44(2)-06.fm

Similar documents
44(3)-16.fm

10(1)-08.fm

43(5)-11.fm

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

44(2)-11.fm

43(4)-08.fm

10(3)-10.fm

44(5)-10.fm

국9209.fm

국706.fm

45(3)-07(박석주).fm

44(4)-06.fm

82-01.fm

국705.fm

06국306.fm

한1009.recover.fm

단위: 환경정책 형산강살리기 수중정화활동 지원 10,000,000원*90%<절감> 형산강살리기 환경정화 및 감시활동 5,000,000원*90%<절감> 9,000 4, 민간행사보조 9,000 10,000 1,000 자연보호기념식 및 백일장(사생,서예)대회 10

10(3)-02(013).fm

제 1 장 정수처리 개요

44(5)-03.fm

44(2)-08.fm

12.077~081(A12_이종국).fm

43(6)-07.fm

14.fm

10(3)-06(021).fm

43(4)-11.fm

국9409.fm

<3130BAB9BDC428BCF6C1A4292E687770>

( )국11110.fm

사진 24 _ 종루지 전경(서북에서) 사진 25 _ 종루지 남측기단(동에서) 사진 26 _ 종루지 북측기단(서에서) 사진 27 _ 종루지 1차 건물지 초석 적심석 사진 28 _ 종루지 중심 방형적심 유 사진 29 _ 종루지 동측 계단석 <경루지> 위 치 탑지의 남북중심

국816.fm

012임수진

Microsoft Word - KSR2012A038.doc

44(2)-02.fm

43(4)-06.fm

Lumbar spine

반론 ( ).hwp


(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

1

국8410.fm

304.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

44-4대지.07이영희532~

사용자 설명서 SERVO DRIVE (FARA-CSD,CSDP-XX)

Áß2±âÇØ(01~56)

입장

09È«¼®¿µ 5~152s

ATC _c3e3039d-a6cd fe3-0d43a75bac6d.xlsx

<B9E9B3E2C5CDBFEFB4F5B5EBBEEE20B0A1C1A4B8AE20B1E6C0BB20B0C8B4C2B4D92E687770>

06국305.fm

주지스님의 이 달의 법문 성철 큰스님 기념관 불사를 회향하면서 20여 년 전 성철 큰스님 사리탑을 건립하려고 중국 석굴답사 연구팀을 따라 중국 불교성지를 탐방하였습 니다. 대동의 운강석굴, 용문석굴, 공의석굴, 맥적산석 굴, 대족석굴, 티벳 라싸의 포탈라궁과 주변의 큰

DBPIA-NURIMEDIA

16(3)-08.fm

44(1)-13.fm

2힉년미술

PDF

국8411.fm

< B9DAC2F9B9E82E666D>

레이아웃 1

Microsoft Word _kor.doc

untitled

<C7A5C1F620BEE7BDC4>

27송현진,최보아,이재익.hwp

우리나라의 전통문화에는 무엇이 있는지 알아봅시다. 우리나라의 전통문화를 체험합시다. 우리나라의 전통문화를 소중히 여기는 마음을 가집시다. 5. 우리 옷 한복의 특징 자료 3 참고 남자와 여자가 입는 한복의 종류 가 달랐다는 것을 알려 준다. 85쪽 문제 8, 9 자료

상품 전단지

::: 해당사항이 없을 경우 무 표시하시기 바랍니다. 검토항목 검 토 여 부 ( 표시) 시 민 : 유 ( ) 무 시 민 참 여 고 려 사 항 이 해 당 사 자 : 유 ( ) 무 전 문 가 : 유 ( ) 무 옴 브 즈 만 : 유 ( ) 무 법 령 규 정 : 교통 환경 재

2

DBPIA-NURIMEDIA

화이련(華以戀) hwp

ÆòÈ�´©¸® 94È£ ³»Áö_ÃÖÁ¾

歯1##01.PDF

<5BC1F8C7E0C1DF2D31B1C75D2DBCF6C1A4BABB2E687770>

120229(00)(1~3).indd

01Report_210-4.hwp

<C3D1BCB15FC0CCC8C45FBFECB8AE5FB1B3C0B0C0C75FB9E6C7E D352D32315FC5E4292E687770>



교육 과 학기 술부 고 시 제 호 초 중등교육법 제23조 제2항에 의거하여 초 중등학교 교육과정을 다음과 같이 고시합니다. 2011년 8월 9일 교육과학기술부장관 1. 초 중등학교 교육과정 총론은 별책 1 과 같습니다. 2. 초등학교 교육과정은 별책

시험지 출제 양식

¸é¸ñ¼Ò½ÄÁö 63È£_³»Áö ÃÖÁ¾

177

제주어 교육자료(중등)-작업.hwp

<C3D6C1BE5FBBF5B1B9BEEEBBFDC8B0B0DCBFEFC8A C3D6C1BEBABB292E687770>

초등국어에서 관용표현 지도 방안 연구

6±Ç¸ñÂ÷

과 위 가 오는 경우에는 앞말 받침을 대표음으로 바꾼 [다가페]와 [흐귀 에]가 올바른 발음이 [안자서], [할튼], [업쓰므로], [절믐] 풀이 자음으로 끝나는 말인 앉- 과 핥-, 없-, 젊- 에 각각 모음으로 시작하는 형식형태소인 -아서, -은, -으므로, -음

민주장정-노동운동(분권).indd

untitled

<C0CEBCE2BABB2D33C2F7BCF6C1A420B1B9BFAAC3D1BCAD203130B1C72E687770>


E1-정답및풀이(1~24)ok

<C1B6BCB1B4EBBCBCBDC3B1E2342DC3D6C1BE2E687770>

< BDC3BAB8C1A4B1D4C6C75BC8A3BFDC D2E687770>

교사용지도서_쓰기.hwp

최우석.hwp

cls46-06(심우영).hwp

Transcription:

Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006, pp. 207-215 ms o i m m Š y mkç mqçm o 461-701 e r r 65 (2005 10o 31p r, 2006 1o 19p }ˆ) The Characteristic Floc Growth in Coagulation and Flocculation Processes Jae-Yong Heo, Ik-Joong Kang and Sang-Wha Lee Department of Chemical and Bioengineering, Kyungwon University, San 65, Bokjung-dong, Soojung-gu, Seongnam-shi, Kyunggi-do 461-701, Korea (Received 31 October 2005; accepted 19 January 2005) k l p rp pv rl p p e l PACCp pv p m. p o ˆv pqp rˆro ph 8~9l mp m p mll TDSm r r p ˆ tl. m p r lp, ˆ p r l pl p q p 95.1 sec 1 l p r pp ˆ l. l 3~5 µmp qp pq lp p p pq l. m p v 3~5 µmp qp pqp m 7~21 µmp t p pq v p ˆ tl. 23 µm pqp n p 95.1 sec -1 l q p l, 3~5 µmp qp pqp nl p 760.7 sec 1 l q p l. h Abstract The characteristic floc growth of Al-based coagulants was investigated in the aspect of mixing intensity and visualization of generated flocs during coagulation and flocculation processes. Zeta potential of turbid particles in the artificial water nearly approached to zero at phg8-9, in which TDS and conductivity were minimized. The removal rate of turbidity and phosphate was maximized at the optimal mixing intensity of rapid and slow mixing stages. After the rapid mixing stage of coagulation process, small particles (3-5 µm) were abruptly generated, and higher mixing intensity made more numbers of flocs. With the progress of slow mixing stage, the number of small particles were decreased with the simultaneous increase of intermediate particles (7-21 µm). The number of large particles (>23 µm) were maximized at the lowest rapid mixing intensity of 95.1 sec -1, whereas small particles (<5 µm) were maximized at the highest rapid mixing intensity of 760.7 sec 1. Key words: PACC, Floc Growth, Flocculation, Visualization, Mixing Intensity 1. ql l sq p k, p dm p p o v rš, rš p pq v p. } l pl pv/p r p p pq r rp n r r l l o p pr p p pq kr e ƒ p p [1]. l v m pp p p s o vp e vmmp ppˆ, m s o vp pvrm l n k p To whom correspondence should be addressed. E-mail: lswha@kyungwon.ac.kr p pvr Œp k r p [2]. } l n pvr pq p p p rr r l p ~ rp. p rp p vr r l pq q, p l pq p p v l o p pq kr v. p pv l o pvr rr kp Œp lk pvsp pl p eˆ p n [3]. o t l sq p r pv} rp pp v e ˆ o pvrp s, ~, m, l r pq (, Œlvr)l l p v pp o tl mm p n k l errp 207

208 qnë ptëp rnp l n erp [4]. pv pl p p l 1 pqp (aggregation) o~p r l p (breakup) p l p ov. l m p pq p r pq (pvrp s, pvr Œl, ph, m, pqp ) r s (, ~ e ) p [5]. Francois(1988) p 4 v q rk p [6]. ~ w l p p t l p kr 1 pqp l p, w l 1 pqm p ~ pvl p p qp v. w l 1 pq p l p qp v, p rp p pv. v l p (aging) rp v p pvp p pl. p q m l p vv k q p p n [7,8]. k pvrp nl p ph(ph<3) s l Al 3+ m kpm p rp p sq 1 pq p l p p qp p lv. l ph t l n n k p p p 1 p q k l p p qp p lv [9]. p l q p pvm p p p ~rp p p ep s p ˆ [10, 11]. d G 1 2 P, where G = ------- (1) µv p d p v, G (sec 1 ), P l v, µ o~p r (kg/m-sec), V ps ~r(m )p ˆ t 3 [12]. e (1)l v p v p p ˆ v rp p p. Pp p (2)ep pn l m. l C D paddlep f 1.2~1.5 p v A n l v p Ž p r(m 2 ), ρ o~p V p p p r (rpm)l k p ep tlv [13]. 3 C D A ρ V p P = --------------------, where V (2) 2 p 0.70 π 0.06 rpm -------------------------------------- 60 l l pr p t sr nkp rs l phl Al q pvrp pv p m, m p ( Ë e )l ˆ pp r pl m. p rp r } r l r l rp r p pv l p p e p pv pq r m. 2. e l n PACC(Polyaluminium calcium chloride, (t)o ) 10 wtí Al 2 O 3 p q pvr f m 70Í p. phl o ˆvpqp rˆro Zeta-Plus n l r m. pvr tpe p pv o44 o2 2006 4k Fig. 1. Schematic diagram of mini-flocculator (Jar-Tester). PC(particle counter) pn l pq r m. p v pl p p m (MotionScope 2000, Redlake Imaging Co.) n l p v ll. MotionScope 2000p 2,000qp mp f q- d p ˆl p p v lp pl., Conductivity Meter n l o p conductivity, TDS, resistivity r m. pp p s l PO 4 3 m Ammonium Molybdate, k ek pe molybdeum blue p eˆ 530 nm Žq l p Molybdeum p UV/Vis r p f ppm op pp p p. Fig. 1l m re p sr p pv (Flocculator 2000, KEMIRA ) ˆ p. q- d p p rp t s p 400 rpm(760.68 sec )l 1 30, m 40 rpm(24.05 sec )l 10 30 p r 1 e p ~ pv pp v m. p s p 100~400 rpm(95.1~760.7 sec )p s l 30 m 1 m p s p 20~99 rpm(8.5~93.6 sec 1 ), 10~30 minp s l rp m. } p kp 1.0 L p 5cm k l m e p ml v m. 3. y 3-1. oo m ms l PACC pn pve l pr p ov o l HACH p formazinp } ˆ nkp l o n m [14]. Fig. 2(a)l o p ph l r r TDS p ˆ l. e l n Conductivity Meter q~ ep pn l r conductivity TDS p n o ˆ. ph 8~9 mll r r m TDS p p lt, p r ns pq p rp r sq p ˆ t. Fig. 2(b) l sr p ˆ 20 NTU, p 10 mg/l, k 10 mg/l, m mp ov o p ph 4~11l PACC(m 70Í)p pv pp m. l m p ph 8~9 l q p ˆ p r pp ˆ tl. PACCp ˆ

pv r l p q 209 Fig. 2. The characteristic measurements of artificial water with the variation of ph (initial conditions: 12 NTU, 10 mg/l of PO 4 3, 20 mg/l of CaCO 3, PACC dosage=30 ppm): (a) Conductivity, TDS, and resistivity, (b) Removal rate and Zeta-potential. Fig. 3. The effect of slow mixing intensity, Gt, on the coagulation efficacy of PACC (initial conditions: ph8, 12 NTU, 10 mg/l PO 4 3, 20 mg/l of CaCO 3, 15 ppm dosage, rapid mixing=100 rpm & 30 sec): (a) residual turbidity, (b) residual phosphate. r pp ˆ p pp r pp rp ˆ., rˆro p ph 8~9 pl 0p r pp pv pp q sp rr ph Ž [15]. 3-2. i ms l Fig. 3l o p ˆ 12 NTU, p 10 mg/l, k 20 ppm/l, PACC tp p 15 ppmp l m p l ˆ m pp r k. p m p s p 8.5~93.6 sec 1, 10~30 minp s l rp m. p 95.1 sec 1, 30 secp m p Gt p 40,000 p l ˆ m pp pv q s ˆ. Fig. 4l p 494.1 sec 1, 30 secp nl rr Gt p 20,000~40,000l ˆ m pp r r s p sq p ˆ. Fig. 5l p 760.7 sec 1, 30 sec p nl m p pv pl ˆ v kk. rp ˆ pp r l pl pr s l (494.1 sec 1, 30 sec) m p r r ˆ p, r~rp p p r 100 rpm(95.1 sec 1 )p nl pv pp q s ˆ. Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006

210 qnë ptëp Fig. 4. The effect of slow mixing intensity, Gt, on the coagulation efficacy of PACC (initial conditions: ph8, 12 NTU, 10 mg/l of PO 4 3, 20 mg/l of CaCO 3, 15 ppm dosage, rapid mixing=300 rpm & 30 sec): (a) residual turbidity, (b) residual phosphate. Fig. 5. The effect of slow mixing intensity, Gt, on the coagulation efficacy of PACC (initial conditions: ph8, 12 NTU, 10 mg/l of PO 4 3, 20 mg/l of CaCO 3, 15 ppm dosage, rapid mixing=400 rpm & 30 sec): (a) residual turbidity, (b) residual phosphate. 3-3. ms o m pvr tpl p tp ˆv pq p l p pq p l ˆ (floc)p. p p p pv pp v rp erp ˆ p l pv pp p l n tn. o p ˆ 12 NTU, p 10 mg/l, k 10 mg/l, ph 8, PACCp tp 17 ppmp s l 300 rpm & 30 sec, m 30 rpm & 20 minp l motion scope 2000p n l 2 p p p o44 o2 2006 4k v ll. Fig. 6l m p v l p m v p k pl, 16 p l p ˆ v kk. p p p pq p l p l p l p pr ov p [4]. Fig. 7l r e l p 5 p m m r e p p p ˆ t p. p p t p pv q p.

pv r l p q 211 Fig. 6. Floc images captured by Motion Scope 2000 during slow mixing stage of 40 rpm & 20 min (initial conditions: ph8, 12 NTU, 10 mg/l of PO 4 3, 20 mg/l of CaCO 3, PACC dosage=17 ppm). Fig. 7. Floc images captured by Motion Scope 2000 during sedimentation (initial conditions: ph8, 12 NTU, 10 mg/l of PO 4 3, 20 mg/l of CaCO 3, 17 ppm of PACC dosage). Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006

212 qnë ptëp Fig. 8. Particle size distribution after rapid mixing (initial conditions: ph8, 12 NTU, 10 mg/l of PO 4 3, 20 mg/l of CaCO3, 17 ppm of PACC dosage). 3-4. ms m pv pe p m p o e } l PC(particle counter) pn l r m. p o p ˆ 12 NTU, p 10 mg/l, ph 8p s l PACC tp p 17 ppmp r m. v r pq Fig. 8l ˆ p p 100 rpm 300, 400 rpmp nl 3µm~5 µmp qp pq p p k pl. Fig. 9 pv pq p ˆ p. v pqp 3~7 µml p ˆ p 9µm p p pq p v kk. v 3µm pqp nl 95.1 sec 1 l 494.1~760.7 sec 1 p p 2 p l 5~7 µmp pqp nl 400 rpmp n q ˆ. 7 µm p p pq m v l p p k p l., 400 rpmp nl 7~13 µmp pq p 100 rpm, 300 rpml rp ˆ p, 15~21 µmp pq p p rpml p ˆ v kk. rp v pq t 3~5 µml m v 10 µm p p pq m p rpmp v p ˆ tl. Fig. 9. Particle size distribution after rapid mixing, slow mixing, and stationary stages (initial conditions: ph8, 12 NTU, 10 mg/l of PO 4 3, 20 mg/l of CaCO 3, 17 ppm dosage of PACC). o44 o2 2006 4k

pv r l p q 213 Fig. 10. Particle size variation (9-21 µm) during jar test time (initial conditions: ph8, 12 NTU, 10 mg/l of PO 4 3, 20 mg/l of CaCO3, 17 ppm dosage of PACC). 3-5. i m Fig. 10p m p v l pq(7~21 µm)p p v p ˆ p. p 300 rpm, 400 rpm p v pqp v mp m p m er v p pr ov l. l 100 rpmp l 7~13 µmp pq p nl pre p v q v p ˆ l. m p v l 15~21 µmp pq p lag timep r rp v p ˆ tlp p rpml pq p p ˆ v kk. m k 21 µm p pqp nl p rpml lp pqp p p m. v pq t 1 p q l p, m p v l ƒ pq p 1 pqm p p ~ pvl p q. ƒ pq(> 21 µm)p nl p pv v pq p ˆ tl. Fig. 11p pqp 23 µm~47.5 µml nl l p p ˆ. q p 100 rpmp nl p p v v ƒ p p p k pl. p p pv p r m p, p l v p Ž [16]. 4. k pvrp PACC(polyaluminium calcium chloride, m =70Í) tpe p p e m ˆ m pp pv p m. r pvp rr ph 8~9 ol rˆro mp m r r m TDS p ˆ tl. ( Ë e ) PACC pvrp p l m, ˆ r pp q p 100 rpm p l q ˆ. p 300 rpmp nl m p rr ˆ, p p q pv pl tn m p p ˆ t. m p v l p p v m, m p s l p pv pr ov l. p pq p l p p l p l p p qp p p p. v pq 3~5 µmp pv n ˆ p pqp v m. m p Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006

214 qnë ptëp Fig. 11. Particle size variation (23-47.5 µm) during jar test time (initial conditions: ph8, 12 NTU, 10 mg/l of PO 4 3, 20 mg/l of CaCO3, 17 ppm dosage of PACC). v 3~5 µmp qp pq m 7~21 µm p p p q v p ˆ tl. q p 100 rpmp l 23~47.5 µmp pq q ˆ. v, p l ƒ pvp p rp p p ˆ tl. r rp m p v l p pvm lag timep v p ˆ tl. y o44 o2 2006 4k 1. Kemira, K., Handbook on Water Treatment, Helsingburg, Sweden(1993). 2. Lee, C. H., Lee, S. H. and Okada, M., Removal Algae and Cryptoporidium on Drinking Water Treatment by Polysilicato- Iron Coagulant, J. of KSEE, 26, 876-882(2004). 3. Rossini, M., Garrido, J. G. and Galluzzo, M., Optimization of the Coagulation-Flocculation Treatment: Influence of Rapid Mix Parameters, Wat. Res., 33, 1817-1826(1999). 4. Kang, L. S., Han, S. W. and Jun, C. W., Synthesis and Characterization of Polymeric Inorganic Coagulants for Water Treatment, Korean J. Chem. Eng., 18(6), 965-970(2001). 5. Bouyer, D., Coufort, C., Line, A. and Do-Quang, Z., Experimental Analysis of Floc Size Distribution in a 1-L jar under Different Hydrodynamics and Physicochemical Conditions, Journal of Colloid and Interface Science, 292(2), 413-428(2005). 6. Francois, R. J., Growth Kinetics of Hydroxide Flocs, Journal AWWA, 80(6), 92-96(1988). 7. (a) Dharmappa, H. B., Verink, J., Fujiwara, O. and Vigneswaran, S., Optimal Design of a Flocculator, Water Research, 27, 513-519(1993), (b) Han, M. and Lawler, D. F., The (Relative) Insignificance of G in Flocculation, Journal of AWWA, 84, 79-91 (1992). 8. Jeong, J. K., Yoon, T. I., Seo, H. J. and Kim, J. Y., Influence of Mixing Intensity on the Biological Wastewater Treatment, J. of KSEE, 5, 67-83(1983). 9. Kwak, J. W., Physico-chemical Principle and Practice of Water Treatment, Yeigigak(1998). 10. Tambo, N. and Hozumi, H., Physical Characteristics of Flocs- II. Strength of Flocs, Water Res., 13, 421-427(1979). 11. Wiesner, M. R., Kinetics of Aggregate Formation in Rapid Mic, Water Res., 26(3), 379-387(1992). 12. Reynolds, T. D. and Richards, P., Unit Operations and Processes in Environmental Engineering, Boston, PWS Publishing Company(1995). 13. Han, S. W., Lee, C. W. and Kang, L. S., Physical Effect on Syn-

pv r l p q 215 thesis of Al(III) Polymeric Inorganic Coagulants for Water Treatment, Korean Chem. Eng. Res., 40(5), 612-618(2004). 14. Lee, K. S. and Lee, S. W., Removal of Phosphorus and Turbidity in Settling-Aggregation Basin using Solid-type Polymeric Coagulants, J. of KSEE, 26(6), 642-648(2004). 15. Lee, S. W., Lee, K. S., Haam, S. J. and Kwak, J. W., Phosphorous Removal by Al(III) and Fe(III) Coagulants and Visualization of Flocs, J. Korean Ind. Eng. Chem., 16(1), 74-80(2005). 16. Kim, J. P., Han, I. S. and Chung, C. B., Monte Carlo Simulations of Colloidal Particle Coagulation and Breakup under Turbulent Shear, Korean J. Chem. Eng., 20(3), 580-586(2003). Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006