KAERI
3 KOPEC KOPEC CNSC CNSC CATHENA (KINS) CANDU - CANSAS - (CANDU SAfety Study group) (GAI) (GAI)
37-Element Bruce UO 2 Fuel Assembly Containing Demountable Bundle 19-Element U Metal Fuel Lattice Pitch = 28.58 cm NORTH ZED-2 Calandria Wall Thermal Pit Region ZED-2 REACTOR Top Shields Beam Chain Fuel Rods Aluminum Calandria (336 ID by 0.64 Wall 2.2 Thick Bottom) Gap (3.1 cm) Graphite Reflector (340 ID, 460 OD, 90 Thick Bottom) Heavy Water Dump Valve (1 of 3) (46.4 D by 259 PCD) Dump Tank (1 of 3) Shut-off and Drain Valve Fill Pump
Zr-4 SHEATH I.D. 1.22 cm O.D. 1.31 cm UO 2 FUEL DIAMETER 1.21 cm DENSITY 10.50 g/cm 3 AI PRESSURE TUBE I.D. 10.39 cm O.D. 11.02 cm AIR ANNULUS AL CALANDRIA TUBE I.D 12.70 cm O.D 13.34 cm AL SHEATH I.D 1.38 cm O.D 1.59 cm U-METAL FUEL DIAMETER 1.31 cm DENSITY 18.93 g/cm 3 AL COOLANT TUBE COOLANT SPACE I.D 8.58 cm O.D 8.89 cm
CELL BOUNDARY NORTH SECTOR FOIL CELL CORNER ALUMINUM FRAMEWORK COPPER WIRE D4 B A D3 CELL EDGE C1 C2 D2 FOILS BETWEEN FUEL PELLETS FOIL PAIRS OF THIN ALUMINUM CATCHER FOILS UO 2 BARE NATURAL URANIUM UO 2 28.5 mm THIN ALUMINUM CATCHER FOILS UO 2 DEPLETED URANIUM FOIL WRAPPED IN THIN ALUMINUM UO 2
Vacant Al tubes Upper grid plate with Al support Absorber Al spacer Steel base Dump Valve 1.100 2,000 3,100 1,100 1.100 2,000 3,100 Vacant Al tubes Upper grid plate with Al support 400 3,005 Upper Grid Plate (Al) Calandria Tube Pressure Tube Al Support 50(T)355(W) 25,000(Total) Bare fuel part above 2 O D level Fuel Cluster Heavy Water Level Lower Grid Plate (Al) Core Core Al Spacer 50(W)100(L) (30 Pieces) Absorber Sandwitch 50(W)130(L) (24 Pieces) Lower grid plate Void Tank (Al) (SUS) (SUS) Concrete 245º CH-5 (B-10) 235º CH-1 (CIC) F.M.M 270º 3 F.M.M 2 4 330º CH-2 (CIC) F.M.M 80º 1 1 F.M.M 0º (PNS) F.M.M 4 2 F.M.M 3 90º 55º CH-4 (B-10) 65º CH-3(CIC)
16.73 15.03 14.8 Moderator (D 2 O) Calandria Tube (Al) Air Gap Pressure Tube (Al) Clad (Al) 26.25 60.0 95.15 2.0 Fuel Pellet (UO2) Coolant 2.0 120.8 136.5 16.68 15.06 14.7 Moderator (D 2 O) Calandria Tube (Al) Air Gap Pressure Tube (Al) Clad (Zry-2l) 26.25 60.0 95.15 2.0 Fuel Pellet (PuO2-UO2) Coolant 2.0 120.8 136.5
Moderator Critical Height (cm) 225 224 37-element flooded 37-element voided 223 43-element flooded 222 43-element voided 221 220 219 218 217 216 215 0 1 2 3 4 5 6 7 Number of Substitution Rods
10-5 Cell Average Spectrum 10-6 10-7 10-8 DCA-NU-flood DCA-NU-void CANDU-NU-flood CANDU-NU-void 10-3 10-2 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 Energy (MeV) 10-5 Cell Average Spectrum 10-6 10-7 10-8 DCA-5SPU-flood DCA-5SPU-void CANDU-Equilibrium-flood CANDU-Equilibrium-void 10-3 10-2 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 Energy (MeV)
0.35 0.30 0.25 DCA-NU-flood DCA-NU-void CANDU-NU-flood CANDU-NU-void Thermal Flux 0.20 0.15 0.10 0.05 0.0 0.2 0.4 0.6 0.8 1.0 Normalized Radius 0.30 0.25 0.20 Thermal Flux 0.15 0.10 DCA-5SPU-flood DCA-5SPU-void 0.05 CANDU-Equilibrium-flood CANDU-Equilibrium-void 0.00 0.0 0.2 0.4 0.6 0.8 1.0 Normalized Radius
Infinite Multiplication Factor (K-inf) 1.48 1.44 1.40 1.36 1.32 1.28 1.24 1.20 WIMS-AECL 1.2 w/o UO 2 1.5 w/o UO 2 5SPU 8SPU 1.16 1.12 0 20 40 60 80 100 Void Fraction (%) 1.48 1.44 Infinite Multiplication Factor (K-inf) 1.40 1.36 1.32 1.28 1.24 1.20 1.16 MCNP 1.2 w/o UO 2 1.5 w/o UO 2 5SPU 8SPU 1.12 0 20 40 60 80 100 Void Fraction (%)
60 Void REactivity Change (mk) 50 40 30 20 WIMS-AECL 1.2 w/o UO 2 1.5 w/o UO 2 5SPU 8SPU 10 0 0 20 40 60 80 100 Void Fraction (%) 60 Void Reactivity Change (mk) 50 40 30 20 MCNP 1.2 w/o UO 2 1.5 w/o UO 2 5SPU 8SPU 10 0 0 20 40 60 80 100 Void Fraction (%)
1.44 Infinite Multiplication Factor (K-inf) 1.40 1.36 1.32 1.28 1.24 1.20 1.16 MCNP ENDF5 MCNP ENDF6 WIMS ENDF5 WIMS ENDF6 1.12 0 20 40 60 80 100 Void Fraction (%) 1.44 Infinite Multiplication Factor (K-inf) 1.40 1.36 1.32 1.28 1.24 1.20 1.16 MCNP ENDF5 MCNP ENDF6 WIMS ENDF5 WIMS ENDF6 1.12 0 20 40 60 80 100 Void Fraction (%)
60 Void Reactivity Change (mk) 50 40 30 20 10 MCNP ENDF5 MCNP ENDF6 WIMS ENDF5 WIMS ENDF6 0 0 20 40 60 80 100 Void Fraction (%) 60 Void Reactivity Change (mk) 50 40 30 20 10 MCNP ENDF5 MCNP ENDF6 WIMS ENDF5 WIMS ENDF6 0 0 20 40 60 80 100 Void Fraction (%)
κ ε
p GCI 12 = 3 ε /( r 1 )
p E 12 = ε /( r 1) ( 1 ) 1 ε = f 2 f / f f1 f 2 =
GCI13,η GCI13,ξ GCI13 GCI23,η GCI23,ξ GCI23
0.1m/s (a) Velocity Field 312 312 307 309 306 311 311 310 307 308 307 305 308 304 304 306 308 310 309 304 309 306 307 308 307 308 (b) Temperature Distribution [K]
± ±
κ ε
Inlet Plane (Representing 2 Nozzles) Inlet Plane (Representing 2 Nozzles) Adiabatic Pipe for Sigularity Y Z Outlet Plane Z = 4.582 m Z = 2.935 m Outlet Plane Z=1.418m (a) Axial and Radial Grid Employed Inlet Solid Patch Inlet Solid Patch Y X Outlet (b) Radial and Angular Grid Employed
1.0 AXIA L SHAPE FACTOR 0.8 0.6 0.4 0.2 Data from power map Polynomial Fit of 4-th Order 0.0 0 1 2 3 4 5 6 DISTANCE FROM ONE END TUBESHEET [M] 800 700 POWER [kw/m 3 ] 600 500 400 300 12 o'clock direction 6 o'clock direction 3 o'clock direction 5-th order polynomial fit 200 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 DISTANCE FROM CENTRAL Z-AXIS [M]
1.0 m/s T[K] 355 352.5 350 347.5 345 342.5 340 337.5 335 332.5 330 327.5 325 322.5 320 (a) Velocity Field (b) Temperature Distribution 1.0 m/s T[K] 355 352.5 350 347.5 345 342.5 340 337.5 335 332.5 330 327.5 325 322.5 320 (a) Velocity Field (b) Temperature Distribution
1.0 m/s T[K] 355 352.5 350 347.5 345 342.5 340 337.5 335 332.5 330 327.5 325 322.5 320 (a) Velocity Field (b) Temperature Distribution 1.0 m/s T[K] 355 352.5 350 347.5 345 342.5 340 337.5 335 332.5 330 327.5 325 322.5 320 Z Y (a) Velocity Field (b) Temperature Distribution
9.0 Reactor Outlet Header Pressure (MPa(g)) 8.5 8.0 7.5 7.0 6.5 (0, 6.15) Design Analysis (95, 8.7) (98, 8.6) 6.0 (3, 6.05) 0 20 40 60 80 100 % Reactor Power
8 7 6 Design Analysis Analysis - Breaks inside Containment (95, 7.26) (98, 6.66) (98, 6.26) Pressurizer Level (m) 5 4 3 SDS1 (55, 4.0) (75, 4.0) (58, 3.4) (78, 3.4) (58, 3.0) (78, 3.0) SDS2 2 (0, 2.0) (40, 2.0) (0, 1.4) (43, 1.4) 1 (0, 1.0) (43, 1.0) 0 20 40 60 80 100 % Reactor Power
2 1 1.74 1.68 1.59 1.51 1.45 1.30 Steam Generator Level (m) 0-1 -1.55-1.61-1.84-2 SDS1 SDS2-2.56-2.64-2.85-3 Design Analysis Analysis - Breaks inside Containment 3-4 0 20 40 60 80 100 % Reactor Power 90 93
2.4 2.0 Normalized Position 1.6 1.2 0.8 0.4 0.0 LZC MCA Adjuster -0.4 0 50 100 150 200 250 300 Time (sec) 1.2 1.0 Normalized Power 0.8 0.6 0.4 0.2 0.0 0 50 100 150 200 250 300 Time (sec)
100 SDV Open Fraction (%) 75 50 25 0 Test, CSDV Test, ASDV CATHENA, CSDV CATHENA, ASDV 0 20 40 60 80 100 Time (Sec) 300 Steam Flow (kg/s) 275 250 225 200 175 Test CATHENA 150 125 100 0 20 40 60 80 100 Time (Sec)
5.5 Test CATHENA SG Pressure (MPa(g)) 5.0 4.5 4.0 0 20 40 60 80 100 Time (Sec) 2.8 2.6 2.4 SG Level (m) 2.2 2.0 1.8 1.6 Test CATHENA CATHENA Setpoint 1.4 0 20 40 60 80 100 Time (Sec)
1.1 Core Thermal Power (%) 1.0 0.9 0.8 0.7 0.6 Test CATHENA 0.5 0.4 0 20 40 60 80 100 Time (Sec) 10.5 ROH Pressure (MPa(g)) 10.0 9.5 TEST CATHENA 9.0 0 20 40 60 80 100 Time (Sec)
270.0 267.5 Test CATHENA RIH Temp (C) 265.0 262.5 260.0 257.5 255.0 0 20 40 60 80 100 Time (Sec) 10 9 Test CATHENA Level for Control CATHENA Level Setpoint PZR Level (m) 8 7 6 5 0 20 40 60 80 100 Time (Sec)
0.8 LZC Level (Normalized) 0.7 0.6 0.5 0.4 0 20 40 60 80 100 Time (Sec) 0.4 RRS Reactinity Insertion (mk) 0.0-0.4-0.8-1.2-1.6-2.0-2.4-2.8-3.2 Total LZC MCA Adjuster -3.6 0 20 40 60 80 100 Time (Sec)
14 ROH1 ROH3 Pressure (MPa(a)) 12 10 8 0 3 6 9 12 15 Time (sec) 2500 2000 Core Pass 1 Core Pass 2 Flow Rate (kg/s) 1500 1000 500 0 0 3 6 9 12 15 Time (sec)
1.6 1.4 Thermal Power (Fraction) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 3 6 9 12 15 Time (sec) 1000 800 Temperature ( o C) 600 400 200 0 2 4 6 8 10 Time (sec)
Overpressure Criterion SDS1 High Power Low Flow High Pressure SDS2 High Power Low Core P High Pressure 0 10 20 30 40 50 60 70 80 90 100 Reactor Power (%FP) Fuel and Fuel Channel Criterion SDS1 High Power Low Flow High Pressure SDS2 High Power Low Core P High Pressure 0 10 20 30 40 50 60 70 80 90 100 Reactor Power (%FP)
Overpressure Criterion SDS1 Low Flow High Pressure SDS2 Low Core P High Pressure Trip not required 0 10 20 30 40 50 60 70 80 90 100 Reactor Power (%FP) Fuel and Fuel Channel Criterion SDS1 Low Flow High Pressure SDS2 Low Core P High Pressure Trip not required 0 10 20 30 40 50 60 70 80 90 100 Reactor Power (%FP)
100 90 80 70 LP,LF RLOG Break Size (% RIH) 60 50 40 5 PLL 4 ROP 5 30 PLL,LF,LP,RLOG 20 RLOG 4 10 0 4 4 LP 5 3 0 10 20 30 40 50 60 70 80 90 100 Initial Reactor Power (% FP)
100 90 3 80 core DP 4 70 Break Size (% RIH) 60 50 40 5 PLL 4 LP, core DP, RLOG ROP 5 30 PLL,LP,RLOG, core DP 20 RLOG 4 10 0 4 4 LP 5 3 0 10 20 30 40 50 60 70 80 90 100 Initial Reactor Power (% FP)
ρunburned / ρburned
GOTHIC vs. CONTAIN - HTC for Vertical Plate 1000 GOTHIC Laminar Flow (1.0E4<Ra<1.0E9) GOTHIC Turbulent Flow (1.0E9<Ra) CONTAIN 100 Nusselt Number 10 1 0.1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 Ra Number GOTHIC vs. MAAP for Vertical Plate 1000 GOTHIC Laminar (1.0E4<Ra<1.0E9) GOTHIC Turbulent(1.0E9<Ra) MAAP-Laminar (1.0E1<Ra<1.0E9) MAAP-Turbulent (1.0E9<Ra) 100 Nusselt Number 10 1 0.1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 Ra Number
10 4 GOTHIC CONTAIN MAAP 10 3 Nusselt Number 10 2 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 Ra Number 10 5 GOTHIC CONTAIN 10 4 Nusselt Number 10 3 10 2 10 5 10 6 10 7 Re Number
Condensation Heat Transfer Coefficients at 1m/sec Flow velocity 10 3 Uchida G-K Measured Data HTC (W/m 2 K) 10 2 40 50 60 70 80 90 100 Inlet temperature ( o C) Condensation Heat Transfer Coefficients at 2m/sec Flow velocity 10 3 Uchida G-K Measured Data HTC (W/m 2 K) 10 2 40 50 60 70 80 90 100 Inlet temperature ( o C)
Condensation Heat Transfer Coefficients at 3m/sec Flow velocity Uchida G-K Measured Data HTC (W/m 2 K) 10 3 10 2 40 50 60 70 80 90 100 Inlet temperature ( o C) 18 16 14 Ce ll 8 Cell 15 Cell 21 Concentration (vol %) 12 10 8 6 4 2 0 0 5 10 15 20 25 30 35 40 Time (min)
250 250 200 200 Flame Speed (m/sec) 150 100 50 150 100 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Distance from Ignition (m)