Korean Chem. Eng. Res., Vol. 43, No. 4, August, 2005, pp. 482-486 향오일을함유한 Poly(ε-caprolactone)/Poly(ethyleneimine) 마이크로캡슐의방출거동 s Ç m l o ql 305-600 re o q 100 (2005 3o 7p r, 2005 6o 7p }ˆ) Release Behaviors of Poly(ε-caprolactone)/Poly(ethyleneimine) Microcapsules Containing Fragrant Oil Soo-Jin Park and Su-Ja Seok Advanced Materials Division, Korea Research Institute of Chemical Technology, 100, Jang-dong, Yuseong-gu, Daejeon 305-600, Korea (Received 7 March 2005; accepted 7 June 2005) k mpp Al 2 e v o poly(ε-caprolactone) (PCL)/poly(ethylene imine) (PEI) p ƒdp PEIp l rs m. o rp l p ƒdp v v t rq p pn l m, lr p DSC kk k., mp p kk o UV.vis. p r l mpp kp r m. e, PCL/PEI p ƒd p pq m o rp v m. v PEIp p v l p, p ƒdp np lˆ ( H m )p v p p pl. mpp PEI p p v l v p ˆ., p p PEIp v l ƒd p p v m l mpp p np l p p Ž. h Abstract The biodegradable poly(ε-caprolactone)(pcl)/poly(ethylene imine)(pei) microcapsules containing Al 2 and fragrant oil were prepared with different PEI contents. The effects of stirring rate and concentration of the surfactant on the diameter and morphologies of microcapsules were investigated by using scanning electron microscope (SEM). Thermal behaviors were studied by using a differential scanning calorimetry(dsc), and the release behaviors of fragrant oil from microcapsule were characterized by UV/vis. spectrophotometer. As a result, the average particle size of the microcapsules decreased with increasing the stirring rate or concentration of the surfactant. The surface morphologies of the microcapsules were changed from smooth surfaces to skin-like rough surfaces as increasing the PEI content. These results were mainly due to the increased hydrophilic groups at the microcapsule surfaces, resulting in increasing the release rate of fragrant oil in the microcapsules studied. Key words: Microcapsule, Fragrant Oil, Poly(ε-Caprolactone), Poly(Ethylene Imine) 1. p ƒdp p rp v p 1-2,000 µm pp n q p n microcapsulationp ~, k~, ~ p e(core) vp l rp q vp p v e Ž l p ƒd rp p. l v p 0.1-1 µm r p o op ƒdp v p ƒdl l [1, 2]. p ƒdp To whom correspondence should be addressed. E-mail: psjin@krict.re.kr vp m k n n p p qp o rn p, e, pk, k, q p r l ~ k kl p pn l p lv p [3, 4]. p ƒd rs l kt s, kt p pp rp kt s p q pn p. kt s p q(wall material) jp q n l n eˆ e v(core material)p nkp ~ eˆ p n m pv k ~ l }pp n r q e vp l eˆ p [5-7]. p 482
p lrp d, p p ƒdp p qrp pl q pn p. p ƒdp rs o rp, p k,, e l p m p, o rp p n ƒ dp p n kr ˆ ˆ, p kp q n n nkp k 4-20 r k r p., p ƒdp s o e l p m p p e p lv ƒ dp qkv k r p [8, 9]. Poly(ε-caprolactone)(PCL), poly(glycolic acid)(pga) poly (lactic acid)(pla)m p q l ~r v k r n l l lv p [10, 11]. p q tl PCLp q p p e ~l p lp sv p n q p l. p s p o p sq, 60 Cp p pr o 70 60 Cp o rpm q r ol o q s v p. l p p l ld p sq l r v l kl n l m [12]. kpm qp Poy(ethylene imine) (PEI) n q p p kpmp n. PEI q } r, r r, o} r rr p tn l kl n p. p l q pvr, p o o n l sp tq DNAp n ~ q v l kl n p [13-15]. e l mpp Al 2 o p ƒdp PCL PEIp l rs m, p ƒd rs e rs s p l p ƒdp v, lr PEIp l mpp p q m. 2. 2-1. m l l q q poly(ε-caprolactone)(pcl) (Mn:80000) poly(ethylene imine)(pei) (Mn:60000)p Aldrich r p n mp o r Kanto p polyvinyl alcohol(pva) #500p n m. e vp m v mp Junsei l p Al 2 n mp, methylene chloride n n m. 2-2. m m oo v l o rp PVA l mr n eˆ mpp eˆ Al 2 l eˆ l q vp PCL PEIp 100:0, 90:10, 80:20 70:30p e methylene chloridel p p m. n n methylene chloride mr r v k 5e k l l s l p ƒdp rs m. p p o rp k l p ƒdp rs m. mpp o p ƒdp 483 PEI, mp rs p ƒdp KBr p pn l fourier transform infrared spectrophotometer (FT-IR, Digital FRS-80, Bio-Rad scan range, 1,000-4,200 cm ) pn l -1 m. PCL PEIp l mpp o p ƒd p lr p kk o e t l (DSC, Perkein Elmer DSC-6) n l v o l 10 C/minp o r m. 2-4. m m j s } p ƒdp ˆ pq p r o t rq (SEM: JSM-840A, JEOL. Co.)p n l rs p ƒdp m. rs PCL/PEI p ƒdp e p o ethyl alcoholp n l mp p r m. Ethyl alcohol 20 mll 0.1 gp p ƒdp ~m p m l p p kk o 37 o C sr msl Žoeˆ mpp e. pr e l nkp } l UV-Vis. (Scin Co. UV S2100) p mpp p 328 nm l r l n mpp (D t )p r m. 48e k Žoeˆ mpp (D total )p r l k p ep pn l m [16]. D t D total (Í)= ----------- 100 (1) 3. y 3-1. m m Fig. 1 PCL/PEIp 80:20p rs qp FT-IR ˆ p. PCL/PEI p ƒdp 1,740 cm 1 l C=Op e v peak, 3,000-2,800 cm mll 1 CH peak 2 p peak ˆ, 3,500-3,000 cm mll 1 PEI peakp NH-CH peak ˆ p p pl., e vp mpl ˆ 2,900 cm p peakm 1 2-3. FT-IR in Š rs p ƒdp e v p l p o PCL, Fig. 1. FT-IR spectra of fragrant oil, PCL, PEI, and PCL/PEI microcapsules. Korean Chem. Eng. Res., Vol. 43, No. 4, August, 2005
484 vë q 1,400 cm 1 p peak rs PCL p ƒdp IR peakl k ˆ p, p l e vp o p ƒdp p Ž. 3-2. i i l m p o o rp 2.0Í PCL/PEIp 80:20p reˆ e p 5e Fig. 2. The average particle size of microcapsules by different stirring rates. p pr 1,000 rpm, 1,500 rpm, 2,000 rpmp l rs p ƒdp SEMp l pq m ˆ Fig. 2m Fig. 3l ˆ l. pq SEM l size settingp l scale r p pr kp v ƒdp r l p m. Fig. 2 l p ƒdp pq 1,000 rpml rs n 66.4 µm f pq p l, 1,500 rpmp rs nl 39.7 µm 2,000 rpmp rs nl 27.8 µm r l. Fig. 3l p p v p ƒdp rr p p pl. p p ƒdp m l m p p pp p v rp p v l o ˆp pq p p Ž [17]. 3-3. l om i i o r p rp o p rp eˆ, pqp kr p l o l n, p ƒd rsl pl p ƒdp pq p o rp l m p p k r p [18]. o rp p ƒdp ˆl m p kk o l 2,000 rpmp reˆ PCL/PEI 80:20p ~, 5e l o rp 1.0, 2.0 3.0Í e rs p ƒdp ˆ s Fig. 4l ˆ l. o rp 1.0Í l rs mp k p v ˆm pq p o p p l p Fig. 3. SEM photographs of different stirring rates; (a) 1,000 rpm, (b) 1,500 rpm, (c) 2,000 rpm. Fig. 4. SEM photographs of different surfactant ratios; (a) 1.0, (2) 2.0, (c) 3.0. o43 o4 2005 8k
mpp o p ƒdp 485 Fig.6. DSC thermograms of PCL/PEI microcapsules. Fig. 5. SEM photographs of different PEI ratios; (a) 0, (b) 10, (c) 15, (d) 20. l, 2.0Íp pq p o p s pl v p v kp ƒdp ˆ l. p r rp kp o r ~ l o p rp eˆv p ql kr p l v p Ž. l 3.0Í rs mp rp q p p ƒdp p p pl. p o rp v o p p v pq l o r q p l p p l p q vp pq p o p p Ž. 3-4. PEI i Š p rp p ƒdp ˆ n e vl m p p e vp ~ r p nl p ˆ l e vp k~ p nl np p p ƒdp rs k rp. e l p ƒd r se PEI p m p o, o rp 2.0Í, 2,000 rpm, e p 5e p reˆ PEI p 0 wtí, 5 wtí, 10 wtí 15 wtí e p ƒdp rs m. Fig. 5 rs p ƒdp ˆ SEMp p PEI p v l p ƒd p pq p lv, v PEI o v kp Fig. 5(a)p n p p p ƒd p PEI 15 wtí o Fig. 5(d)p n p v t v p p ƒdp lpp p p. p PCLp r p k p p p ƒdp ˆ p PEI r p l v p ˆ p Ž. PCL/PEI p ƒdp lr p s o l o rp 2Í, 2,000 rpmp r, PEI l rs p ƒdp l Fig. 6l ˆ l, l l p p Table 1l ˆ l. Fig. 6l p PCL/ PEI p ƒdp PEIp l lp p peak ˆ Table 1. T m and H m value by thermal analysis of PCL/PEI microcapsules PEI (wt ) 0 5 10 15 T m ( o C) 60.3 61.9 62.5 64.2 H m (J/g) 137.6 146.2 154.6 165.0 p k pl, p PCL PEIp p s p Ž. qp PCL(60) PEI(58) p nprp p k r p, PEIp p v l, p ƒ dp nprp 60.3, 61.9, 62.5, 64.2p v m, np lˆ ( H m ) rr v p pl. p p l p PCL PEIp kp v l q v p r p v p l p ƒdp np l p H m p v p Ž. 3-5. PEI i } Fig. 7p 2,000 rpm, o rp 2.0Í, e Fig. 7. Release behaviors of fragrant oil from PCL/PEI microcapsules prepared with different PEI ratios. Korean Chem. Eng. Res., Vol. 43, No. 4, August, 2005
486 vë q p 5e p l PCL/PEI p ƒdp PEI l ethyl alcohl l p mp p ˆ p. PEI p 0, 5, 10, 15 wtíp, e p 4e v p, 75, 76, 79, 84Í mpp lpp p pl. PEI l lp 4e kp p p, eq v 10e p p mpp v kpp p p. p nk l PEIp p v l r wp e l mp p p pl. PEI p v l p ƒdp q PCL/PEIp v p ~m PCL/PEI p ƒdp p d qnp p f p v l p ƒd p mpp p np l p Ž. 4. l l mpp Al 2 e v o PCL/PEI p ƒdp PEIp l rs m. PCL/ PEIp l p ƒdp v v p m. o rp l p ƒd p v v t rq p pn l m., mp p kk o UV.vis. p mpp kp r m. rs p ƒdp p q m o rp kp v qkv p p m, PEIp p v p v t v p p ƒdp l. p PEIp p v mpp p p p p pl. p p PEI p v l n v m l p ƒd p m pp p np l p Ž. y 1. Benita, S., Microcapsulation: Method and Industrial Application, Marcel Deker, New York(1997). 2. in Lazzi, L. A. and Nixon, J. R., Microcapssulation, 193, Marcel Dekker, New York(1997). 3. Park, S. J., Shin, Y. S. and Lee, J. R., Preparation and Characterization of Microcapsules Containing Lemon Oil, J. Colloid Interface Sci., 241(2), 502-508(2001). 4. Erdem, B., Sudol, E. D., Dimonie, V. L. and El-Aasser, M. S., Encapsulation of Inorganic III. Characterization of Encapsulation, J. Polym. Sci. Chem., 38(24), 4441-4450(2000). 5. O Donnell, P. B. and McGinity, J. W., Preparation of Microspheres by the Solvent Evaporation Technique, Adv. Drug Del. Rev., 28(1), 25-42(1997). 6. Xu, X., Yu, H., Gao, S., Ma, H., Leon, K. and Wang, S., Polyphosphoester Microspheres for Sustained Release of Biologically Active Nerve Growth Factor, Biomaterials., 23(17), 3765-3772(2002). 7. Palmieri, G. F., Bonacucina, G., Martino, P. D. and Martelli, S., Microencapsulation of Semisolid Ketoprofen/Polymer Microspheres, Int. J. Pharm., 242(1/2), 175-178(2002). 8. Kim, H. K. and Park, T. G., Microencapsulation of Dissociable Human Growth Hormone Aggregates within Poly(D,L-lactic-coglycolic acid) Microparticles for Sustained Release, Int, J. Pharm., 229(1/2), 107-116(2001). 9. Hong, K. J. and Park, S. M., Preparation of Polyurea Microcapsules with Different Composition Ratios: Structures and Thermal Properties, Mater. Sci. Eng. A., 272(2), 418-421(1999). 10. Huh, K. M. and Bea, Y. H., Synthesis and Characterization of Poly(ethylene glycol)/poly(l-lactic acid) Alternating Multiblock Copolymers, Polymer., 40(22), 6147-6155(1999). 11. Ng, C. S., Teoh, S. H., Chung, T. S. and Hutmacher, D. W., Simultaneous Biaxial Drawing of Poly(ε-caprolactone) Films, Polymer., 41(15), 5855-5864(2000). 12. Shen, Y., Sun, W., Zhu, K. J. and Shen, Z., Regullation of Biodegradability and Drug Release Behavior of Aliphatic Polyesters by Blending, J. Biomed. Mater. Res., 50(4), 528-535(2000). 13. Helander, I. M., Alakomi, H. L., Latvakala, K. and Koski, P., Polyethyleneimine is an Effective Permeabilizer of Gram-Negative Bacteria, Microbiology, 143(10), 3193-3199(1997). 14. Boussif, O., Lezoualc h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B. and Behr, J. P., A Versatile Vector for Gene and Oligonnucleotide Transfer into Cells in Culture and In Vivo: Polyethyleneimine, Proc. Natl. Acad. Sci. U.S.A., 92(16), 7297-7301(1995). 15. Nguyen, H. K., Lemieux, P., Vinogradov, S. V., Gebhart, C. L., Guerin, N., Paradis, G., Bronich, T. K., Alakhov, V. Y. and Kabanov, A. V., Evaluation of Polyether-Polyethyleneimine Graft Copolymers as Gene Transfer Agents, Gene. Ther., 7(2), 126-138(2000). 16. Sen, M. and Güven, O., Radiation Synthesis of Poly(N-vinyl 2- pyrrolidone/itaconic acid) Hydrogels and their Controlled Release Behaviours, Radiat. Phys. Chem., 55(2), 113-120(1999). 17. Arriagada, F. J. and Asare, K. O., Synthesis of Nanosize Silica in a Nonionic Water-in-Oil Microemulsion: Effects of the Water, Surfactant Molar Ratio and Ammonia Concentration, J. Colloid and Interface. Sci., 211(2), 210-220(1999). 18. Yilmaz, G., Jongboom, R. O. J., Feil, H. and Hennink, W. E., Encapsulation of Sunflower Oil in Starch Matrices Via Extrusion: Effect of the Interfacial Properties and Processing Conditions on the Formation of Dispersed Phase Morphologies, Carbohydrate Polym., 45(4), 403-410(2001). o43 o4 2005 8k