), chloral hydrate (CH), and haloacetic acids (HAAs) was carried out in several distribution systems from January 2002 to December 2004. The concentration of THMs was 0.015 mg/l in purified water, 0.019 mg/l in tapwater by direct service, and 0.023 mg/l in tapwater through watertank, respectively. It might be due to the increased contact time with chlorine by a process of the distribution system. And the other DBPs show a tendency to increase in its concentration by a process of the distribution system. Also, in summer, the concentration of DBPs was higher than in spring and winter. It might be due to the higher temperature of water in summer. In all cases, the quantities of detected DBPs were 4-6 times lower than those of regulation limits of drinking water in Seoul. In view of these results, the tapwater in Seoul is good to drink it all the times. Key words: Disinfection Byproducts(DBPs), Total Trihalomethanes(THMs), Haloacetic Acids(HAAs) 1. r } rl p p r eˆ o m p r rp q p jp p tp p. m n p } l np q p p l pn p p r rll q r To whom correspondence should be addressed. E-mail: dlee@uos.ac.kr np pn, m l p p Ž, p Œ e, p p p l v. n l p lq lk o p s o q m p el 0.2 mg/l p, l mmp l mm n p nl 0.4 mg/l p p ov r p., q m p p 4 mg/l rr(2002 7o) l nl rl p [1-4]. 216
m p e ˆ(total trihalomethanes; THMs) p p ep p, l THMs k k Žle (haloacetic acids; HAAs), k Š (haloacetonitriles; HANs), p p (chloral hydrate; CH)m p vl l r rp mp, pp Š 2002 1o p rm Ë l r(disinfectant/disinfection byproduct rule)ë l THMs 80 µg/l, HAAs 60 µg/l r p., l v tp v tp o l 2002 7o t p 48 l 55 l q m, HAAs, HANs p pp k (formaldehyde), monochloroacetic acid(mcaa) p e p l [1]. m p r } r t m l m m t o p p l p t (chloroform) k Žle (dichloroacetic acid; DCAA) p k v l pl p l s l p kr p Žk o n tn., l l 2002 1o 2004 12o v ee r, v, p s l p m p THMs, HANs, CH, HAAs l k. p l m p l p Žk kn ne p kr p Ž q n pp p vp m n p Ž. 2. m 2-1. k p p r } l n rm p }lo (natural organic matter; NOM)p p l v DBPs(disinfected by-products), r l p rp m } m (chlorination byproducts; CBPs)p. r q~ p p l p rp p p, pm p o ˆ o s} m mmp ppˆ. ne l 217 e op n v m mm v p o~ r eˆ o l p } rp rp. r m (Cl 2 ) q jp po rl l rp p e, rp kr q e p n lp, q p p. (NHCl 2 /NH 2 Cl)p p n r m e q n v, m lv. p m (ClO 2 )m ms(o 3 )p n rp, np p } rp l. msp l v l kr, q p lp l p q qeˆ p p l m p ~ e k. 2-2. Š q ne l p THMs t bromodichloromethane(bdcm), HAAs t DCAA k p p p k r p. THMs, HANs, CH, HAAsp, n, v t r [1, 3-5] ep Table 1. 2-3. mm l pl l ƒ m p pq NOM, pm (ph), m, m tp p p. ~ w, NOMl m p p NOM v, o p q p humusm Ž Š(CH 3 CO ) o q p r qp v p. tp humus t ~ q p 100~1,000p humus fulvic acid q p 100,000 p p humic acid humic acid m m q p l chloroform p eˆ. m m p l THMs p r q o l acetone, acetaldehydem p v op v p eˆ p ethanol p p p l rp p r, l p v mmp p } q l sq., p p } e rl m m p l k Žle p l eˆ [6]. w, php m p p rp ph p THMsp p p k r p p php v l humic acid p ns ˆp halogen pp v p opp p [6]. Chloroform ˆ THMs pp m p Table 1. Standards, quantitation limits, health effect and structures of typical disinfection by-products regulated by Korea [unit: mg/l] Analytes Standard Quantitation limit Health effect Structure Trihalomethane (THMs) 0.1 0.001 THMs chloroform 0.08 0.0001 liver damage CHCl 3 bromodichloromethane (BDCM) 0.06 0.001 carcinogenicity CHCl 2 Br dibromochloromethane (DBCM) 0.1 0.001 hepatic tumor CHClBr 2 bromoform 0.1 0.001 intestinal tumor CHBr 3 HANs trichloroacetonitrile (TCAN) 0.004 0.0005 available data are not sufficient CCl 3 CN dichloroacetonitrile (DCAN) 0.09 0.0005 mutagenicity body weight loss CHCl 2 CN bromochloroacetonitrile (BCAN) 0.0005 mutagenicity CHClBrCN dibromoacetonitrile (DBAN) 0.1 0.0005 under test for chronic toxicity CHBr 2 CN HAAs chloral hydrate (CH) 0.03 0.0005 liver toxicity CCl 3 CH(OH) 2 trichloroacetic acid (TCAA) 0.0005 chromosomal aberration mutation CCl 3 COOH 0.1 dichloroacetic acid (DCAA) 0.0005 hepatic tumor CHCl 2 COOH Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006
218 q Ëp oë } Ëpp Ëp oë (base-catalyzed reaction)p ph p v l THMsp p v. p ph l r v m t ~ (chlorinated intermediates) p ph p d l THMs p v. DCAAp n ph v l v p pv TCAA ph v l p ˆ [7]. p p p p ph 5, 7p n e p v v, ph 9.4p nl 4e p l, l. DCAN p ph 5p n r ph 7p n, 4e p, ph 9.4p nl p p p [9]. DCANp pe l 1 p p, ph 5p nl r kr, ph kv pe l [9]. w ml m p p. p rp mp d p v. THMsp l p l l p q, nl q p p k p. v np p m l p s p p v. v p n THMs p p p k r p [3]. mp v l DBPFP(disinfection byproducts formation potential) v rp v, t THMFP (trihalomethanes formation potential) mp 10 o C v v, 10 o C p l mp d l p v., HAAFP (haloacetic acid formation potential) l e mp d p v rp v [10]. v p DBPs p,, p m tp q m p m p. m l m p tp p q m p THMs HAAs l o., p m tp p di-, mono-l p trihalogenated HAAs p rm. DCANp n v p r v(protein precursor) m mp pl p, pp p m l ps p pp l e l ~ p r r }} p lv [9]. 2-4. r 2-4-1. ˆ(THMs) tl m m p l THMsp o p THMs r vp p o ˆ (total organic carbon; TOC), r n (chemical oxygen demand; COD) p. THMs r vp e p ~, p p l p rl, s p rl v q r q vp rp v(humic substance) [7]. p p q l humic acid, hymatomelamic acid(mw=10,000~200,000),, m l n p fulvic acid(mw=200~1,000) pp, humic acid r sep Fig. 1l ˆ p 1978 Trussellp v q p rk m. p rp humic acid n p r sq(pv, r)l p d r THMs r v r p fulvic acid k r p [11]. Fulvic acidp l p rqr ˆ l OCl p ~(nucleophile) l haloform pp pl, Ž Š o44 o2 2006 4k Fig. 1. General structure of humic acid. [CH 3 CO-] acetaldehyde(ch 3 CHO), alcohols(roh) p r qp r v THMsp. THMs p r vp m, ph, m ~, m mp re l m p p m php m p p. r q r vp THMs p k Šp pl p THMsp q l p THMsp q. p THMsp r v p p m m p l k v k v k Žle (HAAs) p l r } l op k., p THMs r vp ph p yl (OH ) pl m qn THMsp v p k r p. Scheme 1l m p k Šp vr pp ppˆv Scheme 2l k m ~ k Ž p pp pl p p lv p p p. k Š p (-CN)qnl p p p v v k Š ˆ. 2-4-2. k Žle (HAAs) tp vp n p fulvic acids ˆp l k Žle p tn r vp p. ql tp ns o ˆ (DOC)p k p p v vp ˆ k Žle p. tp vp p q s pe p. t s e m(resorcinol) p meta-dihydroxybenzene(m-dhb) p, p m p p l k Žle m ˆp e ˆ p. Scheme 3m p HOCl tp m oq p hydroxyl pp o p l l l cyclohexanemeta-diketone ringp. HOClp ~ wp ketone o l pr ˆ oql 3 p m. e w ketone o l hydroxy p k Žle m ˆp [12]. 2-4-3. k Š (HANs) DCAN(dichloroacetonitrile)p p (-CN) v p t n m p. DCANp pe, m tp, pm l m p tp k p r vp p p. DCANp pe
ne l 219 Scheme 1. Haloform reaction mechanism.. Haloform reaction mechanism p r, DCANp (hydroxide), km m (hypochlorite), (water)p 3 v k r p [9]. n, DCANp v p vl m l p. ql tl k p v oq vl sq pv, tl p dihaloacetonitrile(dhan)p kt p p l, k p DHANp tn r vp k p. l, e rp t v p v m DCAN l r v p. w, DHAN p o pp s p o p r v p. w, NOM l p m pp m } p tp DCANp k r p. vl m p p 2 lv p. ~ p p p l pp ppˆ. p p m n p THMsm total organic halide(tox). p DHAN p v k, ˆp p ˆ DHANp p. v l sq k p rp p pv, ˆp p m p sq l }} p. p rp m l p rp HANs p v eˆ p [9]. Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006
220 q Ëp oë } Ëpp Ëp oë Scheme 2. Haloform reaction mechanism of others low molecular weight NOM. Scheme 3. Generation of haloacetic acid and trihalomethanes from aquatic humic substances. o44 o2 2006 4k
2-4-4. p p (CH) p p ( k k p hydrated form) } rl m m ql o v p p p p ˆ. p p l o m v tl v pv kv, (world health organization; WHO) v tp 10 µg/l r. p p l ƒ vp v p. k m mp pp, k m m mp pp. l v l ƒ vp k pv p v p k l n p t ~ p v p. er m ˆl p p p p p, ˆl k Žle (TCAA) p m [13]. t p p p tn opp k m mp pp p. k p r m } r tl l k m (-CN)p p. ql tl p k p qqrp r vp p., p p THMs TCAA p l r v r p [13]. 3. 3-1. e q m 2002 ~2004 p 3 k ne q 6~8 p r q(w1~w8;, p,,, k, k, m, eor q) t r, v, p o 8~12 p samplep ee m. 3-2. 3-2-1. r} r THMs US EPA 524.2[14], HANsm CH US EPA 551.1[15], HAAs US EPA 552.2[16, 17] e m. THMs purge & trap [15]p n l e tp l GC/MS m, HANs, CH 50 mlp e nkp ph 4l MTBE(methyl t-butyl ether) 3 ml kk l GC/ECD m. HAAs 40 ml ne l 221 p e nkp ph < 1 p l MTBE 4 ml kk 10Í H 2 SO 4 /methanolp pn l o ~ (methylation), NaHCO 3 nkp t GC/ECD m. 3-2-2. s THMsp r} Tekmar 3000 concentrator purge & trap, HP 5890 series Gas Chromatograph, HP 5972 series Mass selective detector n m. HANs, CHp Varian Star 3600CX GC/ECD n m. HAAsp nl Varian CP 3800 Gas Chromatograph GC/ECD n m. vp s p Table 2m. 4. m m Žs 4-1. LRB(laboratory reagent blank) ˆnk e } e ~ sr rl r l l m p v kk o l LRB r [14-17]. THMsl pl GC/MSD n l SIM(selected ion monitoring) p ee m, p n r pmp 2~3 p m p r o rp ee m. p e p 7.87 p, 0.1 µg/lp abundance 82,536pl. THMsl LRB e 7.87 p abundance 264 l m p e sp tp ˆ. LRB p r~ e p 10Í r l e r r e r n e ee lk rp t l v ee m [14-17]. GC/ECD(Varian GC 3600CX DB-1, 30 m 0.25 mm 0.25 µm) r k Š m p p l LRBl p v p e p TCAN, DCAN, CH, BCAN, DBAN p 12.08, 13.84, 15.64, 25.41, 30.17 p p e l ˆ sq v kk. Carboxylic acid(-cooh)m p p k Žle p q GC/MS p GC/ECD o eˆ Ž p o ~ qlp n., r} rp l q v l l ~ ek p rl r l m p v p n p. GC/ECD(Varian CP-3800/ECD, Column: DB-1701) p n k Žle, k Žle p Table 2. Operating parameters for analysis of THMs, HANs, CH, and HAAs Item Conditions (THMs) Conditions (HANs, CH) Conditions (HAAs) Instrument GC/MS GC/ECD GC/ECD Carrier gas HeG(1.0 ml/min) N 2 G(1.0 ml/min) N 2 G(1.0 ml/min) Column HP-VOCG(60 m 0.32 mm I.D 1.8 µm film thickness) DB-1G(25 m 0.25 mm I.D 0.25 µm film thickness) DB-1701G(25 m 0.25 mm I.D 0.25 µm film thickness) Injector temp.( o C) 250 200 200 Detector temp.( o C) 280 290 260 Column temp. program init.: 2 min at 40 o C init.: 5 o C/min to 120 o C, init.: 5 min at 120 o C init.: 10 o C/min to 210 o C init.: 3 min at 210 o C init.: 22 min at 40 o C init.: 10 o C/min to 145 o C init.: 2 min at 145 o C Retention time 35 min 34 min 52 min init.: 10 min at 35 o C init.: 5 o C/min to 75 o C init.: 10 min at 75 o C init.: 5 o C/min to 100 o C init.: 10 min at 75 o C init.: 5 o C/min to 135 o C init.: 10 min at 75 o C Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006
222 q Ëp oë } Ëpp Ëp oë Table 3. MDL results of analytes Analyte Spiked conc. Meas. conc. MeanG recoveryg( ) RSD ( ) [unit: µg/l] MDL chloroform 1.00 1.08 108 1.1 0.04 BDCM 1.00 1.07 107 1.5 0.05 DBCM 1.00 0.96 96 3.3 0.10 bromoform 1.00 0.87 87 6.9 0.19 TCAN 0.25 0.30 120 19.7 0.31 DCAN 0.25 0.27 106 4.3 0.04 BCAN 0.25 0.23 90 16.9 0.12 DBAN 0.25 0.24 97 4.6 0.04 CH 0.25 0.27 107 6.1 0.05 MCAA 3.0 2.8 93 15.3 0.6 MBAA 2.0 2.2 110 10.5 0.3 DCAA 3.0 3.4 113 9.7 0.1 TCAA 1.0 1.1 110 7.7 0.2 BCAA 2.0 2.3 115 13.2 0.4 DBAA 1.0 0.8 80 14.3 0.2 Table 4. Precision and accuracy of analytes [unit: µg/l] Analyte Spiked Meas. MeanG RSD conc. conc. recoveryg( ) ( ) chloroform 4.0 3.80 095 1.9 BDCM 4.0 3.70 092 1.9 DBCM 4.0 4.10 102 4.1 bromoform 4.0 4.20 104 5.2 TCAN 1.0 1.17 117 12.8 DCAN 1.0 1.04 104 8.1 BCAN 1.0 0.99 099 14.1 DBAN 1.0 1.00 100 6.8 CH 1.0 1.08 108 9.4 MCAA 15.00 14.00 093 13.3 MBAA 10.00 9.80 098 9.9 DCAA 15.00 14.50 096 10.0 TCAA 5.0 5.80 116 6.5 BCAA 10.00 11.00 110 11.2 DBAA 5.0 5.30 106 7.8 e p 13.50 17.38 p p e l sq v kk. 4-2. } (method detection limits, MDL) t(detection level)p p (method detection limits), (instrument detection limit) p p. tlv e p, 0 mm vp q p p [14-17]. r l p MDLp 99Íp e l 7 e t l 3.14 [14-17]. THMsp n GC/MSD(HP5890/HP5972) pn l MDL rp ee m. tp 1 µg/l m, p 7 p replicate m., Table 3l m p vl p r p p 0.5 µg/l, v 3 p 1µg/Lp MDLp s p ˆ. HANs CHp n GC/ECD MDL rp ee v tl r 0.5 µg/l s p p 0.25 µg/l 7 p replicatel l r mp v l p Table 3 p v p p r 0.5 µg/lp tl kt k tp ˆ p., TCAN CHp n p RSD rp m p n vl kr p p Ž. HAA 6 l l MDL tp v tl r 0.5 µg/lpv, HAN S CHl l r l TCAA tp l 1µg/L m, p 7 p replicate m. vl 7 p replicate l p, RSD(Í), MDL p Table 3. 4-3. o (precision)j o (accuracy) rr l vp t v ~ l p s t kl p v, p r r p ˆ p v e p o44 o2 2006 4k kk kp [4], Table 4m p THMs 4 µg/l, HANs, CH 1.0 µg/l, HAAs TCAA tp 5.0 µg/l tp m. r l r RSD(relative standard deviation)p ˆ, Table 4m p THMs 1.9~5.2Í, HANs, CH 6.86~14.18Í, HAAs 6.5~13.3Íp o ˆ US EPA Method t(thms: 20Í p, HANs: 20Í p, HAAs: 30Í p )[14-17]p s m. r ˆ p THMsp n 92~104Í, HANs, CH 99~117Í, HAAs 93~116Íp o ˆ p US EPA Method tp 70~130Í(THMs, HANs: 80~120Í)[14-17] s m. 4-4. o (calibration curve) THMs Supelco 200 mg/lp tokp pn 1 nk (2 mg/l)p sr p v l rp tp[14] l 5 points(1, 5, 10, 20, 50 µg/l)p r p, HANs, CH Accustandard 5,000 mg/l tokp pn l 1 nk(10 mg/l)p p v l tp[15] l ql tnkp 4 points(1, 3, 5, 10 µg/l) r p, HAAs Accustandard 20 mg/l tokp v l tp ep l TCAA tp ql tnk p l 4 points(2.5, 5, 10, 20 µg/l) r p q m [16]. v 0.999 p p ˆ. 5. y 5-1. m i q m r, r 0.87 mg/l(0.61~1.17 mg/l), v 0.65 mg/l(0.30~1.08 mg/l), 0.43 mg/l (0.05~0.88 mg/l) p p m. p n ~ p, r l q m r k. p p rl p r p p p l r p p v p Ž. l o q m, l p sq v kk l ~l r q m ˆ.
ne l 223 l., mp m l p l ~p 7~9o tl r ˆ p m. THMsl v tp 0.1 mg/lp l p v tl l k 15Í~25Í v, p p tp 1/2 p ( 0.045 mg/l) l l m l p r k r p ˆl THMsl kr p Ž. Fig. 2. Monthly variation of THMs in distribution system (tapwater 1: tapwater by direct service; tapwater 2: tapwater through watertank). q m 0.2 mg/l p p vrp 261 n 4vrp ˆ, p l q p m ml p p Ž. v, q r e l p ˆ l q m p r kr l p pl [18]. 5-2. {Š (THMs) 2002 1o 2004 12o v ne p THMs Fig. 2l ˆ l., r 0.015 mg/l(0.004~0.033 mg/l), v, 0.019 mg/l(0.003~0.043 mg/l), 0.023 mg/l(0.004~0.050 mg/l) THMsp v m. Fig. 3l l THMsp ˆ l, 2002 ~2004 vp 3 pv k d tp l. THMsp p v p nl r 0.0118 mg/l(0.0030~0.0290 mg/l), v 0.0151 mg/l(0.0026~0.0393 mg/l), 0.0184 mg/l(0.0016~0.0450 mg/l) p v m. p q m m qs o p v rp rl p p r. kl p q m p q m m ˆ 5-3. g Š (HANs)j m mš(ch) 2002 9o 2004 12o v l p ee HANs, CH t TCAN DBANp r vrl v kk. l k Š (DCAN)p r 0.0022 mg/l(0.0007~0.0044 mg/l), v 0.0026 mg/l, (0.0008~0.0050 mg/l), 0.0033 mg/l(0.0018~0.0065 mg/l) l. p p (CH)p n r l 0.0037 mg/l, 0.0008~0.0072 mg/lp o, v l 0.0046 mg/l, 0.0018~0.0096 mg/lp o, l 0.0060 mg/l, 0.0022~0.0128 mg/lp o ˆ. e p r Fig. 4m 5l m Fig. 4. Monthly variation of DCAN in distribution system (tapwater 1: tapwater by direct service; tapwater 2: tapwater through watertank). Fig. 3. Yearly and monthly variation of THMs. Fig. 5. Monthly variation of CH in distribution system (tapwater 1: tapwater by direct service; tapwater 2: tapwater through watertank). Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006
224 q Ëp oë } Ëpp Ëp oë p l DCAN CH THMs } op v p lt p., mp m p p 7o~9op k. DCAN CHl v tp 0.09, 0.03 mg/lp l p v tl l DCANp n 10Í, CHp n 30Í p ˆ l m l p r kr p ˆl DCAN CHl kr p Ž. 5-4. g Ši (HAAs) 2002 9o 2004 12o v r l r v l p ee m, MCAA, monobromoacetic acid(mbaa), dibromoacetic acid(dbaa), bromochloroacetic acid(bcaa) p r vrl v kk, p tp 0.0005~0.001 mg/lp v 48/204p l (BCAA). DCAA r l 0.0062 mg/l, 0.0000~ 0.0125 mg/lp o ˆ. v l 0.0079 mg/l, 0.0027~0.0147 mg/lp o l l 0.0089 mg/l, 0.0025~0.0201 mg/lp o ˆ. TCAA r l 0.0080 mg/l, 0.0023~0.0180 mg/lp o, v l 0.0097 mg/l, 0.0033~0.0247 mg/lp o, l 0.0116 mg/l, 0.0037~ 0.0242 mg/lp o s l. q v t p r l p DCAA TCAAp p n r l 0.0142 mg/ll 0.0031~0.0257 mg/lp o m. p p v l 0.0176 mg/ll 0.076~0.0340 mg/lp o mp l 0.0206 mg/ll 0.0076~0.0362 mg/lp o m. Fig. 6l k Žle (DCAA+TCAA)p m. v k Žl e p v p ˆ., o k Žle p n ml p m p THMs, HANs, CH v kkv, DCAAm TCAAp p l ~p 7o~9op r k. k Žle (DCAA+TCAA)l l vr Fig. 6. Monthly variation of DCAA+TCAA in distribution system (tapwater 1: tapwater by direct service; tapwater 2: tapwater through watertank). v tp 0.1 mg/lp l p v tl l 14Í~20Íp o lp 36.2Í p ˆ l m l p r kr p ˆl k Žle t t n p DCAAm TCAAl kr p Ž. 5-5. Š tn p THMs,, BDCM, DCAA, TCAA, HAA 2 (DCAA+TCAA), DCAN, CHl pp Table 5l ˆ l. p t 80Í p p THMs k Žle (DCAA+TCAA)p, THMs k Žle r l 42.0Í, 40.9Í v l 42.9Í, 40.4Í, l 43.4Í, 38.9Í d p p k p. r~ THMs 42.9Í, HAA 2 39.9Í l. THMsm HAA 2 rn k Š l p p 6Ím 10Í np pp ˆ. l, THMsp n p 80Íp p p l, v t BDCMp k 20Íp p l, v v p v kk. k Žle Table 5. Characteristics of disinfection byproducts on distribution system GG [unit: µg/l] Section Purified water( ) Tapwater1( ) Tapwater2( ) Total( ) THMs THMs 0.0146(42.0 ) 0.0146(100 ) 0.0187(42.9 ) 0.0187(100 ) 0.0230(43.4%) 0.0230(100 ) 0.0188(42.9 ) 0.0188(100 ) chloroform 0.0118(80.8 ) 0.0151(80.7 ) 0.0184(80.0 ) 0.0151(80.3 ) BDCM 0.0028(19.1 ) 0.0037(19.7 ) 0.0046(20.0 ) 0.0037(19.6 ) DBCM 0.0000(0 ) 0.0000(0 ) 0.0000(0 ) 0.0000(0 ) bromoform 0.0000(0 ) 0.0000(0 ) 0.0000(0 ) 0.0000(0 ) HAA 2 HAA 2 0.0142(40.9 ) 0.0142(100 ) 0.0176(40.4 ) 0.0176(100 ) 0.0206(38.9%) 0.0206(100 ) 0.0175(39.9 ) 0.0175(100 ) DCAA 0.0062(43.6 ) 0.0079(44.8 ) 0.0089(43.2 ) 0.0077(44.0 ) TCAA 0.0080(56.3 ) 0.0097(55.1 ) 0.0116(56.3 ) 0.0098(56.0 ) HANs TCAN 0.0022(6.3 ) 0.0000(0 ) 0.0026(5.9 ) 0.0000(0 ) 0.0033(6.2%) 0.0000(0 ) 0.0027(6.1 ) 0.0000(0 ) DCAN 0.0022(100 ) 0.0026(100 ) 0.0033(100 ) 0.0027(100 ) DBAN 0.0000(0 ) 0.0000(0 ) 0.0000(0 ) 0.0000(0 ) etc. CH 0.0037(10.6 ) - 0.0046(10.5 ) - 0.0060(11.3%) - 0.0048(10.9 ) 0.0048(6.3 ) o44 o2 2006 4k
p n DCAA r, v, 43.6Í, 44.8Í, 43.2Í p pp ˆ, TCAA 56.3Í, 55.1Í, 56.3Íp pp ˆ l TCAA DCAA l. op p s l p pp THMsl p 80Í p p p p, k Žle DCAA, TCAA ˆ, r~ p pp kp THMsm HAA 2 p v., pp r, v, ll p pr ov p ˆ. p l ~ e p v p p v p d p ˆ. 6. ne l 225 p ˆ. m p tp s v v v tl 1/4~1/6 tp ˆ p kr rl ppp p pl., chloroform, DCAA p p l ~(7~9 o)l p p l(chloroform 0.045 mg/l) pl p n tn. rp l p lk, p p rl o r } rl l lk p. y q m 0.2 mg/l p p vrp 261 n 4vrp ˆ, p l rp ~ e p ml p p Ž. v, q r e l p v kk q m p r kr l p pl. THMsp r, v, p p 0.015 mg/l, 0.019 mg/l, 0.023 mg/l DCANp 0.0022 mg/l, 0.0026 mg/l, 0.0033 mg/l, CH 0.0037 mg/l, 0.0046 mg/l, 0.0060 mg/l, HAA 2 (DCAA+TCAA) 0.0142 mg/l, 0.0176 mg/l, 0.0206 mg/ L THMsp v p l tl. p l q m m qs o p v rp rl p p r. p o THMsp n l ~p 7~9o tl r p l. DCAA, TCAAm DCAN, CH le THMs v kv p p ˆ. p mp m krp o p q m ov k l p p Ž. t 80Í p p THMs k Žle (DCAA+ TCAA)p, THMs k Žle r l 42.0Í, 40.9Í v l 42.9Í, 40.4Í, l 43.4Í, 38.9Í d p p k p. r~ THMs 42.9Í, HAA 2 39.9Í l. THMsm HAA2 rn k Š l p p 6Ím 10Í np pp ˆ. l, THMsp n p 80Í p p p p l, v t BDCMp k 20Íp p l, v v p v kk. k Ž le p n DCAA r, v, 43.6Í, 44.8Í, 43.2Íp pp ˆ, TCAA 56.3Í, 55.1Í, 56.3Íp pp ˆ l TCAA DCAA s l. op p s l p pp THMsl p 80Í p p p p, k Žle DCAA, TCAA ˆ, r~ p pp kp THMsm HAA 2 p v., pp r, v, ll p pr ov p ˆ. p l ~ e p v p p v p d 1. http://www.klaw.go.kr/cnt2/easy/mcnt2easylawservice.jsp?s_ lawmst=71570. 2. http://www.me.go.kr/deptdata/200101/09172451/agamsi.htm. 3. Rho, B. S. and Ha, H. J., Water Quality Analysis in 2002, The Annual Report of Waterworks Research Institute Seoul Metropolitan Government, 4th ed., 70-75(2002). 4. Chang, H. S. and Kim, C. M., A Study on Quality Control Application and Assessment in Chlorinated Disinfection Byproducts Analysis, The Annual Report of Waterworks Research Institute Seoul Metropolitan Government, 4th ed., 143-152(2002). 5. WHO, Guidelines for Drinking-water Quality, 3rd ed., (2004). 6. Nam, S. H. and Lee, U. G., A Study on The Evaluation of Influencing Factors in THM Analysis, Kor. J. Environ. Health Soc., 18(2) 82-91(1992). 7. Min, B. S., Rhee, D. S., Ryu, J. K. and Park, S. K., Formation Characteristics of Haloacetic Acids in Water Treatment Plant, J. Kor. Soc. Environ. Anal., 6(1), 41-48(2003). 8. Singer, P. C., Obolensky, A. and Greiner, A., DBPs in Chlorinated North Carolina Drinking Waters, J. AWWA, 87(10), 83-92 (1995). 9. Reckhow, D. A., Platt, T. L., MacNeill, A. L. and McClellan, J. N., Formation and Degradation of Dichloroacetonitrile in Drinking Waters, J. IWA. AQUA, 50(1), 1-13(2001). 10. Kim, Y. Y., Formation and Control of Disinfection By-products in Water Treatment Process, Master Thesis, Chonbuk National University, Chonbuk, Korea(2002). 11. Kim, H. S., Characterization of Dissolved Organic Matter in Water Treatment Processes for Han River Water, Ph.D. Dissertation, The University of Seoul, Seoul, Korea(2004). 12. Pome, M. L., Green, W. R., Thurman, E. M., Orem, W. H. and Lerch, H. E., DBP Formation Potential of Aquatic Humic Substances, AWWA, 91(3), 103-114(1999). 13. Barrott, L., Chloral Hydrate: Formation and Removal by Drinking Water Treatment, J. IWA. AQUA, 53(6), 381-390(2004). 14. Method 524.2 : Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry., National Exposure Research Laboratory, U.S. Environmental Protection Agency(1992). 15. Method 551.1 : Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid-Liquid Extraction and Gas Chromatography with Electron Capture Detection., National Expo- Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006
226 q Ëp oë } Ëpp Ëp oë sure Research Laboratory, U.S. Environmental Protection Agency (1995). 16. Method 552.2 : Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Extraction, Derivatization, and Gas Chromatography with Electron Capture Detection., National Exposure Research Laboratory, U.S. Environmental Protection Agency(1995). 17. Method 552.3 : Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Extraction, Derivatization, and Gas Chromatography with Electron Capture Detection., National Exposure Research Laboratory, U.S. Environmental Protection Agency(2003). 18. Chung, K. J., Lee, S. W. and Chang, H. S., Tap Water Quality Analysis in 2004, The Annual Report of Waterworks Research Institute, Seoul Metropolitan Government(2004)., http://water.seoul. go.kr. o44 o2 2006 4k