한수지 49(3), 31-38, 216 Original Article Korean J Fish Aquat Sci 49(3),31-38,216 은편모류 Teleaulax amphioxeia 의윤충류 Brachionus plicatilus 및이매패류유생 2 종에대한먹이기능성평가 박희원 김형섭 1 조수근 1 * 한국수산자원관리공단, 1 군산대학교해양생물공학과 Growth Performance of the Rotifer Brachionus plicatilus and the Larvae of Two Bivalves Fed on the Cryptophyte Teleaulax amphioxeia Hee Won Park, Hyung Seop Kim 1 and Soo-Gun Jo 1 * Korea Fisheries Resources Agency, Busan 488, Korea 1 Department of Marine Biotechnology, Kunsan National University, Gunsan 41, Korea The aim of this study was to verify the performance of Teleaulax amphioxeia as prey for Brachionus plicatilis and for the larvae of the bivalves (Pacific oyster Crassostrea gigas and Manila clam Ruditapes philippinarum) to select the best of five T. amphioxeia strains. The five strains of T. amphioxeia were collected from the coasts of Korea, purecultured and then fed to the rotifer and bivalve larvae. The density and fecundity rate of the rotifer fed on strain 1 were the highest. The instantaneous growth rate of the rotifer fed strain 8-2 was the highest. The maximum density and fecundity rate of the rotifer fed strain 8-2 were significantly higher than those fed Chlorella ellipsoidea, while instantaneous growth rate showed the opposite pattern. Survival rates of the Manila clam larvae fed each strain of Teleaulax showed no significant difference between strains. Survival rates of the Pacific oyster fed Teleaulax were significantly higher than those fed Chaetoceros sp., but lower than those fed I. galbana. This study indicates that strain 8-2 showed better growth for B. plicatilis and better survival for the bivalve larvae than did the other strains, and that T. amphioxeia can also be used as a prey organism for rotifers or bivalve larvae. Key words: Cryptophyte, Teleaulax amphioxeia, Rotifer, Bivalve larvae, Prey organism 서론 (Cryptophyceae) 2 2-4 µm. 2, (Klaveness, 1988; Metfies and Medlin, 27), (Novarino, 23). ( )., (Volkman et al., 1989; Brown, 1991; Zhukova et al., 199; Brown et al., 1997) 3-64%, 18-28%, 9-24%,. (Brown et al., 1998; McCausland et al., 1999) (Tremblay et al., 27),. (Stottrup et al., 1999; McKinnon et al., 23; Knuckey et al., 2; Dahl et al., 29), Artermia (Thinh et al., 1999), http://dx.doi.org/1.67/kfas.216.31 Korean J Fish Aquat Sci 49(3) 31-38, June 216 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3./) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 1 March 216; Revised 17 June 216; Accepted 22 June 216 *Corresponding author: Tel: +82. 63. 469. 494 Fax: +82. 63. 46. 3917 E-mail address: sgjo@kunsan.ac.kr Copyright 216 The Korean Society of Fisheries and Aquatic Science 31 pissn:374-8111, eissn:2287-881
32 박희원ㆍ김형섭ㆍ조수근. Chroomonas Rhodomonas, Teleaulax., (, ) 재료및방법 은편모류 Teleaulax amphioxeia 종주의순수분리 (Olympus BX-) 1. 3 psu f/2 (f/2-si) 24-well culture plate, 2, E m -2 s -1. Culture Plate well [2, (L:D=24:), E m -2 s -1 ] 3psu, f/2-si. 18S rdna (Cryptophyceae) Teleaulax amphioxeia (Table 1), 9.6.3 µm, 4.7.3 µm. 윤충류에대한먹이생물 Teleaulax amphioxeia 기능성검증 윤충류의초식률 Table 1. Temperature and salinity at the localities where cryptophyte Teleaulax amphioxeia strains used in the present study were collected Strain No. Location Water Temp. ( ) Salinity (psu) CR-MAL 1 Gomso Bay, Buan, Korea 7.8 3.1 CR-MAL 7 Masan port, Masan, Korea 16.7 31.2 CR-MAL 8-1 Saemangeum, Gimje, Korea 1. 26.8 CR-MAL 8-2 Saemangeum, Gimje, Korea 1. 26.8 CR-MAL 9 Keyado, Gunsan, Korea 21. 3.3 B. plicatilis( ) (KNU CR-MAL 1, 7, 8-1, 8-2, 9) (Grazing Rate). T. amphioxeia 2,,,, 1,, 1,, 2, cells ml -1 1 ml ( 8 ml), B. plicatilis 2 inds. ml -1 (., 1, 2, 3, 6, 12, 24 h). 1 ml (Lugol s solution) Sedgwick-Rafter Chamber 3 ml. (2 ) (3 psu), 24. B. plicatilis (Gr) Omori and Ikeda (1984). Gr = V(C -C ) / N t t V : (ml) C C t : (cells ml -1 ) N : t: (h) 윤충류의성장및포란율 (CR-MAL 1, 7, 8-1, 8-2, 9) 2. 1 cells ml -1, (2 ) (3 psu) inds. ml -1 7 (L:D=24:). 1 ml,. (Instantaneous growth rate, r ) Rico-Martinez and Dodson (1992). r=(1/t) ln(n t /N ) N t : t N : t : (days) 윤충류의성장및포란율비교 CR-MAL 8-2 Chlorella ellipsoidea ( KMMCC-2). C. ellipsoidea CR-MAL 8-2 2. CR-MAL 8-2. 1 cells ml -1 C. ellipsoidea 2. 1 cells
은편모류의먹이기능성평가 33 ml -1. 7 (L:D=24:) (2 ) (3 psu) inds. ml -1. 1 ml,. (Instantaneous growth rate, r) Rico-Martinez and Dodson (1992). 은편모류에의한패류유생의성장및생존율 바지락부유유생 Ruditapes philippinarum D 3. T. amphioxeia 3 (CR-MAL 7, 8-1, 8-2) 1. 1 4 cells ml -1, 3 L ( 2 L) 1 inds. ml -1. 2 3 psu, 24. 12, (, ). 굴부유유생 Crassostrea gigas D ( ) 2, 3 psu. 2 (CR-MAL 7 8-2) Chaetoceros sp. Isochrysis aff. galbana 4 7, 3. 1 4 cells ml -1, 1 L ( 8 ml) 2 inds. ml -1. 2 3 psu, 24. 1, (, ). 7 ( Chaetoceros sp., Isochrysis aff. galbana, Teleaulax amphioxeia CR-MAL 8-2, T. amphioxeia CR-MAL 7, T. amphioxeia CR-MAL 8-2 + I. galbana, T. amphioxeia CR-MAL 7 + I. galbana, T. amphioxeia CR-MAL 8-2 + CR-MAL 7 + I. galbana).. 통계처리 SPSS program (ver. 12.) One-way ANOVA test Duncan's multiple range test (Duncan, 19) (P=.). 윤충류의초식률 결과 (Teleaulax amphioxeia, KNU CR-MAL 1, 7, 8-1, 8-2, 9) 24 Fig. 1 Table 2., CR-MAL 8-1. 1. 1 6-1.84 1 6 cells inds. -1 h -1, CR-MAL 9. CR-MAL 8-2 1.82 1 6 cells inds. -1 h -1, CR-MAL 7 1.66 1 6 cells inds. -1 h -1. CR-MAL 1 1.3 1 6 cells inds. -1 h -1, CR-MAL 8-1. 1 2. 1 4-2. 1 cells ml -1. CR-MAL 8-1 2. 1 cells ml -1.. 윤충류의밀도, 포란율및성장률,, Table 3. Table 2. Grazing rate of the rotifer Brachionus plicatilis fed the different strains of the cryptophyte Teleaulax amphioxeia at different cell densities after 24 h Strain Food concentration (cells ml -1 ) 2,, 1, 1, 2, CR-MAL 1.89 1 4 2.83 1 2.79 1 9.31 1 1.3 1 6 CR-MAL 7 1.89 1 4.48 1 8.73 1 1.49 1 6 1.66 1 6 CR-MAL 8-1 8.24 1 4 3.31 1 1. 1 6 1. 1 6 7.49 1 CR-MAL 8-2 2.31 1 4.39 1 9.66 1 1.39 1 6 1.82 1 6 CR-MAL 9 1. 1 2.98 1 9.1 1 1.43 1 6 1.84 1 6
Grazing rate ( 1cells inds.ˉ1 hˉ1 Grazing ) rate ( 1cells Grazing inds.ˉ1 rate hˉ1 ) ( 1cells inds.ˉ1 hˉ1 Grazing ) rate ( 1cells inds.ˉ1 hˉ1 Gra ) 34 Grazing rate ( 1cells inds.ˉ1 hˉ1 Grazing ) rate ( 1cells inds.ˉ1 hˉ1 ) CR-MAL - 7 1.. 1. 1. 2. 1 2 CR-MAL - 1 1.. 1. 1. 2. Food concentration ( 1 cells ml -1 ) 1 2 1 Food concentration ( 1 cells ml -1 R² ) =.991, CR-.. 1. 1. 2. MAL 1 8-1, 8-2 7 44- inds. ml -1 Food concentration ( 1 cells ml -1 ), 2-32 inds. ml -1 박희원ㆍ김형섭ㆍ조수근 1 R² =.9131 1.. 1. 1. 2. 2 1 Food concentration ( 1 cells ml -1 ) CR-MAL - 8-1- 1.. 1. 1. 2. R² =.8112.. 1. 1. 2. 2 1 1 2 1 CR-MAL - 8-2- Food concentration ( 1 cells ml -1 ) Food concentration ( 1 cells ml -1 ) CR-MAL - 9 CR-MAL - 8-2- R² =.9984 R² =.992 1.. 1. 1. 2. Food concentration ( 1 cells ml -1 ) R² =.9984 Grazing rate ( 1cells inds.ˉ1 hˉ1 Grazing ) rate ( 1cells inds.ˉ1 hˉ1 ) Grazing rate ( 1cells inds.ˉ1 hˉ1 Grazing ) rate ( 1cells inds.ˉ1 hˉ1 ) Grazing rate ( 1cells inds.ˉ1 hˉ1 Grazing ) rate ( 1cells inds.ˉ1 hˉ1 ) 1 2 CR-MAL - 7 1.. 1. 1. 2. 1 Food concentration ( 1 cells ml -1 R² ) =.991.. 1. 1. 2. 2 1 1 2 1 Food concentration ( 1 cells ml -1 ) CR-MAL - 8-1- 1.. 1. 1. 2. R² =.8112.. 1. 1. 2. 2 1 1 2 Food concentration ( 1 cells ml -1 ) (P<.). CR-MAL - 8-2- CR-MAL 7 23.6% 1.. 1. 1. 2., CR-MAL Food concentration 1 ( 137.2 cells ml -1 ) R² =.9984 (Table 3), 1 CR-MAL - 8-1- CR-MAL - 8-2- Food concentration ( 1 cells ml -1 ) CR-MAL - 9 R² =.8112 R² =.9984 R² =.992 Fig. 1. Grazing rate of the rotifer fed the different strains of the cryptophyte Teleaulax amphioxeia (CR-MAL 1, 7, 8-1, 8-2, 9) at different cell densities after 24 h.
은편모류의먹이기능성평가 3 (P>.). (Instantaneous growth rate, r ) CR-MAL 7.26, CR-MAL 8-2.33, (P<.), (Table 3). 해산클로렐라및은편모류에대한윤충류의성장및포란율비교 CR-MAL 8-2 Chlorella ellipsoidea Table 4., 7 67 inds. ml -1 2 inds. ml -1 Chlorella (P<.). (fecundity rate) 42., Chlorella 4.2% (P>.). (Instantaneous growth rate, r) Chlorella.37 CR-MAL 8-2.34 (P<.). Table 3. Maximum density, fecundity rate and instantaneous growth rate (means±s.d.) of the rotifer Brachionus plicatilis fed the different strains of the cryptophyte for seven days Strain Table 4. Comparison of Maximum density, fecundity rate and instantaneous growth rate (mean±s.d.) of the rotifer Brachionus plicatilis fed each of the two different diets, the cryptophyte Teleaulax amphioxeia CR-MAL 8-2 and Chlorella ellipsoidea Prey Maximum density (inds. ml -1 ) Maximum density (inds. ml -1 ) Fecundity rate (%) Fecundity rate (%) Instantaneous growth rate (r) CR-MAL 1 44±4.8 a 37.2±4.72 a.31±.16 ab CR-MAL 7 2±3.61 c 23.6±1.2 a.26±.34 b CR-MAL 8-1 44±3.9a 29.9±.3 a.31±.13 ab CR-MAL 8-2 ±1. a 26.3±3.37 a.33±.4 a CR-MAL 9 32±2.11 b 31.1±.26 a.31±.11 ab Values (mean±s.d.) with same letters in the same column are not significant (P>.). Instantaneous growth rate (r) CR-MAL 8-2 C. ellipsoidea. 은편모류에의한이매패류부유유생의성장및생존율 T. amphioxeia (CR-MAL 7, 8-1, 8-2) Ruditapes philippinarum Table.. CR-MAL 8-1 8-2.,, CR-MAL 7 8-2 4%. CR-MAL 8-1 36%. 2 (CR-MAL 7, 8-2) Chaetoceros sp., Isochrysis aff. galbana 4 Table 6. Table. Shell length, shell height and survival rate (mean±s.d.) of the manila clam Ruditapes philippinarum larvae cultured with different strains of the cryptophyte Teleaulax amphioxeia (CR-MAL 7, 8-1, 8-2) Strain Shell length (µm) Shell height (µm) Survival rate (%) CR-MAL 7 13.2±2.83 b 133.2±2.84 b 39.±6. a CR-MAL 8-1 16.9±2.49 a 137.±2.71 36.2±6.74 a CR-MAL 8-2 16.4±2.6 ab 137.4±.93 a 41.1±4.82 a *Values (mean±s.d.) with same letters in the same column are not significant (P >.). Table 6. Growth and survival rate of the Pacific oyster Crassostrea gigas larvae fed on different diets Food organisms Shell length (±s.d.) (µm) Shell height (±s.d.) (µm) Survival rate (%) Ch 91.2±2.47 f 8.3±2.2 e 9.8±2.14 e Is 129.±1.34 b 114.6±1. b 63±4.8 a CR8-2 12.8±2.67 c 19.3±2.7 bc.4±.96 b CR7 11.3±2.3 e 91.9±2.42 d 2.4±2.22 d CR8-2+Is 143.±2.4 a 13.8±.71 a 62.1±.8 a CR-MAL 8-2 2±1. a 42.±2.37 a.34±.4 a Chlorella ellipsoidea 67±2.11 b 4.2±2.26 a.37±.11 b Values (mean±s.d.) with same letters in the same column are not significant (P >.). CR7+Is 11.7±3.6 e 94.2±2.3 d 3.3±4.2 c CR8-2+CR7+Is 113.3±2. d 13.2±3.2 c 3.2±4.24 c Values (mean±s.d.) with same letters in the same column are not significant (P >.). Ch, Chaetoceros sp.; Is, Isochrysis aff. galbana; CR8-2, Teleaulax amphioxeia CR-MAL 8-2; CR7, T. amphioxeia CR-MAL 7.
36 박희원ㆍ김형섭ㆍ조수근, CR-MAL 8-2+I. galbana 143. µm (P<.). I. galbana CR-MAL 8-2 129. µm 12.7 µm, CR-MAL 8-2+ CR-MAL 7+I. galbana 113.3 µm. 11.7 µm 11.3 µm CR-MAL 7+I. galbana CR-MAL 7, Chaetoceros sp. (Ch) 91.3 µm.. I. galbana (Is) 63%. CR-MAL 8-2+I. galbana 62.1%, CR-MAL 8-2.4%, CR-MAL 8-2+CR-MAL 7+I. galbana CR-MAL 7+I. galbana 3.3%, 3.2%. Chaetoceros sp. (Ch) 9.8. 고찰 (Teleaulax amphioxeia KNU CR- MAL 1, 7, 8-1, 8-2, 9) 1 2. 1 4-2. 1 cells ml -1. CR-MAL 8-1 2. 1 cells ml -1. Brachionus plicatilis (Korstad et al., 1989; Hansen et al., 1997; Navarro, 1999). B. plicatilis. 2. 1 cells ml -1, 1.8 1 6 cells inds. -1 h -1. Bae and Hur (211) 3 B. plicatilis, (specific growth rate, ) Nannochloropsis, Nannochloris Chlorella. ( ) Chlorella.3. Scott and Baynes (1978) Dunaliella tertiolecta, Isochrysis galbana, Pavlova lutheri, Phaeodactylum tricornutum B. plicatilis (r).4-.4. (r) (r). Hirayama et al. (1979),, (r), (r) (R ),, 3. (r), C. ellipsoidea (r) CR-MAL 8-2 (r).91. Hirayama et al. (1979), CR- MAL 8-2 B. plicatilis.,,,,, (Marshall et al., 21).. 2-1 µm (Palmer and Williams, 198). T. amphioxeia 4.7 µm, 9.6 µm 2. 12 36.2-41.1%. 1 2.4-.4%, I. galbana 3.3-62.1%, I. galbana Chaetoceros sp. 63% 9.8%. Chaetoceros sp., I. galbana, CR-MAL 8-2. I. galbana I. galbana. I. galbana (Helm et al., 24). Chaetoceros sp.., I. galbana D, CR-MAL 8-2, I. galbana
은편모류의먹이기능성평가 37.,,, (Helm et al., 1973; Marshall et al., 21)., (Aranda-Burgos et al., 214)., (Whyte et al., 1989). T. amphioxeia. 사사 21 (11-141-149-1),. References Aranda-Burgos JAA, Costa FD, Nóvoa S, Ojea J and Martinez- Patiῇo DM. 214. Effects of microalgal diet on growth, survival, biochemical and fatty acid composition of Ruditapes decussatus larvae. Aquaculture 42-421, 38-48. http:// dx.doi.org/1.116/j.aquaculture.213.1.32. Bae JH and Hur SB. 211. Selection of suitable species of Chlorella, Nannochloris, and Nannochloropsis in high- and low temperature seasons for mass culture of the rotifer Brachionus plicatilis. Fish Aquat Sci 14, 323-332. http://dx.doi. org/1.67/fas.211.323. Brown MR, Jeffrey SW, Volkman JK and Dunstan GA. 1997. Nutritional properties of microalgae for mariculture. Aquaculture 11, 31-331. Brown MR, McCausland MA and Kowalski K. 1998. The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture 16, 281-293. Brown MR. 1991. The amino acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 14, 79-99. Dahl U, Linds. CR, Gorokhova E, Eklund B and Breitholtz M. 29. Food quality effects on copepod growth and development: Implications for bioassays in ecotoxicological testing. Ecotoxicol Environ Safe 72, 31-37. Duncan DB. 19. Multiple-range and multiple F tests. Biometrics 11, 1-42. Hansen PJ, Bjørnsen PK and Hansen BW. 1997. Zooplankton grazing and growth: scaling within the 2-2, µm body size range. Limnol Oceanogr 42, 687-74. Helm MM, Bourne N and Lovatelli A. 24. Hatchery operation: Broodstock conditioning, spawning and fertilization. In: Lovatelli, A. (Ed.), Hatchery culture of bivalves. A practical manual. FAO Fish Tech Paper, Rome, pp. 9-83. Helm MM, Holland DL and Stephenson RR. 1973. The effect of supplementary algal feeding of a hatchery and breeding stock of Ostrea edulis L. on larval vigour. J Mar Biol Assoc UK 3, 673-684. Hirayama K, Takagi K and Kimura H. 1979. Nutritional effect of eight species of marine phytoplankton on population growth of the rotifer Brachionus plicatilis. Bull Jpn Soc Sci Fish 4, 11-16. Klaveness D. 1988. Ecology of the Cryptomonadida: A First Review. In Sandgren CD (ed.). Growth and reproductive strategies of freshwater phytoplankton. Cambridge Univ Press, New York, U.S.A., 1-133. Knuckey RM, Semmens GL, Mayer RJ and Rimmer MA. 2. Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: Effect of algal species and feed concentration on copepod development. Aquaculture 249, 339-31. http://dx.doi.org/1.116/j.aquaculture.2.2.3. Korstad J, Vadstein O and Olsen Y. 1989. Feeding kinetics of Brachionus plicatilis fed Isochrysis galbana. Hydrobiologia 186/187, 1-7. Marshall R, McKinley S and Pearce CM. 21. Effects of nutrition on larval growth and survival in bivalves. Rev Aquacult 2, 33-. http://dx.doi.org/1.1111/j.173-131. 21.122.x. McCauslnad, MA, Brown MR, Barret SM, Diemar JA and Haesman MP. 1999. Evaluation of live microalgae and microalgal pastes as supplementary food for juvenile Pacific oysters Crassostrea gigas. Aquaculture 174, 323-342. McKinnon AD, Duggan S, Nichols PD, Rimmer MA, Semmens G and Robino B. 23. The potential of tropical paracalanid copepods as live feeds in aquaculture. Aquaculture 223, 89-16. http://dx/doi.org/1.116/s44-8486(3)161-3. Metfies K. and Medlin LK. 27. Refining cryptophyte identification with DNA-microarrays. J Plankton Res 29, 171-17. http://dx.doi.org/1.193/plankt/fbm8. Navarro N. 1999. Feeding behaviour of the rotifers Brachionus plicatilis and Brachionus rotundiformis with two types of food: live and freeze-dried microalgae. J Exp Mar Biol Ecol 237, 7-87. Novarino G. 23. A companion to the identification of cryptomonad flagellates (cryptophyceae = cryptomonadea). Hydrobiologia 2, 22-27. Omori M and Ikeda T. 1984. Methods in Marine Zooplankton Ecology. John Wiley & Sons, New York, U.S.A, 332 pp. Palmer RE and Williams LG. 198. Effect of particle concentra-
38 박희원ㆍ김형섭ㆍ조수근 tion on filtration efficiency of the bay scallop Argopecten irradians and the oyster Crassostrea virginica. Ophelia 19, 163-174. Rico-Martinez R and Dodson SI. 1992. Culture of the rotifer, Brachionus calyciflorus Pallas. Aquaculture 1, 191-199. Scott AP and Baynes SM. 1978. Effect of algal diet and temperature on the biochemical composition of the rotifer, Brachionus plicatilis. Aquaculture 14, 247-26. Stottrup JG, Bell JG and Sargent JR. 1999. The fate of lipids during development and cold-storage of eggs in the laboratory-reared calanoid copepod, Acartia tonsa Dana, and in response to different algal diets. Aquaculture 176, 27-269. Thinh LV, Renaud SM and Parry DL. 1999. Evaluation of recently isolated Australian tropical microalgae for the enrichment of the dietary value of brine shrimp, Artemia nauplii. Aquaculture 17, 161-173. Tremblay R, Cartier S, Miner P, Pernet F, Quere C, Moal J, Muzellec ML, Mazuret M and Samain JF. 27. Effect of Rhodomonas salina addition to a standard hatchery diet during the early ontogeny of the scallop Pecten maximus. Aquaculture 262, 41-418. Volkman JK, Jeffrey SW, Nichols PD, Rogers GI and Garland CD. 1989. Fatty acids and lipid composition of 1 species microalgae used in mariculture. J Exp Mar Biol Ecol 128, 219-24. Whyte JNC, Bourne N and Hodgson CA. 1989. Influence of algal diets on biochemical-composition and energy reserves in Patinopecten yessoensis (Jay) larvae. Aquaculture 78, 333-347. Zhukova NV and Aizdaicher NA. 199. Fatty acid composition of 1 species of marine microalgae. Phytochemistry 39, 31-36.