19(4)-07(43).fm

Similar documents
605.fm

82-01.fm

12.077~081(A12_이종국).fm

9(3)-4(p ).fm

19(4)-09(27).fm

10(3)-10.fm

14.531~539(08-037).fm

DBPIA-NURIMEDIA

32 박희원ㆍ김형섭ㆍ조수근. Chroomonas Rhodomonas, Teleaulax., (, ) 재료및방법 은편모류 Teleaulax amphioxeia 종주의순수분리 (Olympus BX-) 1. 3 psu f/2 (f/2-si) 24-well culture pl

304.fm

10(3)-09.fm

16(2)-7(p ).fm

666 윤주연 허성범 재료및방법 Brachionus plicatilis 의내구란생산 rotifer (Culture Collection of Useful Marine Plankton, CCUMP) B. plicatilis (CCUMP 41) strain. rotifer

82.fm

10(3)-12.fm

< DC1A4C3A5B5BFC7E22E666D>

69-1(p.1-27).fm

16(1)-3(국문)(p.40-45).fm

14.fm

한국 출산력의 저하 요인에 관한 연구

untitled

untitled

10(3)-02.fm

12(2)-04.fm

19(4)-12(40).fm

10(1)-08.fm

(2)-02(최경자).fm

8(2)-4(p ).fm

19(1) 02.fm

12(3) 10.fm

Æ÷Àå½Ã¼³94š

15.101~109(174-하천방재).fm

19(3)-04(18).fm

14(4) 09.fm

07.051~058(345).fm

50(1)-09.fm

8(3)-01.fm

26(3D)-17.fm

가자미식해의제조공정최적화 37., (Choi et al., 200).. 재료 재료및방법 (Verasper Jordan et Gilbert;, ), (, ), (, ) (, )., (, ), (, ), (, ), (, ), (, ), (, ). 가자미식해제조 (round

31(3B)-07(7055).fm

10.063~070(B04_윤성식).fm

50(5)-07.fm

1-32(1)-01(신경순).fm

416.fm

14(2) 02.fm

15(2)-07.fm

untitled

11(5)-12(09-10)p fm

한국성인에서초기황반변성질환과 연관된위험요인연구

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

fm

32(4B)-04(7455).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

歯5-2-13(전미희외).PDF

38(6)-01.fm

51(2)-06.fm

17(3)-00(282).fm

93-09.fm

29(4)-07(김봉채).fm

14(4)-14(심고문2).fm

02-47(2)-08(조현태).fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

11(4)-03(김태림).fm

Microsoft Word - 크릴전쟁_당신이 모르는 남극 바닷속 쟁탈전_FINAL.docx

09-감마선(dh)

DBPIA-NURIMEDIA

50(6)-03.fm

93.fm

20(2)-07[25].fm


49(6)-06.fm

<30332DB9E8B0E6BCAE2E666D>

51(4)-13.fm

< C6AFC1FD28C3E0B1B8292E687770>

04.fm

17.393~400(11-033).fm

18211.fm

27(5A)-07(5806).fm

12(4) 10.fm

83-07.fm

16(5)-06(58).fm

( )-83.fm

Microsoft Word - KSR2012A038.doc

02ÇãÀÎÇý ~26š

82-08.fm


4.fm

19(4)-05(36).fm

Æ÷Àå82š

82-02.fm

γ

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

23(2) 71.fm

Microsoft Word - KSR2012A172.doc

( )-113.fm

<30312DC0CCC7E2B9FC2E666D>

18103.fm

25(6)-16(김영희).fm

Transcription:

J. of Aquaculture Vol. 19(4) : 310-314, 2006 µ Journal of Aquaculture Korean Aquaculture Society» cyclopoid ƒ Paracyclopina nana,» 1, x * w w, 1 w w œw Grazing of Brackish Water Cyclopoid Copepod Paracyclopina nana on Different Microalgae Species and Concentrations Byeong-Hee Min, Heum-Gi Park 1 and Sung Bum Hur* Department of Aquaculture, Pukyong National University, Busan 608-737, Korea 1 Faculty of Marine Bioscience & Technology, Kangnung National University, Gangneung 210-702, Korea This study was carried out to investigate grazing of brackish water cyclopoid copepod Paracyclopina nana on four microalgae species (Tetraselmis suecica, Isochrysis galbana, Phaeodactylum tricornutum and Dunaliella tertiolecta) and different food concentrations raging from 5 to 55 ng chl a/ml. The grazing of P. nana was examined by the analysis of decreased number of microalgae and chlorophyll a content in rearing water and pigment content in the gut of P. nana. The maximum content of decreased chlorophyll a and gut pigment in P. nana varied with microalgae species and concentrations. It appeared at the food concentration 30 ng chl a/ml in T. suecica, 40 ng chl a/ml in I. galnaba and D. tertiolecta, and 45 ng chl a/ml in P. tricornutum, respectively. The grazing rate of a P. nana per hour also varied with different microalgae species and concentrations. The maximum grazing rate per hour of P. nana fed T. suecica with 39.3 ng chl a/ml was the highest with 0.63 ng chl a/h, but lowest with 0.52 ng chl a/h. From these results, it can be concluded that T. suecica is the best species among four microalgae species for the mass culture of P. nana and daily optimum food concentration of P. nana is 25~39 ng chl a (approximately 10~15 10 4 cells). Keywords: Copepod, Grazing, Microalgae, Paracyclopina nana ƒ w š ƒ ù (Nagaraj, 1992). ƒ w ƒ w. ƒ d w ü s j v w y d w ù ü w. ƒ (Dam and Peterson, 1988), (Dagg and Walser, 1987) (Head, 1988; Mayzaud et al., 1998). û ƒ š (Head et al., 1985; Atkinson et al., 1996, Tirelli and Mayzaud, 1999). w» ƒ š (Ohno and Okamura, 1988; Støttrup and Norsker, 1997). ù ƒ w *Corresponding author: hurs@pknu.ac.kr š wš w ƒ w» y w (Lee et al., 2005). Paracyclopina nana ù» xw w ƒ w Artemia nauplius w (Lee, 2004; Lee et al., 2006).» cyclopoid ƒ P. nana w P. nana ww 4 (Tetraselmis suecica, Isochrysis galbana, Phaeodactylum tricornutum, Dunaliella tertiolecta) (Lee et al., 2006; Min et al., 2006) P. nana p w. Paracyclopina nana w 4 (T. suecica KMCC P-9, I. galbana KMCC 310

H-2, P. tricornutum KMCC B-45, D. tertiolecta KMCC C-9) w w w w w w. f/2 (Guillard and Ryther, 1962) w, 20±1 C š 1 o 80 µmol m 2 s w. 250 ml ƒ flask w z 1 L ƒ v j, 3 L v j 20 L j x» w. P. nana P. nana 2000 12» y y(18 psu) 100 µm plankton net w š f 1 w z 500 ml f w 20 o C, 15 psu w. P. nana nauplius 20 L j x» w 120 µm 40 µm w nauplius w z 20 L» ¾ w. Nauplius 28 o C, ¾ 20 o C w š(lee et al., 2006), 15 psu, 2 µmol m 2 s 1, Ÿ» 12L : 12Dw w. T. suecica P. nana 1 2 10 4 cells, 5 10 4 cells 1 1z œ w. P. nana w P. nana w» w ü w chlorophyll a w P. nana ü w (gut pigment content) d w. chlorophyll a d f s» g w. 1 L f( 1 L) s w P. nana f 1 /ml w T. suecica, I. galbana, P. tricornutum D. tertiolecta œ w. x w š 3 xw. ml chlorophyll a w 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 ng w œ w. œ z 24 90 µm P. nana 100 w z ü w chlorophyll a w P. nana ü w w. wr ƒ 55 ng chl a/ml œ w z (0.5, 1, 1.5, 2, 4, 6, 12, 18, 24 ) P. nana ü w y w. Chlorophyll a d œ 24 z P. nana 90 µm wš, û GF/C filter w z Lorenzen (1967) d w. 100 P. nana 15 ml w 90% acetone 10 ml ƒw w z 4500 rpm 10 w z 24 h þ w w -80 o C w. 665 nm y Ÿ d wš ƒ Paracyclopina nana 311 1N HCl 2 z 665 nm y z Ÿ d w (Lorenzen, 1967). ü w (gut pigment) chlorophyll a phaeopigment w w w. chlorophyll a ( mg m 3 ) phaeopigments ( mg m 3 ) 26.7( 665 0 665 a ) v = ----------------------------------------------- 665 0: y 665 nm Ÿ, 665 a: y z 665 nm Ÿ, v: acetone (ml), V: (liters), l: m w q (cm) wr P. nana (G, ng chl a equiv. ind 1 h 1 ) w. G V ( C 0 C tf ) = ----------------------- N t C 0 x» s, C tf t z x s, V x, N»ü ƒ, f x ƒ m one-way ANOVA test w z Duncan's multiple range test (Duncan, 1955) w s³ (P<0.05) SPSS program (Ver. 10.1) w. P. nana P. nana 24 z ü chlorophyll a w Fig. 1. T. suecica chlorophyll a œ ƒ 30 ng chl a/ml ¾ ƒw ƒ 35~55 ng chl a/ml w. I. galbana D. tertiolecta chlorophyll a 40 ng chl a/ml ¾ ƒw ƒ 45~55 ng chl a/ml w. P. tricornutum 45 ng chl a/ml ¾ ƒw z w w. wr P. nana 24 ü w w Table 1. 4 ƒ ü w ƒw š w z w w. T. suecica 30 ng chl a/ml 35 ng chl a/ml ü w še š, I. galbana D. tertiolecta 40 ng chl a/ml, P. tricornutum 45 ng chl a/ml še. 30 ng chl a/ml ¾ T. suecica V l 26.7( 1.7[ 665 a ] 665 0 ) v = ----------------------------------------------------------- V l

312,», x Fig. 1. Decreased chlorophyll a (mean±sd) in the water of Paracyclopina nana fed different food concentrations of microalgae. ƒ 3 w ü w w ƒ š, P. tricornutum ƒ û w (P<0.05). œ z P. nana ü w y Table 2. 4 x œ z 0.5 ü w še z, 4 ¾ wš z w w w. T. suecica œ P. nana ü w œ z 1.5 0.25 ng pigment, 4 0.17 ng pigment k x w w j w (P<0.05), z w. I. galbana D. tertiolecta œ œ z 2 ƒƒ 0.22 0.21 ng pigment T. suecica w ƒ. P. tricornutum œ œ z 6 ¾ x w w w w. ù 12 l 4 x w w. P. nana y Fig. 2. T. suecica œ w P. nana 1 ƒ 39.3 ng chl a/ml 0.63 ng chl a ƒ ùkû ù, ƒ 25 ng chl a/ml l w. I. galbana ƒ 44.7 ng chl a/ml 0.60 ng chl a ind. 1 h 1 ƒ ùkû. P. tricornutum ƒ 44.5 ng chl a/ml, š D. tertiolecta ƒ 49.8 ng chl a/ml, P. nana 1 ƒƒ 0.41 ng, 0.52 ng chl a ƒ ùkû. Table 1. Total pigments in the gut of a Paracyclopina nana fed different food concentrations of microalgae Food concentrations (ng chl a/ml) Tetraselmis suecica Isochrysis galbana Dunaliella tertiolecta Phaeodactylum tricornutum 5 0.17±0.003 a 0.17±0.007 ab 0.17±0.005 a 0.16±0.005 b 10 0.19±0.009 a 0.17±0.004 b 0.17±0.009 b 0.16±0.008 b 15 0.22±0.011 a 0.21±0.014 a 0.22±0.012 a 0.18±0.010 b 20 0.28±0.011 a 0.24±0.008 b 0.16±0.007 d 0.21±0.013 c 25 0.32±0.010 a 0.28±0.017 b 0.30±0.012 ab 0.25±0.007 c 30 0.43±0.018 a 0.31±0.015 c 0.35±0.007 b 0.25±0.009 d 35 0.43±0.020 a 0.33±0.017 c 0.38±0.016 b 0.31±0.014 c 40 0.40±0.008 a 0.40±0.013 a 0.41±0.015 a 0.34±0.012 b 45 0.38±0.011 a 0.38±0.014 a 0.38±0.021 a 0.39±0.019 a 50 0.38±0.010 a 0.37±0.010 ab 0.37±0.009 ab 0.36±0.017 b 55 0.39±0.003 a 0.37±0.012 a 0.37±0.008 a 0.35±0.017 b Values in the same row with different superscript letters are significantly different (P<0.05). Table 2. Variations of total pigment content in the gut of Paracyclopina nana fed different microalgal diet during twenty-four hours Hour Tetraselmis suecica Isochrysis galbana Dunaliella tertiolecta Phaeodactylum tricornutum 0.5 0.43±0.028 a 0.40±0.013 a 0.44±0.029 a 0.42±0.036 a 1 0.36±0.029 ab 0.35±0.007 b 0.38±0.014 ab 0.39±0.019 a 1.5 0.25±0.007 c 0.31±0.013 b 0.29±0.018 b 0.34±0.006 a 2 0.22±0.011 b 0.22±0.012 ab 0.21±0.023 b 0.26±0.032 a 4 0.17±0.003 c 0.20±0.005 b 0.20±0.012 b 0.22±0.012 a 6 0.17±0.003 b 0.17±0.007 b 0.17±0.005 b 0.19±0.009 a 12 0.17±0.003 a 0.17±0.007 a 0.17±0.005 a 0.17±0.017 a 18 0.17±0.003 a 0.17±0.007 a 0.17±0.005 a 0.16±0.007 a 24 0.17±0.003 a 0.17±0.007 ab 0.17±0.005 a 0.16±0.005 b Values in the same row with different superscript letters are significantly different (P<0.05).

Fig. 2. Variations of grazing rate of a Paracyclopina nana per hour, which fed different food concentrations of microalgae. š œ ƒ s w e ƒ w (Corkett and McLaren, 1970; Mayzaud et al., 1998; Knuckey et al., 2005), cyclopoid ƒ Oithona similis f ù w e š w (Sabatini and Kiørboe, 1994). 4 ƒ P. nana ƒw ƒ w w. Calanus hyperboreus C. pacificus Ditylum brightwellii, Thalassiosira fluviatilis ƒ Paracyclopina nana 313 ³ w œ w (Mullin and Brooks, 1963), Frost (1972) x w. cyclopoid ƒ Oithona similisƒ s (Sabatini and Kiørboe, 1994) ew. Calbet and Alcaraz (1997) ƒ» nauplius j w šw. Lee (2004) P. nanaƒ nauplius T. suecica œ ƒw w e ùkù, copepodid 1~5 10 4 cells/ml» w ù ƒw, w e š w. x œ z ü w y w, P. nana œ z ƒ y wš ú w 4~6 z w w.. w, P. nana y 4~6 d, x w 4 ƒ yw T. suecica, D. tertiolecta, I. galbana, P. tricornutum q. ƒ ƒ û w š (Mullin and Brooks, 1963; Frost, 1972; Huntley, 1981). Acartia tonsa œ 7~150 µgc/l w ƒ š w (Reeve and Walter, 1977). T. suecica, I. galbana, P. tricornutum, š D. tertiolecta w P. nana 1 ƒ œ ƒ ƒƒ 39.3, 44.7, 44.5 49.8 ng chl a/ml ƒƒ 0.63, 0.60, 0.41 0.52 ng chl a ùkù P. nana. Chlorophyll a s w ƒ chlorophyll a s y w ƒƒ 15 10 4, 130 10 4, 80 10 4, 26 10 4 cells/ml. š P. nana ü w ƒw ƒ e z ƒ ƒw w. P. nana œ w. P. nana p T. suecica P. nana ƒ z, 1 1 15 ng chl a ( 5.7 10 4 cells) w ù œ 25~39 ng chl a ( 10~15 10 4 cells) q.» cyclopoid ƒ Paracyclopina nana w. œ 24

314,», x z P. nana ü w w. T. suecica 30 ng chl a/ml, I. galbana D. tertiolecta 40 ng chl a/ ml, P. tricornutum 45 ng chl a/ml œ w P. nana ü w ƒ. T. suecica, I. galbana, P. tricornutum, š D. tertiolecta w P. nana 1 ƒ œ ƒ ƒƒ 39.3, 44.7, 44.5 49.8 ng chl a/ml ƒƒ 0.63, 0.60, 0.41 0.52 ng chl a ùkû. P. nana ƒ ww œ ƒ û ƒ T. suecica, 1 1 œ 25~39 ng chl a ( 10~15 10 4 cells)ƒ ƒ q. w ww 2000 p w w w w w tw. š x Atkinson, A., P. Ward and E. J. Murphy, 1996. Diel periodicity of subantarctic copepods: relationships between vertical migration, gut fullness and gut evacuation rate. J. Plankton Res., 18, 1387 1405. Calbet, A. and M. Alcaraz, 1997. Growth and survival rates of early developmental stages of Acartia grani (Copepoda: Calanoida) in relation to food concentration and fluctuations in food supply. Mar. Ecol. Prog. Ser., 147, 181 186. Corkett, C. J. and I. A. McLaren, 1970. Relationships between development rate of eggs and older stages of copepods. J. Mar. Biol. Ass. U. K., 50, 161 168. Dagg, M. J. and W. E. J. Walser, 1987. Ingestion, gut passage, and egestion by the copepod Neocalanus plumchrus in the laboratory and in the the subarctic Pacific Ocean. Limnol. Oceanogr., 32, 178 188. Dam, H. J. and W. T. Peterson, 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. J. Exp. Mar. Bio. Ecol., 123, 1 14. Duncan, D. B., 1955. Multiple-range and multiple F tests. Biometrics, 11, 1 42. Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine plankton copeopd Calanus pacificus. Limnol. Oceanogr., 17, 805 815. Guillard, R. R. L. and J. H. Ryther, 1962. Studies on marine planktonic diatoms.. Cyclotella nana Hustedt and Detonula confervacea (Clece) Gran. Can. J. Microbiol., 3, 229 239. Head, E. J. H., 1988. Copepod feeding behaviour and the measurement of grazing rates in vivo and in vitro. Hydrobiologia, 167/168, 31 41. Head, E. J. H., L. R. Harris and C. Abou Debs, 1985. Effect of daylength and food concentration on in situ diurnal feeding rhythms in arctic copepods. Mar. Ecol. Prog. Ser., 24, 281 288. Huntley, M., 1981. Nonselective, nonsaturated feeding by three calanoid copepod species in the Labrador Sea. Limnol. Oceanogr., 26, 831 842. Knuckey, R. M., G. L. Semmens, R. J. Mayer and M. A. Rimmer, 2005. Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: Effect of algal species and feed concentration on copepod development. Aquaculture, 249, 339 351. Lee, C. S., P. J. O Bryen and N. H. Marcus, 2005. Copepod in aquaculture. Blackwell Publishing, Iowa, 269 pp. Lee, K. W., 2004. Mass culture and food value of the cyclopoid copepod Paracyclopina nana Smirnov. Ph.D. thesis, Kangnung National University, 124 pp. Lee, K. W., H. G. Park, S. M. Lee and H. K. Kang, 2006. Effects of diets on the growth of the brackish water cyclopoid copepod Paracyclopina nana Smirnov. Aquaculture, 256, 346 353. Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr., 12, 3[3 346. Mayzaud, P., V. Tirelli, J. M. Bernard and O. Roche-Mayzaud, 1998. The influence of food quality on the nutritional acclimation of the copepod Acartia clausi. J. Mar. Syst., 15, 483 493. Min, B. H., H. G. Park,GK. W. Lee and S. B. Hur, 2006. Selection of optimum microalgal species for culture of the brackish water cyclopoid copepod Paracyclopina nana. J. Kor. Fish. Soc., 39 (in Press). Mullin, M. M. and E. R. Brooks, 1963. Some factors affecting the feeding of marie copepod of the genus Calanus. Limnol. Oceanogr., 8, 239 250. Nagaraj, M., 1992. Combined effects of temperature and salinity on the development of the copepod Eurytemora affinis. Aquaculture, 103, 65 71. Ohno, A. and Y. Okamura, 1988. Propagation of the calanoid copepod, Acartia tsuensis, in outdoor tanks. Aquaculture, 187, 85 96. Reeve, M. R. and M. A. Walter, 1977. Observations on the existense of lower threshold and upper critical food concentrations for the copepod Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol., 29, 211 221. Sabatini, M. and T. Kiørboe, 1994. Egg production, growth and development of the cyclopoid copepod Oithona similis. J. Plankton Res., 16, 1329 1351. Støttrup, J, G. and N. H. Norsker, 1997. Production and use of copepods in marine fish larviculture. Aquaculture, 155, 231 247. Tirelli, V. and P. Mayzaud, 1999. Gut evacuation rates of Antarctic copepods during austral spring. Polar Biol., 21, 197 200. š : 2006 9 7 : 2006 10 27