12(3)-15(안순모).fm

Similar documents
44(3)-16.fm

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

국706.fm

국705.fm

10(3)-06(021).fm

44(5)-10.fm

°ø±â¾Ð±â±â

44(2)-08.fm

DBPIA-NURIMEDIA

43(5)-11.fm

10(3)-02(013).fm

한1009.recover.fm

44(5)-03.fm

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

국9409.fm

82-01.fm

44(4)-06.fm

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

국9209.fm

슬라이드 제목 없음

44(2)-11.fm

43(6)-07.fm

Áß2±âÇØ(01~56)

03이경미(237~248)ok

(최준우).fm

43(4)-08.fm

10(3)-10.fm

45(3)-07(박석주).fm

84-01.fm

14.531~539(08-037).fm

04김호걸(39~50)ok

06국306.fm

Microsoft Word _kor.doc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Æ÷Àå½Ã¼³94š

121_중등RPM-1상_01해(01~10)ok

09구자용(489~500)

국906.fm

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

Æ÷Àå82š

歯140김광락.PDF

15(4장1절 P).PDF

06국305.fm

인문사회과학기술융합학회

44(2)-06.fm

국816.fm

A C O N T E N T S A-132

main.hwp

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

02¿ÀÇö¹Ì(5~493s

Coriolis.hwp

83-07.fm

10(3)-12.fm

년AQM보고서_Capss2Smoke-자체.hwp

45(4)-12(송명호).fm

Microsoft Word - KSR2012A038.doc

hwp

433대지05박창용

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

국8412.fm

2 폐기물실험실

PDF

DV690-N_KOR_ indd

10(3)-02.fm

x4- Manualb61¹³»¿ëš

???? 1

09È«¼®¿µ 5~152s

49(6)-06.fm

歯49손욱.PDF

09이훈열ok(163-

00-1CD....

3 x =2y x =-16y 1 4 {0 ;4!;} y=-;4!; y x =y 1 5 5'2 2 (0 0) 4 (3-2) 3 3 x=0 y=0 x=2 y=1 :: 1 4 O x 1 1 -:: y=-:: 4 4 {0 -;2!;} y=;2!; l A y 1

(72) 발명자 김창욱 경기 용인시 기흥구 공세로 , (공세동) 박준석 경기 용인시 기흥구 공세로 , (공세동) - 2 -

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

fm

Microsoft Word - KSR2013A291

歯전용]

44(2)-02.fm

( )국11110.fm

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

歯5-2-13(전미희외).PDF

untitled

= =180 5=90 = O=O+O=;!;O+;!;OE O=;!;(O+OE)=;!;OE O=;!;_180 = y=180 _ =180 _;9%;= = =180 5=15 =5

45(2)-02(최대근).fm


???? 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

01À̽ÂÈ£A9-832š

45(1)-05.fm

untitled

43(4)-06.fm

9(3)-4(p ).fm

(72) 발명자 장종산 대전 중구 수침로 138, 103동 204호 (태평동, 유등 마을쌍용아파트) 박용기 대전 유성구 어은로 57, 119동 302호 (어은동, 한 빛아파트) 황동원 경기 안양시 만안구 양화로147번길 7, 102동 403호 (박달동, 박달동동원베네스

45(1)-15.fm

<31325FB1E8B0E6BCBA2E687770>

12.077~081(A12_이종국).fm

ePapyrus PDF Document

γ

<BAB0C3A5BABBB9AE2E687770>

책임연구기관

Transcription:

The Sea Journal of the Korean Society of Oceanography Vol. 12, No. 3, pp. 244 250, August 2007 [Note] Membrane Inlet Mass Spectrometer (MIMS) ts } r š r } ld 1 * x 1 rs 1 qt 2 x 3 1 x ff, 2, 3 p x / mn Dissolved Methane Measurements in Seawater and Sediment Porewater Using Membrane Inlet Mass Spectrometer (MIMS) System SOONMO AN 1 1 1 *, JINAM KWON, JEAHYUN LIM, YUNJUNG PARK 2 AND DONG-JIN KANG 3 1 Division of Earth Environmental System/Marine Science Major, Pusan National University, Busan 609-735, Korea 2 Department of microbiology, Pukyung National University, Busan Korea 3 School of Earth & Environmental Sciences/Research Institute of Oceanography, Seoul National University, Seoul 151-742, Korea MIMS edšp k~ e p ns d r r pn l m, l l m r l sq ns ˆ r n l. rp r p Žk o l, l k p ˆ l k~ e t mp p MIMS edšp r m. r p ns ~p q p m. rp t m p 0.13~0.9% r m. p edšp pn l k p p ns ˆ r, ns ˆp p rp n sn ppp k pl. MIMS systemp pn l, p ns ˆ p p l pl. e l MIMS edšp inlet p ˆ ˆ rq l r pl n s ˆp r pl. Membrane inlet mass spectrometer (MIMS) has been used to accurately quantify dissolved gases in liquid samples. In this study, the MIMS system was applied to measure dissolved methane in seawater and sediment porewater. To evaluate the accuracy of the measurement, liquid samples saturated with different methane partial pressure were prepared and the methane concentrations were quantified with the MIMS system. The measured values correspond well with the expected values calculated from solubility constants. The standard error of the measurements were 0.13~0.9% of the mean values. The distribution of dissolved methane concentration in seawater of the South Sea of Korea revealed that the physical parameters primarily control the methane concentration in sea water. The MIMS system was effective to resolve the small dissolved methane difference among water masses. The probe type inlet in MIMS system was proven to be effective to measure porewater methane concentration. Keywords: Methane, MIMS, Dissolved Gas, Porewater, Methane Hydrate, Probe 2007 4o, ol r oo (IPCC) v m p p ˆ pp m. v m r e mp f, me ~ (CO 2, CH 4, N 2O, CFCs, O 3, v )p o, p, r p ~p ˆl l l ep kv p (Cicerone and Oremland, 1988; Middleburg et al., 2002; Bange, 2006). p tl ˆ *Corresponding author: sman@pusan.ac.kr d(ch 4) CO 2l kp rp, me p p CO 2 l l k 20 r pp, r~ me p 15% r k r p (Cicerone and Oremland, 1988;, 1995). t CH 4p p r v r 2003 l 1790 ppbp, l v pp 1990 p k 5 ppb r p (WMO, 2005). rv rp CH 4p p l 535 Tg(CH 4)l pt 70% porp op 30% ql rp opl p k r p (, 2002). kp ˆp o(source)p l v pp kp v k (5~50 Tg; Cicerone and Oremland, 1988; Middleburg et al., 244

Membrane Inlet Mass Spectrometer (MIMS) edšp pn r ns ˆp r 245 2002). k tl lkvlp ˆ l tn p k v pp, q, vl e r l l n s p (Jones and Mullholland, 1998; Middleburg et al., 2002). v m l l ˆp t n k, l v qop ˆ (methane hydrate) p t p k r,, p m p l ~ ˆp r r p n r. ˆ p l v qop p tn k, v m rl kp p(positive feedback)p qn l, v m eˆ p qqrp o v vr m (Damm et al., 2005). v v m v l m kv, p p ˆp ˆp d ˆ tl o, v ˆl p me ƒr, v m p. v m rp ˆ qo ˆ kp ˆ l l l pl, ns ˆp ˆp r r n p kv p. p rp ns ˆp rp p lv, ~w ns ˆp ˆ d ~ ˆ m pp d r p. ns ˆp d l t d pd(headspace) pn, purge-trappingp pn, equilibrator pn p n l (Middleburg et al., 2002; Seifert et al., 1999). p ˆp flame ionization detector(fid) q d Š photo-acoustic infrared detector(middleburg et al., 2002)l r. tp ˆ n p pl, e p mm p r, r l n (detector)p p r p l, p rp r m rp p. d pd purge-trappingp n e p } l e p k, ns d l p r l lv (An and Joye, 1997). rl n e p k 50~600 ml p p r ƒ rp e p l npp (Middleburg et al., 2002). tp ns d r r o l v edšp Membrane inlet mass spectrometer (MIMS) l l kl pn p (Kana et al., 1994; An et al., 2001; Vrana, 2005; Sheppard et al., 2005; Tortell, 2005; Demeestere et al., 2007). MIMS system l e p pl v p l, k~e l kp ns d VOC (volatile organic carbon), quadrapole v (mass spectrometer) pn l r (Kana et al., 1994; An et al., 2001). k~e r e p e n l v ˆ ov l p k~ e ns d. d d r v l op l r l ns dp l p e p mm p o}rp, m l l d pp pp pn p f rp r p p p (Kana et al., 1994). MIMS system p rl n e p kp r, p e p l rp r ns d rl l qrp v p. l MIMS systemp l, tl q rp MIMS system(underwater membrane introduction/quadrupole mass filter system; Short et al., 2005)p lp, membrane inlet system p l, r p p ns d p (Sheppard et al., 2005; Hartnett and Seitzinger, 2003) l l MIMS systemp pn l, ns ˆ dp p kk m. l m m ˆp ks l eˆ t nkp mp, pp rp MIMS systemp pn ns ˆ rp r p k k k. er rp m lk l pl ns ˆ r l, p l ns ˆp k. pm ˆ (probe) ˆp inlet system p pn l r p ns ˆ r m. m MIMS system l l n MIMS systemp r e p s l 2 v ns ~ edš(membrane inlet)p n l (Fig. 1). k~ e p n v ˆl p, 0.75 mm( 0.15 mm) p 20 mmp e pn l ns d l (Fig. 1A). k~ e r pn l d p d (n : 0.75 mm, 0.5 mm)p op, d p d p v p p T-q ƒ kl e m pl v k~e e v e p n s ~. ns ~ k~e d p d p r v. T-q ƒ kl ns ~ r o k~v p, p r o quadrapole v op (Kana et al., 1994; An et al., 2001). w edšp r l p p ns ˆ r o n l. p edšl d p d l e q e p rl mp, rp e p kyp d p d m v edš l m (Fig. 1B). r~ v p 2 mm r mp, p r l vr p l, p ns ~ e l v p ov MIMS system l ˆp r m. ns d rl Pfeiffer vacuump gas analyzer(pfeiffer QMA 200) pn l. pm dp v : r (massto-charge ratio; m/z) t r d( ˆ m/z=15, m/z=32, k m/z=40) p v :r ˆ m. ˆ d(ch 4)p e (m/z=16)l pm (O m/z=16)l p (interference) p sq l, CH 3 +(m/z=15)p kp r m, ˆ CH 3 + sp p k r p (Benstead and Lloyd, 1994; Sheppard et al., 2005). ˆ e p k l t nk(20 o C, 0 pptm 20 o C, 30 ppt) ˆ l.

246 k Ë v Ëpq Ë orë v Fig. 1. Inlet diagram of MIMS system showing membrane inlet for liquid samples (A), and porewater sample (B). h o m ko ~o l m m s l nkp e t m (Table 1). m 0 ppt p nkp v 2 v m (20 o Cm 30 o C) ov m sl 48e p l, l p m (S 0T 20, S 0T 30). nk p m k e 30 ml o n l lr. v m p 0, p 35 ppt t l 48e p l e p p headspace lp n l }o. p r t pn l 10 mlp headspace l, 23 ppm p t ˆ(23 ppm CH 4, N 2 balanced) tp (S 0T 20C, S 0T 30C, S 35T 20C, S 35T 30C, S 35T 20CH, S 35T 30CH), (S 35T 20A, S 35T 30A) 30 C ov m o }o l. p k~ e 20 Cm o sl 48e l, headspace p ˆ p m. pm l k~ l p sq p ns dp kp tp o l, d k 20 (bubbling) eˆ pl om p } l, l p sq ns dp m k (S 35T 20CH, S 35T 30CH). m e, p 95% p p ns d l r lpp k d k k pl. r~ 10 v s p t e t lp, s p e 3 j l r l (Table 1). m ~o 2005 9o ks ˆk s t (34~34.30 N, 128~129 E)p 6 s rr(station 1~6)l e ns ˆ rp p lr (Fig. 2). s rrp ep 30~80 m r Niskin-rosette } pn l 5~10 m p }, m k e 30 ml o n l p Table 1. Saturated water samples in various salinity and temperature for dissolved methane analysis. Sample ID Salinity (ppt) Temperature ( o C) Headspace (10 ml) Degassing with Helium S 0T 20 0 20 none n S 0T 30 0 30 none n S 0T 20C 0 20 23ppm CH 4 n S 0T 30C 0 30 23ppm CH 4 n S 35T 20C 35 20 23ppm CH 4 n S 35T 20CH 35 20 23ppm CH 4 y S 35T 20A 35 20 Air n S 35T 30C 35 30 23ppm CH 4 n S 35T 30CH 35 30 23ppm CH 4 y S 35T 30A 35 30 Air n Fig. 2. Study sites for vertical profiles of dissolved methane.

Membrane Inlet Mass Spectrometer (MIMS) edšp pn r ns ˆp r 247 ZnCl 2(vol/vol 50%, 0.1 ml)p l p p rve m. e e e rm MIMS systemp pn l r m. ˆn ko ~o 2005 9o ˆ (probe) ˆ lv membrane inlet system p pn l r ns ˆp rp p lr (Fig. 1B). p l v 10 cm, p 25 cmp r l } e e rm q m l, rp p lr (Fig. 1B). r p ˆ e p t nk(20 o C, 0 pptm 20 o C, 30 ppt) ˆ l. ko ~o 10 v s p ns e p ˆ 2~3.4 nmp o m (Table 2). tl eˆ 4 v e t ˆ 1.9 ppm r(bange et al., 1994) m m r n (Bunsen solubility coefficient; Yamamoto et al., 1976) f ~ p p m (Fig. 3). v k tl eˆ S 0T 20, S 0T 30 p m p m (Fig. 3). ˆl tpeˆ, r e (S 35T 20A, S 35T 30A)l r p l p ˆ, p e headspacep k p k kr p. rl t m 0.004~0.027 nm e p CH 4 p 0.13~0.9% n r rp m (Table 2). e l 23 ppm t ˆ ~ eˆ nkl l eˆ nkl ns ˆ kk o l, e p ˆ e k e m ˆ l (Fig. 4). p m 20 Cm o 30 o C, kl nk (S 0T 20, S 0T 30) tp k e l l l p p l ˆ e (excess methane signal) v p v m (Fig. 4). Headspace }n e (S 35T 20A, S 35T 30A)p Fig. 3. Measured and calculated methane concentrations in saturated water samples of various temperature and salinity conditions. See Table 1. for the saturation conditions. n pl ˆp llp, CH 4:Arp pp S 0T 20, S 0T 30m p p m. 23 ppm t ˆ ~ headspacel tp e p n n p k m. n t ~l ˆ v d sq v tn d p k~ e headspace lp p. t ~ tp e l k 82%, 92% m. n rp d l ns d r pl, t ˆ d tp e (S 35T 20CH)l v k t ˆ d tp e m p o k, m, p 23 ppm t ˆ dl k sq v kk, p mpp k pl. k m ˆp p l k - ˆ ep pl ˆp 2.4~3.3 nml p. e l 23 ppm p v t d p Table 2. Methane and argon signal (mbar) and concentration (nm) in saturated water samples of various salinity and temperature. See Table 1. for the saturation conditions. Sample ID Methane Signal (mbar) Argon Signal Methane Concentration (nm) Excess Methane Average SE (mbar) mean 1 SE Signal (mbar) S 0T 20 1.93 10-11 1.73 10-13 1.74 10-10 3.067 0.027-0.033 S 0T 30 1.58 10-11 1.97 10-13 1.44 10-10 2.511 0.031-0.002 S 0T 20C 2.11 10-11 1.29 10-14 1.58 10-11 3.665 0.002 3.373 S 0T 30C 1.84 10-11 6.28 10-14 1.39 10-11 2.931 0.010 2.976 S 35T 20C 1.85 10-11 6.86 10-14 1.38 10-11 2.943 0.011 2.989 S 35T 20CH 1.82 10-11 6.90 10-14 7.38 10-12 2.898 0.011 3.071 S 35T 20A 1.46 10-11 1.06 10-13 1.39 10-10 2.328 0.017-0.091 S 35T 30C 1.54 10-11 3.14 10-14 1.52 10-11 2.452 0.005 2.471 S 35T 30CH 1.54 10-11 2.58 10-14 6.89 10-12 2.445 0.004 2.627 S 35T 30A 1.27 10-11 2.51 10-14 1.20 10-10 2.021 0.004-0.022

248 k Ë v Ëpq Ë orë v Fig. 4. Argon versus methane signal of MIMS measurement in saturated water samples. See Table 1. for the saturation conditions. n mp, v t ˆ d pn l op e p ee, s r rp p. ~o 2005 9o p lp ns ˆ 2~3 nmp o m. s p o lk p ns ˆ o(4~150 nm; Middleburg et al., 2002)l p p. v l ˆp p p p (Jones and Mullholland, 1998), s vlp lkp p m p vr rp vlp k r rp p p mp p, ovl n rr l rr p p m. e ns ˆp, l p p p 40~60 m v pr p p mk el 60 m p l kv p m. p p r rp lt rp rrp rr 5p el ns ˆp m, m Fig. 5l ˆ l. p rrl el m m p v e k 50~60 m l o mk p tep (Fig. 5). ns ˆp p p r p q m l, l r pr p p, mk k l Fig. 5. Depth profile of dissolved methane concentration in station 5. Water temperature and salinity were also shown together. kv p ˆ. p rp p ns ~p n op r op l n rp np rp npl p sr. rp npp ~p n r m m p n rp qn l p ~l n r. t ~p n m m p p ~p n. p t ml p m p m l p m ˆ. n s ˆp nl mp 1 p m 1 ppt l k 4 r n l m p t. m n s ˆ p (Fig. 6), r rp l ltl p vlp ns ˆp rp npl p p rp sr p p p r pp, MIMS systemp pn ns ˆ rp n p l qp p p rp n p. ˆn ko r m, k r p k 1cml kp 1 10-11 mbar p, kp 1%l p l, p l (Fig. 7). r o 1 cml ˆ k 5 nmpl r - l 8 nm r v m, p r pl

Membrane Inlet Mass Spectrometer (MIMS) edšp pn r ns ˆp r 249 Fig. 6. Relation between water temperature and dissolved methane concentration measured by MIMS. Fig. 7. Dissolved methane concentration (nm) and oxygen signal strength (mbar) during MIMS probe measurement of sediment porewater. Negative depth denotes water above the sediment surface. v l 1 cm p l 12 nm n ˆ. r p 3.5 cml perp v m pm l ns ˆp 9 nm r mp 5 cm v p ov l. 3.5 cm pl v ˆp opp q p lp, r p p sq l p p lp p p (Aller 1980). MIMS probe pn ˆp rp ~ ( ) k Šk l l r l (Sheppard et al., 2005), q l 1500~2500 nm n p p ˆ l. e } r l r q lp, p ˆp t n o(source)p l v pl(kelly et al., 1995; Middelburg et al., 2002) r pl p mp, l 2~3 p l ~. p rp p ˆ p r(methanogenesis)p kp t rp r p m o r prp, m o r j p pl pl k r p (Capone and Kiene, 1988). s l r r pl ˆp l p l, tl lp p p. ˆ ˆp MIMS systemp pn l, r ns ˆp rp e mp, r Žk p rl m p t r npp Žk pp p. p ns ˆ r s p p p ˆv r o r p f p rp pp p. r ns ˆp p ˆ lk l ˆp l p p rp ˆp k(flux)l l m p v, tn r r p (Frans- Jaco et al. 1998). kh MIMS systemp rl n e p kp r, pe p l rp ns d rl l qrp v pl, l l kl pn p. l l l m m m s ˆp ks l eˆ t nkp mp, p p rp MIMS systemp p n ns ˆ rp sd p pl. p m l, lk, r p ˆ r m. k m, m, ˆ dp k s l eˆ ns e rl ns ˆ s l n f m q p p m. rl t m 0.004~0.027 nm k~ e p ns ˆ p 0.13~0.9 % sd n r r rp m. 2005 9o p lp ns ˆ 2~3 nmp o m. e ns ˆp, l p p p 40~60 m v pr p p 60 m p l kv p m. p rp n p l q p p p MIMS systemp rp n pp k pl. r l p ns ˆ d p, r o 1 cm l ˆ k 5 nmpl r - l 8 nm r v m, p r pl v l 1 cm p l 12 nm n p ˆ. r p ns ˆp r p f r l tp

250 k Ë v Ëpq Ë orë v ˆ kl m p l npp p l. m p p qo r l (2 )l p l l p. s p p te p e oo. y, 2002. kvlp tep ˆp qt r l. v v, 23(3): 280 293., 1995. me ~p v m p., 13(4): 354 360. Aller, RC., 1980. Relationships of Tube-dwelling Benthos with sediment and overlying water chemistry. In Marine Benthic Dynamics, Tenore, K.R. and Coull, B.C. (eds.) Univ. S. Carolina Press. 285 310. An, S. and Joye, S.B., 1997. An improved gas chromatographic method for measuring nitrogen, oxygen, argon and methane in gas or liquid samples. Marine Chemistry, 59(1-2): 63 70. An, S., Gardner, W.S. and Kana, T.M., 2001. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometer (MIMS) analysis. App. Env. Micro., 67(3): 1171 1178. Bange, H.W., 2006. Nitrous oxide and methane in European coastal waters. Estuarine Coastal and Shelf Science, 70(3): 361 374. Bange, H.W., Bartell UH, Rapsomanikis S. & Andreae MO. 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeoch. Cycles 8: 465 480. Benstead, J.,Lloyd D., 1994. Direct mass spectrometric measurement of gases in peat cores. FEMS Microbiology Ecology 13(3): 233 240. Capone, D.G. and Kiene, R.P., 1988. Comparison of microbial dynamics in marine and freshwater sediments: Contrast in anaerobic carbon metabolism. Limnol. Oceanogr., 33: 725 749. Cicerone, R.J., Oremland, R.S., 1988. Biogeochemical aspects of atmosphere methane. Global Biogeoch. Cyclces, 2: 299 327. Damm, A. Mackensen, Budéus, G., Faber, E. and Hanfland, C., 2005. Pathways of methane in seawater: plume spreading in an Arctic shelf environment (SW-Spitsbergen). Continental Shelf Research, 25: 1453 1472. Demeestere, K., J. Dewulf, B.D. Witte and H.V. Langenhove, 2007. Sample preparation for the analysis of volatile organic compounds in air and water matrices. Journal of Chromatography, 1153(1-2): 130 144. Frans-Jaco WA, van der Nat, J. Middelburg. 1998. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris Aquatic Botany, 61(2): 95 110. Hartnett, H.E., Seitzinger, S.P., 2003. High-resolution nitrogen gas profiles in sediment porewaters using a new membrane probe for membrane-inlet mass spectrometry. Marine Chemistry, 83: 23 30. Jones and Mullholland, 1998. Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry, 40: 57 72. Kana, T.M., Darkangelo, C., Hunt M.D., Oldham, J.B., Bennett, G.E., Cornwell, J.C., 1994. Membrane inlet mass spectrometer for rapid high-precision determination of N 2, O 2, and Ar in environmental water samples. Anal. Chem., 66(23): 4166 4170. Kelley, C.A., Martens, C.S. and Ussler, III W., 1995. Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography, 40: 1112 1129. Middelburg, J., Nieuwenhuize, Iversen, N., Høgh, N., H. De Wilde, Helder, W., Seifert, R. and Christof, O., 2002. Methane distribution in European tidal estuaries. Biogeochemistry, 59: 95 119. Seifert, R., Delling, N., Richnow, H.H., Kempe, S., Hefter, J., Michaelis, W., 1999. Ethylene and methane in the upper water column of the subtropical Atlantic. Biogeochemistry, 44(1): 73 91. Sheppard, S.K., Gray, N., Head, I.M., Lloyd, D., 2005. The impact of sludge amendment on gas dynamics in an upland soil: monitored by membrane inlet mass spectrometry. Bioresource Technology, 96: 1103 1115. Short, R.T., Fries, D.P., Kerr, M.L., Lembke, C.E., 2005. Underwater Mass Spectrometers for in situ chemical analysis of the hydrosphere. J. Am. Soc. Mass Spectrom., 12: 676 682. Tortell, P.D., 2005. Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry. Limnol. Oceanogr.: Methods, 3: 24 37. Vrana, B., Mills, G.A., Allan, I.J., Dominiak, E., Svensson, K., Knutsson, J., Morrison, G., Greenwood, R., 2005. Passive sampling techniques for monitoring pollutants in water. Trends in Analytical Chemistry, 24(10): 845 868. WMO(World Meteorological Organization), 2005. WMO WDCGG data summary. WDCGG No.29, WMO, 85pp. Yamamoto S., Alcauskas, JB, Crozier, TE., 1976, Solubility of Methane in distilled Water and Seawater. Journal of Chemical Engineering Data. 21(1): 78 80. 2007 7o 16p o r 2007 8o 20p r }ˆ voo: