Korean J Food Cook Sci Vol. 33, No. 5, pp. 566~574 (2017) pissn 2287-1780 eissn 2287-1772 https://doi.org/10.9724/kfcs.2017.33.5.566 소금과아질산염감소수준이돈육패티의품질특성및저장성에미치는영향 송동헌 황고은 최윤상 1 김용재 함윤경 정태준 이재훈 김천제 백현동 건국대학교축산식품생명공학과, 1 한국식품연구원식품가공기술연구센터 Effects of NaCl/Nitrite Reduction Levels on Quality Characteristics and Storage Stability of Pork Patties Dong-Heon Song Ko-Eun Hwang Yun-Sang Choi 1 Yong-Jae Kim Youn-Kyung Ham Tae-Jun Jeong Jae Hoon Lee Cheon-Jei Kim Hyun-Dong Paik Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05030, Korea 1 Food Processing Research Center, Korean Food Research Institute, Wanju 55365, Korea Abstract Purpose: The objective of this study was to determine the minimum addition requirements for NaCl and nitrites to guarantee the desirable quality attributes and shelf-life of ground patty. Methods: Five different groups of pork patties were prepared according to formula; HSHN treatment was prepared with 1.75% NaCl and 110 ppm nitrite, HS treatment was prepared with only 1.75% NaCl, NSLN treatment was prepared with 1.50% NaCl and 30 ppm nitrite, NSLN treatment was prepared with 0.75% NaCl and 30 ppm nitrite, and AKS treatment was prepared with 0.75% NaCl, 0.25 KCl and 0.40% celery powder. Experiments analyzed pork patties for ph, color, cooking loss, salt contents shear force, sensory characteristics, residual nitrite content, volatile basic nitrogen, 2-thiobarbituric acid-reactive substances and microbiological analysis. Results: The different levels of NaCl and nitrites did not affect the ph levels of pork patties (p>0.05). HSHN and HS treatments resulted in significantly higher salinities than the NSLN, LSLN, and AKC treatments (p<0.05). The residual nitrite content of pork patties was dependent upon the addition level of nitrite, and residual nitrite content decreased with longer storage duration (p<0.05). Addition of 30 ppm nitrite showed increasing redness indicating inhibition of lipid oxidation during storage. Total bacterial counts did not exceed 6 log CFU/g over 30 days in all treatments. Improvement of microbial inhibition was considered necessary, except for HSHN. In addition, LSLN and AKS treatments slightly reduced the quality properties (cooking loss and shear force) compared to other treatments, whereas the sensory of overall acceptance scores were over 6 points. Conclusion: Therefore, pork patties containing 0.75% salt and 30 ppm nitrite are industrially applicable. Key words: reducing sodium, low-salt, reducing nitrite, meat product, restructured meat Ⅰ. 서론 식육가공품중하나인패티는분쇄된고기를성형하여간편하게제조할수있으며 (Ruusunen M 등 2005), 햄버거의주재료로많은소비가이루어지고있다 (Choi YS 등 2015). 패티의균일한품질을위하여제조과정중다양한첨가제가들어가며 (Choi YS 등 2015), 그중기본적으로첨가되는것이소금 (NaCl) 과아질산염 (nitrite) 이다 (Desmond E 2006). 패티에첨가된소금은근원섬유단백질추출을용이하게하며, 최종제품의보수력, 결착력, 풍미, 물리적특성및소비자기호도를향상시키는중요한역할을한다 (Sofos JN 1983, Trout GR & Schmidt GR 1986, Park HG 등 2003, Bess KN 등 2013). 또한, 아질산염의첨가에의해제품의발색, 산화억제, 풍미증진효과가나타나며, 특히 Clostridium botulinum 과같은혐기성미생물의성장을억제한다고알려져있다 (Park HG 등 Corresponding author: Hyun-Dong Paik, Department of Food science and Biotechnology of Animal Resources, Konkuk University, Seoul 05030, Korea ORCID: http://orcid.org/0000-0001-9891-7703 Tel: +82-2-450-3676, Fax: +82-2-455-3082, E-mail: hdpaik@konkuk.ac.kr http://www.ekfcs.org 2017 Korean Society of Food and Cookery Science This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creative-commons.org/lice nses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Korean J Food Cook Sci 소금과아질산염감소수준이돈육패티의품질특성및저장성에미치는영향 567 2003, Park WY & Kim YJ 2010). 최근패티에첨가되는소금및아질산염의과다섭취는성인병및암을유발한다고알려져있다. 소금의주성분인나트륨은사람의체내에서세포막전압조절및혈압조절을유지하는역할을하지만, 과다섭취시심혈관질환, 뇌졸증및고혈압을일으키는원인으로지목되고있다 (Tobin BD 등 2013). 최근국내에시판중인햄버거의나트륨함량은 663.6-923.3 mg/100 g( 소금환산시약 1.5-2.3 g) 으로조사되어소금첨가량의감소가시급한실정이다 (Lee OH 등 2010, Jung JE 2016). 한편, 아질산염이첨가된육제품을고온으로가열하면 nitrosamine 의생성가능성이있으며, 이를섭취하면사람의위내에서발암물질인 N-nitrosamine 이생성될수있다는보고가존재한다 (Ham HJ 등 2004). 그러므로가공육제품내의아질산염잔존량에대하여국제식품규격위원회 (CODEX) 는 125 ppm, 유럽및미국은 100-200 ppm, 우리나라는 70 ppm 미만으로규정하여관리하고있다 (Ham HJ 등 2004, Korea Food and Drug Administration 2013). 그럼에도불구하고, 현대소비자들은건강을위하여소금과아질산염이함유된식육가공품의소비에대해부정적으로인식하고있다 (Grossi A 등 2012, Tobin BD 등 2013). 그러므로식육가공산업계는소금과아질산염의첨가수준을줄여건강한식육가공품을개발하려고노력하고있다. 그러나저염및저아질산염처리는육제품의미생물학적안정성을저해할수있으며, 관능적인특성도열악하게할수있으므로저염식육가공품을생산하기위해서는효과적인방법이제시되어야할것이다. 따라서, 본연구의목적은저염돈육패티개발을위하여소금과아질산염의최소첨가요건을설정하여제품의바람직한품질특성과저장성을보장하는것에있으며, 이연구의결과는저염패티의개발에대한과학적인정보를제공하여기초자료로활용되는것에있다. Ⅱ. 재료및방법 1. 공시재료및돈육패티의제조도축이후 24시간이경과된신선한돈육의뒷다리살과등지방을인근식육판매소에서구입하였다. 돈육뒷다리살및등지방의과도한결체조직및외부지방층을제거하였다. 이후 8 mm plate가장착된만육기 (PM-70, Mainca, Barcelona, Spain) 를이용하여돈육뒷다리살과등지방을분쇄하였다. 모든돈육패티는 80% 돈육뒷다리살, 15% 돈육등지방, 5% 얼음의비율로제조하였으며, 첨가제는전체육중량대비소금 (99.9% NaCl, Hanju, Ulsan, Korea), 아질산염 (Nitrite, Sias, Seoul, Korea), 염대체재및향신료를각실험과처리구별로다음과같이첨가하였다. 사전연 구를실시하여, 0-2%( 간격 0.25%) 농도의소금첨가량에따른돈육패티의품질평가를실시하였으며, 아질산염은 0-120 ppm( 간격 30 ppn) 으로설정하여품질평가를실시하여, 품질저하한계점을조사하고이의결과를토대로본실험에각처리구들의농도를설정하였다. HSHN 은 1.75% 소금과 110 ppm 아질산염, HS 은 1.75% 소금, NSLN 은 1.50% 소금과 30 ppm 아질산염, LSLN 은 0.75% 소금과 30 ppm 아질산염, AKC 은 0.75% 소금, 0.25% KCl(Sias) 과 0.40% 셀러리분말 (Sias) 을각각첨가하고, 모든처리구에동일하게 1.00% 분리대두단백질 (Sias), 0.03% 인산염 (Sias), 1.00% 향신료 (Vienna red, Sewoo Inc., Seoul, Korea), 0.50% 설탕 (CJ Cheiljedang, Seoul, Korea) 과 0.05% 아스코르빈산 (Sewoo Inc.) 을첨가하였다 (Table 1). 모든시료는혼합기 (RM-90, Mainca) 를이용하여 10 분간혼합하였다. 이후제조된혼합물의결합및안정화를위하여 4 C 에서 1 시간동안보관하였고 (Trout GR & Dale S 1990), 제조된돈육패티는성형기 (small ground press, Spikomat Ltd., Newark, UK) 를이용하여 100±1 g 의오차내에서직경 100 mm 그리고높이 15 mm 의돈육패티를제조하였다. -20 C 에서 24 시간동안냉동된돈육패티는컨버텀오븐 (OES 6.06, Convetherm, Eglfing, Germany) 을이용하여 170 C 에서건식가열하여돈육패티중심부의온도가 Table 1. Formulation of pork patties prepared with various concentrations of NaCl and nitrite 1) 2) Ingredient (%) Treatment 1) HSHN HS MSLN LSLN AKC Pork meat 80 80 80 80 80 Pork fat 15 15 15 15 15 Ice 5 5 5 5 5 Total 100 100 100 100 100 NaCl 1.750 1.75 1.500 0.750 0.75 Sodium nitrite 0.011-0.003 0.003 - KCl - - - - 0.25 Celery powder - - - - 0.40 Phosphate 0.030 0.03 0.030 0.030 0.03 ISP 2) 0.030 0.03 0.030 0.030 0.03 Spice 1.000 1.00 1.000 1.000 1.00 Sugar 0.500 0.50 0.500 0.500 0.50 Ascorbic acid 0.500 0.50 0.500 0.500 0.50 Treatments: HSHN, pork patties with 1.75% NaCl and 110 ppm sodium nitrite; HS, pork patties with 1.75% NaCl; NSLN, pork patties with 1.50% NaCl and 30 ppm sodium nitrite; LSLN, pork patties with 0.75% NaCl and 30 ppm sodium nitrite; AKC, pork patties with 0.75% NaCl, 0.25% KCl and 0.40% celery powder. ISP: isolated soy protein. http://www.ekfcs.org 2017; 33(5):566-574
568 송동헌등 Korean J Food Cook Sci 75 C 에도달하도록하였다. 각돈육패티의중심온도변화는 data logger(rs-232, Tes Electrical Co., Taipei, Taiwan) 가장착된 digital thermometer(tes-1305, Tes Electrical Co.) 의철콘스탄탄열전쌍을삽입하여온도를측정하였다. 가열된돈육패티를방냉시킨후폴리에틸렌 / 나일론포장지에넣어진공포장을실시한후냉장보관 (4 C) 하며 30 일간실험을실시하였다. 2. 분석항목및실험방법본실험은돈육패티를 3회제조하여각실험항목별로 3회이상반복측정하여그평균치를구하였고, 각실험항목별로유의성검증을실시하였다. 1) 돈육패티의이화학적및관능적특성 (1) ph 측정돈육패티에서 5 g 을취하여증류수 20 ml 를가하여 ultra-turrax(t25, Janken & Kunkel, Staufen, Germany) 를사용하여 1 분간 8,000 rpm 에서균질한후 ph meter(model 340, Mettler-Toledo GmbH, Schwerzenbach, Switzerland) 를사용하여측정하였다. (2) 표면색도 (color) 측정돈육패티의단면을 colorimeter(cr 210, Minolta, Osaka, Japan) 를사용하여명도 (lightness) 를나타내는 CIE L 값, 적색도 (redness) 를나타내는 CIE a 값과황색도 (yellowness) 를나타내는 CIE b 값을측정하였다. 표준색은 CIE L 값이 +97.83, CIE a 값이 -0.43, CIE b 값이 +1.98 인백색표준판을이용하여교정하였다. (3) 가열감량 (cooking loss) 측정돈육패티의가열전 후에시료의무게를측정하여, 가열전시료의무게에대한가열후시료의무게감소를 % 로산출하였다. 가열방법은상기에서언급된방법을이용하여실시하였다. 가열감량 (%) = [ 가열전시료무게 - 가열후시료무게 ]/ 가열전시료무게 100 (4) 염도 (salt contents) 측정돈육패티의염도측정은 Mohr 법 (Lee SW 등 2004) 을응용하여측정하였다. 10 g 의시료에증류수 90 ml 를첨가한후, homogenizer(am-7, Nihonseiki Kaisha Ltd., Tokyo, Japan) 를사용하여 1 분간 8,000 rpm 에서균질한후, 100 ml 메스플라스크에옮겨서정용하고흔들어서섞어주었다. 이후, Whatman No. 2 여과지에용액을여과한후, 그여과액 10 ml 를채취하여삼각플라스크에담고 10% K 2 CrO 4 (Sigma Chemical Co., St. Louis, MO, USA) 1 ml 를첨가 한후, 0.1 N-AgNO 3(Sigma Chemical Co.) 용액으로적정을실시하였다. 시험용액이 10 초간붉은색을유지할때를적정종말점으로판단하였다. NaCl (%) = 0.00585 (0.1 N-AgNO 3 적정값 ) (0.1 N-AgNO 3 의 factor) 시험용액희석배수 / 채취한시료의중량 100 (5) 전단력 (shear force) 측정가열된돈육패티의전단력은 blade set(warner-bratzler blade, Stable Micro Systems Ltd., Surry, England) 이장착된 texture analyzer(ta-xt2i, Stable Micro Systems Ltd.) 를이용하여가로 1 cm 세로 4 cm 로준비한시료의전단력을측정하였다. 이때의 distance 는 10.0 mm, cross head speed 는 2 mm/sec 로설정하였다. (6) 관능검사 (sensory evaluation) 3 점비교법을실시하여통과되었으며, 사전관능검사에참여한경험이있는 25-30 세의 10 명의패널요원을구성하여, 샘플에대한충분한지식과용어, 평가기준등을교육한후관능검사를실시하였다 (Choi YS 등 2008). 각처리구별로가열처리한시료의색 (color), 외관 (appearance), 풍미 (flavor), 연도 (tenderness), 다즙성 (juiciness), 짠맛 (saltiness), 전체적인기호성 (overall acceptability) 에대하여 10 점척도법에의해평가하였다. 이때색 ( 시선에의한적색도, 10= 적색이강함, 1= 적색이없음 ), 외관 ( 시선에의한결착상태, 10= 우수함, 1= 열악함 ), 풍미 ( 가열된패티의향, 10= 강함, 1= 없음 ), 연도 ( 처음물었을때, 10= 부드러움, 1= 딱딱함 ), 다즙성 ( 씹는느낌과즙, 10= 촉촉함, 1= 건조 ), 짠맛 ( 씹었을때느낌, 10= 짜다, 1= 싱겁다 ) 그리고전체적인기호성 ( 외관및품질, 10= 바람직함, 1= 바람직하지않음 ) 으로나타내었다. 2) 돈육패티의저장중이화학적특성및미생물변화 (1) 잔존아질산량 (residual nitrite content) 측정잔존아질산량은 Diazotization 방법으로이용하여아질산이온 (NO 2 ) 함량을측정하였다 (Korea Food and Drug Administration 2013). 시험용액의제조는시료 10 g 을정밀히달아약 80 C 의증류수 150 ml 를넣고 homogenizer (Nihonseiki Kaisha Ltd.) 를이용하여 15,000 rpm 에서 1 분간균질한후순차적으로 0.5 N NaOH(Daejung Chemical, Seoul, Korea) 10 ml 와 12% ZnSO 4 (Sigma Chemical Co.) 10 ml 를넣고가열후방냉하여 NH 3NO 3(Sigma-Aldrich Co. LLC, Gyeonggi, Korea) 20 ml 와증류수 10 ml 로정용하고용액을 Whatman No. 1 여과지로여과하여시험용액을제조하였다. 제조된시험용액 20 ml 에 sulfanil amide 용액 (Sigma-Aldrich Co. LLC) 1 ml, N-(1-naphthyl) ethyl- 2017; 33(5):566-574 http://www.ekfcs.org
Korean J Food Cook Sci 소금과아질산염감소수준이돈육패티의품질특성및저장성에미치는영향 569 enediamine 용액 (Sigma-Aldrich Co. LLC) 1 ml 와증류수 3 ml 를넣어 25 ml 로정용하여 20 분간반응시켰다. 반응된시험용액은 spectrophotometer(optizen 2120 UV plus, Mecasys Co., Ltd., Daejoen, Korea) 를이용하여 540 nm 에서흡광도를측정하고검량선에대입하여시험용액 20 ml 중의아질산이온량 (μg) 을구하였다. 아래의공식에의해아질산이온의농도를산출하여, ppm(mg/kg) 단위로전환하였다. 아질산이온 (mg/kg) = 20 ml 중의아질산이온량 (μg) / 채취한시료의중량 (g) 0.01 (2) 휘발성염기태질소화합물 (volatile basic nitrogen, VBN) 측정제조된육제품의휘발성염기태질소화합물 (volatile basic nitrogen) 은 Choi YS 등 (2016) 의방법을응용하여 conway 미량확산법을이용하여측정하였다. 시료 10 g 을취하여증류수 30 ml 를가한후균질기를이용하여 10,000 rpm 에서 2 분간교반하여 100 ml 로정용후 Whatman No. 1 여과지로여과하였다. 여과된용액 1 ml 를 conway 수기외실에넣고, 내실에 0.01 N H 3 BO 3 (Daejung Chemical) 1 ml 와 conway 시약 (0.066% methyl red in ethanol:0.066% bromocresol green in ethanol = 1:1) 100 μl 를넣은후, 다시 50% K 2 CO 3 (Daejung Chemical) 1 ml 를외실에주입하여밀폐하였다. 혼합을실시한후 37 C 하에서 2 시간동안반응시켰다. 반응된용액은 0.02 N H 2 SO 4 (Daejung Chemical) 으로적정하고아래의계산식을이용하여 VBN 가를산출하여 mg% 로나타내었다. VBN (mg%) = 0.02 N H 2 SO 4 적정량 (μl) 0.02 N H 2 SO 4 의 factor 0.02 14.007 / 시료량 (mg) 100 100 (3) 지질산패도 (2-thiobarbituric acid-reactive substances value, TBARS) 측정제조된육제품의지질산패도를측정하기위하여 Tarladgis BG 등 (1960) 의방법을응용하여 TBARS 값을측정하였다. 지방산화에의하여유리되는 malonaldehyde 와 thiobarbituric acid(tba) 를반응시킨후 spectrophotometer(mecasys Co., Ltd.) 를이용하여 538 nm 에서흡광도를측정하여아래의공식에의해 TBARS 값을산출하였으며, 그값은 mg malonaldehyde/kg sample 으로나타내었다. TBARS (mg malonaldehyde/kg sample) = 7.8 O.D. (4) 미생물분석 (microbiological analysis) 저염돈육패티의저장중미생물학적안정성을평가하기위하여총균수 (total aerobic bacteria) 를분석하였다. 시료 25 g 에멸균생리식염수 225 ml 를가하여균질한후, 그여액을희석하여일반평판배지 (plate count agar, Difco Lab., Detroit, MI, USA) 에접종후 37 C 에서 24 시간배양하였다. 최종균수는 log CFU/g 으로산출하였다. 3) 통계처리본실험의결과는최소한 3 회이상의반복실험을실시하여얻어진결과로서, SAS program(ver. 9.12, SAS Institute Inc., Cary, NC, USA) 의 general linear model(glm) procedure 를통하여분석하였다. 처리구간의평균간비교는 Duncan 의다중검정을통하여유의성 (p<0.05) 을검정하였다. 저장일에따른처리구들간의비교는 two-way ANOVA 를이용하여 Duncan 의다중검정을통하여유의성 (p<0.05) 을검정하였다. Ⅲ. 결과및고찰 1. 소금과아질산염첨가수준이다른저염패티의이화학적및관능적특성비교 1) 저염패티의이화학적및물리적특성소금과아질산염첨가량에따른돈육패티의 ph, 색도, 염도, 가열감량및전단력은 Table 2에나타내었다. 일반적으로식육가공품의 ph는원료육의 ph, 첨가제종류, 가열온도등에의해영향을받는다고알려졌다 (Puolanne EJ 등 2001, Park HG 등 2003). 본연구에서소금및아질산염의다양한첨가수준이돈육패티의 ph에영향을미치지않은것으로나타났다 (p>0.05). 이와유사하게 Stanley RE 등 (2017) 은 NaCl의첨가량을감소시키거나 KCl로대체하여도돈육패티의 ph에영향을미치지않았다고보고하였다. 반면에, Puolanne EJ 등 (2001) 은육제품에첨가되는 NaCl은평균적으로첨가되는 NaCl% 당 ph는 0.1 정도감소한다고보고하였다. 색특성면에서소금및아질산염첨가량에따른돈육패티의명도는유의적차이가보이지않았다 (p>0.05). 반면에적색도와황색도는아질산염첨가량에상당히의존적인경향을나타내었다. HS 처리구는다른처리구들에비하여적색도는낮고황색도는높은수치를나타내었다. 육색소단백질인 myoglobin은가열에의해 metmyochromogen으로변화하여식육의색이갈색을띄게되지만, 아질산염이존재하면 nitroso-myoglobin이형성되어가열시 nitrosomyochromogen으로변화하여식육의색이선홍색을띄는것으로알려져있다 (Park HG 등 2003). 따라서, HS 처리구는 metmyochromogen의형성에의해적색도는낮고황색도는높은수치를나타내고, 아질산염이첨가된처리구들은 nitroso-myochromogen이형성되어적색도가유의적으로높게나타난것으로추측된다. Shin DM 등 (2017) 은아질산염 120 ppm을첨가한패티의적색도는약 11.99 http://www.ekfcs.org 2017; 33(5):566-574
570 송동헌등 Korean J Food Cook Sci Table 2. Change in physicochemical properties of cooked pork patties with different salt and nitrite concentration Traits Treatments 1) HSHN HS NSLN LSLN AKC ph 6.11±0.05 6.10±0.05 6.10±0.04 6.11±0.04 6.08±0.04 CIE L*-value 62.40±2.71 61.69±2.57 61.70±2.60 62.53±2.68 63.46±3.21 CIE a*-value 9.03±1.45 D 3.68±1.03 A 8.21±1.16 C 8.38±1.01 C 7.14±1.29 B CIE b*-value 11.55±1.51 A 13.26±2.16 B 12.20±1.31 AB 12.48±1.19 AB 12.55±1.68 AB Salinity (%) 2.16±0.20 D 2.13±0.08 D 1.91±0.05 C 1.02±0.04 A 1.50±0.07 B Cooking loss (%) 22.40±4.36 A 22.09±4.61 A 25.28±3.53 B 29.57±3.21 C 26.87±2.46 BC Shear force (kg) 1.62±0.22 B 1.64±0.20 B 1.58±0.24 B 1.36±0.20 A 1.42±0.19 A All values are mean±sd. A-E Means sharing different letters in the same row are significantly different (p<0.05). 1) Treatments: HSHN: pork patties with 1.75% NaCl and 110 ppm sodium nitrite; HS: pork patties with 1.75% NaCl; NSLN: pork patties with 1.50% NaCl and 30 ppm sodium nitrite; LSLN: pork patties with 0.75% NaCl and 30 ppm sodium nitrite; AKC: pork patties with 0.75% NaCl, 0.25% KCl and 0.40% celery powder. 이며, 아질산염무첨가패티의적색도는약 2.26 으로나타났다고보고하였다. 본연구결과는, 아질산염이 110 ppm 혹은 30 ppm 이첨가된처리구들간의적색도의유의적차이는인정되었으나 (p<0.05), 수치적인 (8.21-9.03) 차이는크지않았다. 따라서, 저염돈육패티의발색을위한아질산염첨가량은 30 ppm 만으로충분한것으로판단된다. 염도는소금과아질산염첨가수준에크게영향을받는것으로나타났다. HSHN 및 HS 처리구는 NSLN, LSLN 및 AKC 처리구보다유의적으로높은염도를나타냈다 (p<0.05). 본연구에서모든처리구들은첨가된소금농도에비하여약간높은염도 ( 범위 1.02-2.16%) 를나타내었다. 이러한결과는원료육과첨가물에포함된염류및가열에따른수분손실로인한것으로사료된다. Pojedinec SL 등 (2011) 은원료육 100 g 당약 70-100 mg 의나트륨을함유하고있으며, 제조과정중첨가되는나트륨이온을함유한다양한첨가제때문에식육가공품의나트륨함량이높아진다고보고하였다. 돈육패티의가열감량은소금의첨가수준에따라영향을받는것으로나타났다. 예상한바와같이, 가장높은가열감량은염도가가장낮은 LSLN 처리구에서나타났다 (p<0.05). 식육가공에사용되는소금은근육단백질내의 2 가금속이온을방출시킴으로써단백질의팽윤을유도한다 (Puolanne EJ 등 2001, Park HG 등 2003, Bess KN 등 2013). 이에따라, 식육제품에보수력과근원섬유단백질용해도가향상되며, 추출된근원섬유단백질은안정된 3 차원망상구조를형성하여지방과물을보유할수있게된다고알려졌다 (Sofos JN 1983, Park HG 등 2003, Jiménez-Colmenero F 등 2010). Ruusunen M & Pullanne E(2005) 에따르면분쇄패티의가열감량은소금함량의증가함에따라감소하지만, 지방첨가량을증가시 킴에따라높아진다고보고하였다. Moon SS 등 (2008) 은분쇄돈육패티의제조시 NaCl 을부분적으로 KCl 로대체하면최종적으로가열감량을줄일수있다고보고하였다. 본연구에서도 AKC 처리구 (26.87%) 는 LSLN 처리구 (29.57%) 와비교하여가열감량이다소낮아지는결과를나타내었다. 돈육패티의전단력과관련하여, LSLN 과 AKC(1.36-1.42 kg) 에비해염첨가량이높은 HSHN, HS 및 NSLN 처리구들 (1.58-1.64 kg) 이유의적으로높은값을나타내었다 (p<0.05). Tobin BD 등 (2012) 는우육패티에 1.00% 소금첨가는경도에영향을미치지만, 소금첨가량이 0.50% 와 0.75% 일때는탄력성과복원성에영향을미친다고보고하였다. Acton JC & Dick RL(1984) 에따르면소금농도가높으면근원섬유단백질의용해도가증가하여경도와씹음성이증가되지만, 이에상응하여탄력성과복원성은감소되는것이라고하였다. Ruusunen M & Pullanne E(2005) 는분쇄돈육의산업적생산을고려하여바람직한보수력, 물성, 가열수율및소비자수용성을위해서최소 1.00% 의소금을첨가가필요하다고지적하였다. 이와유사하게본실험의결과는소금을 1.75% 에서 0.75% 까지감소시켜도 ph, 색도및물리적성질에큰차이를미치지않음을보여주었다. 2) 저염패티의관능적특성돈육패티의소금과아질산염첨가수준에따른관능적특성평가는 Table 3 에나타내었다. 색에대한관능평가는돈육패티의기계적으로측정된적색도의결과와비슷한경향을나타내었다. 그결과, HS 가유의적으로가장낮은점수를받았으며, HSHN 이가장높은점수를나타내었다 (p<0.05). 외관은 HSHN 만이다른처리구들에비하여높은점수를받았으며, 다른처리구들간 2017; 33(5):566-574 http://www.ekfcs.org
Korean J Food Cook Sci 소금과아질산염감소수준이돈육패티의품질특성및저장성에미치는영향 571 Table 3. Change in sensory properties of pork patties with different salt and nitrite concentration Trait Treatment 1) HSHN HS NSLN LSLN AKC Appearance 8.00±0.94 B 7.65±0.94 AB 7.69±0.94 AB 7.35±0.94 A 7.41±0.94 A Flavor 7.79±0.71 B 6.95±0.71 A 7.72±0.71 B 6.58±0.71 A 6.63±0.71 A Tenderness 7.89±0.90 C 7.56±0.90 BC 7.72±0.90 BC 6.65±0.90 A 7.24±0.90 B Juiciness 7.72±0.96 C 7.33±0.96 BC 7.37±0.96 BC 5.79±0.96 A 6.63±0.96 B Salty taste 7.05±1.18 C 7.00±1.18 C 6.11±1.18 B 4.72±1.18 A 5.06±1.18 A Overall acceptance 7.84±0.76 C 7.00±0.76 B 7.68±0.76 C 6.26±0.76 A 6.89±0.76 B All values are mean±sd. A-C Means sharing different letters in the same row are significantly different (p<0.05). 1) Treatments: HSHN: pork patties with 1.75% NaCl and 110 ppm sodium nitrite; HS: pork patties with 1.75% NaCl; NSLN: pork patties with 1.50% NaCl and 30 ppm sodium nitrite; LSLN: pork patties with 0.75% NaCl and 30 ppm sodium nitrite; AKC: pork patties with 0.75% NaCl, 0.25% KCl and 0.40% celery powder. 의차이는크지않았다. 풍미는 HSHN 과 NSLN 이다른처리구들에비하여높은평가를받았다. 특히, NSLN 은 HS 보다높은점수를받아소량의아질산염첨가가돈육패티의풍미를좋게하는것으로판단된다. 연도, 다즙성및짠맛은소금의첨가량이높아질수록 LSLN 에비하여유의적으로높은점수를받았다 (p<0.05). 특히, LSLN 의연도와다즙성이낮게평가된것은높은가열감량에의해패티내의수분손실에의한영향으로사료된다. Tobin BD 등 (2012) 은소금첨가량이패티의다즙성에영향을미치며, 이는소금이많을수록보수력과소비자의지각능력을증가시키기때문이라고하였다. 전체적인기호도는 HSHN 와 NSLN 이다른처리구들에비해유의적으로높은점수를나타내었다. 하지만, Tobin BD 등 (2012) 은 0.75-1.50% 의소금이첨가된패티의전체적인기호도는유의적차이는나타나지않는다고보고하였다. 본연구또한, LSLN 의전체적인기호도가 6 점이상으로평가되어저염화된패티의관능적품질은우수한것으로판단된다. Ruusunen M & Pullanne E(2005) 는분쇄육제품의제조시기술적인문제보다결착력, 경도및관능적평가를고려하여 0-2% 의소금이첨가된다고보고하였다. 2. 소금과아질산염첨가수준이다른돈육패티의저장중이화학적특성변화비교 1) 저염패티의잔존아질산량변화아질산염은식육가공품의지방산화, C. botulinum의성장과독소생성을억제하는중요한역할을한다고알려졌다 (Pierson MD 등 1983, Honikel KO 2008). 소금과아질산염첨가수준이다른돈육패티의냉장저장중아질산잔존량의변화를 Fig. 1에나타내었다. 돈육패티의 Fig. 1. Change in residual nitrite of pork patties with different salt and nitrite concentration during refrigerated storage at 4 o C for 30 days. A-E Mean sharing different letters within each storage day are significantly different (p<0.05). V-Z Mean sharing different letters within each treatment are significantly different (p<0.05). Treatments: HSHN: pork patties with 1.75% NaCl and 110 ppm sodium nitrite ( ); HS: pork patties with 1.75% NaCl ( ); NSLN: pork patties with 1.50% NaCl and 30 ppm sodium nitrite ( ); LSLN: pork patties with 0.75% NaCl and 30 ppm sodium nitrite ( ); AKC: pork patties with 0.75% NaCl, 0.25% KCl and 0.40% celery powder ( ). 저장초기의아질산잔존량은제조시첨가된아질산염수준에의존적으로나타났으며, 저장기간의경과에따라서지속적으로감소되었다. HSHN 처리구 (110 ppm 첨가 ) 의가열직후아질산잔존량은 45.84 ppm 에서저장 30 일차에 27.61 ppm 으로감소하였다. NSLN 과 LSLN 처리구 (30 ppm 첨가 ) 는가열직후각각 12.25 및 13.87 ppm 으 http://www.ekfcs.org 2017; 33(5):566-574
572 송동헌등 Korean J Food Cook Sci 로측정되었으며, 저장 30 일차에 6.87 및 7.07 ppm 으로측정되었다. Honikel KO(2008) 는가열후식육가공품내의아질산잔존량은첨가수준에따라서약 30-40% 정도이며, 100 ppm 아질산염첨가시저장 20 일에 10 ppm 이하로잔존하게된다고보고하였다. 또한, Ham HJ 등 (2004) 의연구에의하면, 2000-2003 년동안국내에유통되는 205 종의분쇄육제품의아질산잔존량은최대 56 ppm 이고평균적으로 6 ppm 으로조사되었다. Honikel KO(2008) 는아질산염이식육내에존재하는 dimethyl amine 과반응하여발암물질인 nitrosoamine 을화학적으로형성할수있지만, 이의생성조건은 130 C 이상에서장시간가열되어화학적반응이일어나야되므로, 식육가공품에서 nitrosoamine 이형성될가능성은매우희박하다고보고하였다. 또한, 식육가공품제조시아스코르브산 550 ppm, α-tocopherol, clover, sorbic acid 등의첨가로아질산염을빠르게분해하여 nitrosoamine 의형성을억제하고색도를향상시킬수있다고보고되었다 (Ham HJ 등 2004). 따라서, 아질산염은미생물및지질산화안정성에큰영향을미치지만, 발암물질인 nitrosoamine 을형성할가능성을고려하여, 돈육패티의제조시 30 ppm 이하의수준에서아질산염을사용하는것이바람직할수있다. 2) 저염패티의단백질변패도및지질산패도변화 Fig. 2 는소금과아질산염의첨가수준이돈육패티의저장기간중지질산패도와단백질변패도의변화를나타내었다. 단백질변패도는모든처리구와저장기간에상관없이유의적인차이가나타나지않았으며, 저장 30 일동안 10 mg% 를넘지않아서안정적인결과를나타내었다. 지질의산화는소금첨가량이높을수록촉진되고, 저장기간이경과될수록증가하지만, 아질산염은지질산패를지연시키는항산화효과가있음이알려져있다 (Park HG 등 2003, Honikel KO 2008). 본연구에서가열직후지질산패도는소금과아질산염의첨가량에영향을받는것으로나타났다. 아질산염이첨가되지않은 HS 는가열직후가장높은지질산패도 (0.41 mg MDA/kg sample) 를보였으며, 저장기간중지속적으로상승 (0.69 mg MDA/kg sample) 하였다. 반면에 HSHN 은지질산패가억제된결과를나타내어아질산염의항산화효과가크게나타났다. 한편, 아질산대체재가첨가된 AKC 처리구는가열직후에낮은값을나타내었으나, 저장기간이경과할수록증가되는경향을보이며, 최종적으로 NSLN 과 LSLN 보다유의적으로높은지질산패도를나타내었다. 이러한결과는가열직후잔류아질산염 (9.21 ppm) 이낮아졌기때문에지질산패억제효과가다소낮은것으로추측된다. 30 ppm 아질산염이첨가된두처리구들 (NSLN 과 LSLN) 은돈육패티의저장중지질산패를효과적으로억제할수있는것으로나타났다. Morrissey PA & Tichivangana JZ Fig. 2. Change in VBN (a) and TBARS (b) of pork patties with different salt and nitrite concentration during refrigerated storage at 4 o C for 30 days. A-D Mean sharing different letters within each storage day are significantly different (p<0.05). V-Y Mean sharing different letters within each treatment are significantly different (p<0.05). Treatments: HSHN: pork patties with 1.75% NaCl and 110 ppm sodium nitrite ( ); HS: pork patties with 1.75% NaCl ( ); NSLN: pork patties with 1.50% NaCl and 30 ppm sodium nitrite ( ); LSLN: pork patties with 0.75% NaCl and 30 ppm sodium nitrite ( ); AKC: pork patties with 0.75% NaCl, 0.25% KCl and 0.40% celery powder ( ). (1985) 는저농도의아질산염 (20 ppm) 이가열육의지질산패를효과적으로억제하였다고보고하였다. 따라서, 30 ppm 의아질산염첨가가저염패티의지질산패를효과적으로억제할수있을것으로판단된다. 3) 저염패티의총균수변화소금과아질산염첨가수준이다른돈육패티의냉장저장중미생물변화는 Table 4 에나타내었다. 미생물의생장은 ph, Aw, 온도, 저장기간, 염도및항미생물성물질의첨가등에영향을받는것으로알려졌다 (Park HG 등 2017; 33(5):566-574 http://www.ekfcs.org
Korean J Food Cook Sci 소금과아질산염감소수준이돈육패티의품질특성및저장성에미치는영향 573 Table 4. Change in total plate count (log CFU/g) of pork patties with different salt and nitrite concentration during refrigerated storage at 4 o C for 30 days Storage period Treatment 1) (day) HSHN HS NSLN LSLN AKC 0 0.38±0.29 0.54±0.28 V 0.72±0.67 V 0.46±0.38 V 0.39±0.33 V 5 0.61±0.44 0.39±0.27 V 0.71±0.50 V 0.42±0.34 V 0.31±0.23 V 10 0.27±0.20 0.41±0.35 V 0.65±0.52 V 0.42±0.24 V 0.27±0.32 V 20 0.65±0.26 A 4.01±0.34 CW 4.62±0.20 DW 5.58±0.09 EW 3.44±0.05 BW 30 0.49±0.16 A 4.80±0.56 BX 4.55±0.04 BX 5.84±0.02 DX 5.33±0.01 CX All values are mean±sd. A-E Means sharing different letters in the same row are significantly different (p<0.05). V-X Means sharing different letters in the same column are significantly different (p<0.05). 1) Treatments: HSHN: pork patties with 1.75% NaCl and 110 ppm sodium nitrite; HS: pork patties with 1.75% NaCl; NSLN: pork patties with 1.50% NaCl and 30 ppm sodium nitrite; LSLN: pork patties with 0.75% NaCl and 30 ppm sodium nitrite; AKC: pork patties with 0.75% NaCl, 0.25% KCl and 0.40% celery powder. 2003). Solberg M 등 (1990) 은식품내미생물안전기준치로서총균수 5 log CFU/g 이하, 대장균 3 log CFU/g 이하관리되어야한다고제안하였고, Park HG 등 (2003) 은식육내총균수가 6 log CFU/g 을초과할시이취및점액이발생되며, 사람이섭취할경우식중독이발생될수있다고하였다. 본연구에서 HSHN 은저장 30 일까지미생물이검출되지않았지만, HS 에서는저장 20 일부터 4 log CFU/g 수준으로검출되었다. 이러한결과는패티의제조시높은수준의소금이첨가되어도미생물안정성을위하여아질산염이필요한것으로판단된다. 또한, 저장 30 일차에 LSLN 은미생물증식이 5.84 log CFU/g 으로측정되어, NSLN(4.55 log CFU/g) 과 AKC(5.33 log CFU/g) 보다높게나타나염류의첨가량에따라서미생물증식에영향을미치는것으로판단된다 (p<0.05). 모든처리구에서저장 30 일간총균수는 6 log CFU/g 을초과하지않았지만, 안정성을고려하여저염패티의미생물적안정성을확보할수있는개선방안이필요한것으로판단된다. Ⅳ. 요약및결론 본연구에서돈육패티의품질과저장성에소금과아질산염농도가미치는영향을조사하였다. 돈육패티의제조시 30 ppm 의아질산염을첨가하면적색도가향상되고, 저장중지질산화를억제할수있었다. 총균수는모든처리구에서저장 30 일동안 6 log CFU/g 을초과하지않았으나미생물억제에대한개선방안이필요하다고판단된다. 또한, LSLN 및 AKC 는다른처리구보다가열감량과전단력이다소감소하였지만, 관능평가중풍미, 연도및전체적인기호도가 6 점이상으로우수하게평가되었다. 따라서, 저염돈육패티제조시소금은기존의첨가량인 1.50% 에서 0.75% 로감소시키고, 아질산염은 30 ppm 를첨가하는것이산업으로적용할수있을것으로판단된다. Conflict of Interest No potential conflict of interest relevant to this article was reported. Acknowledgments This research was supported Technology Development Program (PJ009237042014) for Rural Development Administration, Republic of Korea. References Acton JC, Dick RL. 1984. Protein protein interaction in processed meats. Proceedings of the 37th Annual Reciprocal Meat Conference of the American Meat Science Association, Lubbock, TX, USA. pp 36-43. Bess KN, Boler DD, Tavárez MA, Johnson HK, McKeith FK, Killefer J, Dilger AC. 2013. Texture, lipid oxidation and sensory characteristics of ground pork patties prepared with commercially available salts. LWT-Food Sci Technol 50(2): 408-413. Choi YS, Choi JH, Han DJ, Kim HY, Lee MA, Lee ES, Jung JY, Paik HD, Kim CJ. 2008. Effects of rice bran fiber on quality of low-fat Tteokgalbi. Food Sci Biotechnol 17(5): 959-964. Choi YS, Jeon KH, Park JD, Sung JM, Seo DH, Ku SK, Kim YB. 2015. Comparison of pork patty quality characteristics with various binding agents. Korean J Food Cook Sci 31(5):588-595. http://www.ekfcs.org 2017; 33(5):566-574
574 송동헌등 Korean J Food Cook Sci Choi YS, Ku SK, Jeon KH, Park JD, Lim SD, Kim HJ, Kim JH, Kim YB. 2016. Physico-chemical and microbial properties of sausages affected by plant scale and cooking treatments during refrigerated storage. Korean J Food Cook Sci 32(4): 309-399. Desmond, E. 2006. Reducing salt: A challenge for the meat industry. Meat Sci 74(1):188-196. Grossi A, Søltoft-Jensen J, Knudsen JC, Christensen M, Orlien V. 2012 Reduction of salt in pork sausage by the addition of carrot fibre or potato starch and high pressure treatment. Meat Sci 92(4):481-489. Ham HJ, Hong IS, Lim HK, Yang YM, Choi YH, Kim CG, Kweon TB, Lee JH. 2004. Nitrites contents on processed meat products (ham, sausage etc) in market duing 2000-2003. Korean J Vet Serv 27(2):115-120. Honikel KO. 2008. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci 78(1):68-76. Jiménez-Colmenero F, Cofrades S, López-López I, Ruiz-Capillas C, Pintado T, Solas MT. 2010. Technological and sensory characteristics of reduced/low-fat, low-salt frankfurters as affected by the addition of konjac and seaweed. Meat Sci 84(3):356-363. Jung JE. 2016. Policy trends of sodium reduction. Food Sci Ind 49(2):2-7. Korea Food and Drug Administration. 2013. Korean food standards index -Analytical methods of residual nitrite in foods; Analytical methods of residual nitrite in foods; Analytical methods of standard plate count. KFDA, Cheongju, Korea. p 10-1-70; p 10-2-25; p 10-3-26. Lee OH, Chung YS, Moon JW. 2010. Analysis of Na and Cl contents in children's favorite foods. Korean J Nutr 43(5): 524-532. Lee SW, Lee BS, Cha WS, Park JH, Oh SL, Cho YJ, Kim JK, Hong JH, Lee WY. 2004. Diffusion of salt and drying characteristics of beef jerky. Korean J Food Preserv 11(4): 508-515. Moon SS, Kim YT, Jin SK, Kim IS. 2008. Effects of sodium chloride, potassium chloride, potassium lactate and calcium ascorbate on the physic-chemical properties and sensory characteristics of sodium-reduced pork patties. Korean J Food Sci Anim Resour 28(5):567-573. Morrissey PA, Tichivangana JZ. 1985. The antioxidant activities of nitrite and nitrosylmyoglobin in cooked meats. Meat Sci 14(3):175-190. Park HG, Oh HR, HA JO, Kang JO, Lee KT, Chin GB. 2003. The science and technology of meat and meat products. Sunjin Printing, Seoul, Korea. pp 259-379. Park WY, Kim YJ. 2010. Effects of chitosan with different molecular weight and nitrite addition on the residual nitrite contents and self-life of emulsified sausage during cold storage. Korean J Food Sci Anim Resour 30(2):269-276. Pierson MD, Smoot LA, Robach MC. 1983. Nitrite, nitrite alternatives, and the control of Clostridium botulinum in cured meats. Crit Rev Food Sci Nutr 17(2):141-187. Pojedinec SL, Slider SD, Kenney PB, Head MK, Jittnandana S, Henning WR. 2011. Carcass maturity and dicationic salts affect pre blended, low-fat, low-sodium restructured beef. Meat Sci 88(1):122-127. Puolanne EJ, Ruusunen MH, Vainionpää JI. 2001. Combined effects of NaCl and raw meat ph on water-holding in cooked sausage with and without added phosphate. Meat Sci 58(1):1-7. Ruusunen M, Pullanne E. 2005. Reducing sodium intake from meat products. Meat Sci 70(3):531-541. Ruusunen M, Vainionpää J, Lyly M, Lähteenmäki L, Niemistö M, Ahvenainen R, Puolanne E. 2005. Reducing the sodium content in meat products: The effect of the formulation in low-sodium ground meat patties. Meat Sci 69(1):53-60. Shin DM, Hwang KE, Lee CW, Kim TK, Park YS, Han SG. 2017. Effect of Swiss chard (Beta vulgaris var. cicla) as nitrite replacement on color stability and shelf-life of cooked pork patties during refrigerated storage. Korean J Food Sci Anim Resour 37(3):418-428. Sofos JN. 1983. Effects of reduce salt (NaCl) levels on the stability of frankfurters. J Food Sci 48(6):1684-1691. Solberg M, Buckalew JJ, Chen CM, Schaffner DW, O'neill K, McDowell J, Post LS, Boderck M. 1990. Microbiological safety assurance system for foodservice facilities. Food Technol 44(12):68-73. Stanley RE, Bower CG, Sullivan GA. 2017. Influence of sodium chloride reduction and replacement with potassium chloride based salts on the sensory and physico-chemical characteristics of pork sausage patties. Meat Sci 133(1):36-42. Tarladgis BG, Watts BM, Younathan MT, Dugan L. 1960. A distillation method for the quantitative determination of malonaldehyde in rancid food. J Am Oil Chem Soc 37(1): 44-48. Tobin BD, O'Sullivan MG, Hamill RM, Kerry JP. 2012. Effect of varying salt and fat levels on the sensory quality of beef patties. Meat Sci 91(4):460-465. Tobin BD, O'Sullivan MG, Hamill RM, Kerry JP. 2013. The impact of salt and fat level variation on the physiochemical properties and sensory quality of pork breakfast sausages. Meat Sci 93(2):145-152. Trout GR, Dale S. 1990. Prevention of warmed-over flavor in cooked beef: effect of phosphate concentration, a lemon juice/phosphate blend, and beef extract. J Agric Food Chem 38(3):665-669. Trout GR, Schmidt GR. 1986. Water binding ability of meat products: effect of fat level, effect salt concentration and cooking temperature. J Food Sci 51(4):1061-1062. Received on Sep.14, 2017 / Revised on Oct.25, 2017 / Accepted on Oct.25, 2017 2017; 33(5):566-574 http://www.ekfcs.org