44(2)-05.fm

Similar documents
<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

44(3)-16.fm

국706.fm

국705.fm

06국306.fm

43(5)-11.fm

44(5)-10.fm

44(5)-03.fm

44(4)-06.fm

44(2)-08.fm

44(2)-11.fm

10(3)-06(021).fm

국9209.fm

국707.fm

12.077~081(A12_이종국).fm

국9409.fm

한1009.recover.fm

43(4)-08.fm

44(2)-02.fm

45(3)-07(박석주).fm

10(3)-02(013).fm

43(6)-07.fm

국8411.fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

국8410.fm

82-01.fm

44-4대지.07이영희532~

64.fm

19(1) 02.fm

국816.fm

44(2)-06.fm

PDF


45(3)-15(유승곤).fm

PDF

45(1)-15.fm

°ø±â¾Ð±â±â

untitled

10(3)-10.fm

45(1)-05.fm

untitled

Áß2±âÇØ(01~56)

43(6)-13.fm

<C0E7B7AEB1B3C0E72DC5E5C5E5C6A2B4C2BFA1B3CAC1F6C0FDBEE02DBFCFBCBA2E687770>

44(2)-14.fm

歯_ _ 2001년도 회원사명단.doc

06국305.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

10(3)-09.fm

00....

Lumbar spine

Microsoft Word _kor.doc

(최준우).fm

16(3)-08.fm

Journal of Korean Society on Water Environment, Vol. 28, No. 2, pp (2012) ISSN ᆞ ᆞ ᆞ Evaluation of Forward Osmosis (FO) Membrane Per

44(1)-13.fm


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

Microsoft Word - KSR2012A038.doc

<31325FB1E8B0E6BCBA2E687770>

Microsoft Word - KSR2012A172.doc

121_중등RPM-1상_01해(01~10)ok

14.531~539(08-037).fm

국817.fm

년AQM보고서_Capss2Smoke-자체.hwp

< C6AFC1FD28B1C7C7F5C1DF292E687770>

국8412.fm

45(2)-14.fm

43(4)-06.fm

26(2)-04(손정국).fm

감각형 증강현실을 이용한

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

Electropure EDI OEM Presentation

04_이근원_21~27.hwp

인문사회과학기술융합학회

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

국906.fm

16(1)-3(국문)(p.40-45).fm

05À±Á¸µµ

16(5)-04(61).fm

43(4)-11.fm

Microsoft Word - KSR2012A132.doc

45(4)-12(송명호).fm

06_(2교)( ) 권용재.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

45(2)-02(최대근).fm

18(3)-10(33).fm


γ

(JH)

02Á¶ÇýÁø

fm

Microsoft Word - KSR2013A320

12-17 총설.qxp

4.fm

,.,..,....,, Abstract The importance of integrated design which tries to i

1

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

국9308.fm

Transcription:

Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006, pp. 187-192 l so j i nsk j/ Œ j m m oo Ç q Ç k Çm *Ç qk** n 151-742 ne k e 56-1 * edš 415-761 e o 14-1 **l CT l 120-749 ne e 134 (2005 7o 19p r, 2006 3o 10p }ˆ) Preparation of Composite Nafion/polyphenylene Oxide(PPO) with Hetropoly Acid(HPA) Membranes for Direct Methanol Fuel Cells Donghyun Kim, Junho Sauk, Hwayong Kim, Kab Soo Lee*Gand Joon Yong Sung** School of Chemical and Biological Engineering, & Institute of Chemical Process, Seoul National Universty, San 56-1, Shinlim-dong, Gwanak-gu, Seoul 151-742, Korea *Environmental System Engineering, Kimpo College, San 14-1, Ponae-ri, Wolgot-myun, Gyounggi-do 415-761, Korea **Center for Clean Technology, Yonsei University, 134, Chinchon-dong, Seodaemun-gu, Seoul 120-749, Korea (Received 19 July 2005; accepted 10 March 2006) k m p (PPO) pn l (HPA)p reˆ rs n q p rs p m. p dšp (PWA)p p (PMA)p PPO p p n l v kp n n l rs m. l l PWA p o n ˆmp PPO p o n p n mp, PPO-PWA nkp o Ž ol r m. p PPO-PWA l m p n l p rs m, rs p pm r m ˆm Œ r l m. PPO-PWA p ˆm s SEM(scanning electron microscopy) EDS(energy dispersive spectrometer) m, p vr ˆm l rv(dmfc)n r v p p e m. PPO-PWA s v p p pn p f DMFC l p ˆm Œ p 66Í tp pl. h Abstract The preparation and characterization of new polymer composite membranes containing polyphenylene oxide (PPO) thin films with hetropoly acid (HPA) are presented. PPO thin films with phosphotungstic acid (PWA) or phosphomolybdic acid (PMA) have been prepared by using the solvent mixture. The PWA and PPO can be blended using the solvent mixture, because PPO and PWA are not soluble in the same solvent. In this study, methanol was used as a solvent dissolving PWA and chloroform was used as a solvent dissolving PPO. PPO-PWA solutions were cast onto a glass plate with uniform thickness. The composite membranes were prepared by casting Nafion mixture on porous PPO-PWA films. The morphology and structure of these PPO-PWA films were observed with scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The composite membranes were characterized by measuring their ion conductivity and methanol permeability. The performance was evaluated with composite membranes as electrolytes in fuel cell conditions. The methanol cross-over of composite membranes containing PPO-PWA barrier films in the DMFC reduced by 66Í. Key words: Polyphenylene Oxide, Hetropoly Acid, Phosphotungstic Acid, PPO-PWA Films, Direct Methanol Fuel Cells, Methanol Cross-over To whom correspondence should be addressed. E-mail: hwayongk@snu.ac.kr 187

188 Ë t Ë nëp Ë tn 1. l rv 2 rvm - r lp, l v v r r l v eˆ tn l v r edšp. l rv p l v r p, rp n p m p p n p n op t p [1-3]. l n l rvp n, dp r q l tp n rrp v pp, ˆmp l n vr ˆm l rv(dmfcs) r k~l p np d edšp l n ro q l rn lv p p. DMFC l ˆmp p ˆ m vr, p ˆmp p l v v }l d, l, qop p p l, DMFC p pp ~r ~ l vop p [4-6]. p DMFCp qrl DMFCp en l v rrp p. p p ˆmp vr q r v p l ˆmp dm (crossover) p. ˆmp dm p r l p ppˆp f r~ l rvp pl ep p [7-9]. l rvl pl q r v p r n p p m p pm q s sp r m n r, r p v qr pv, m p rkp p p ˆmp dm p rr v p l[10,11] ˆm dm p tp p r v l l rp k p. DMFC l ˆm dm p tp o r v rs l p l v l. Kim Yamazaki[12] ˆm Œ tp o ml p d(calcium phosphate)p ~ l r v p rs p rk m, Shao [8]p m k m(pva)p o p n l ˆm dm p tp p ep. Sauk [13]p p p ˆ p pn l DMFC n m/ dˆp p rs m, Hanaka [14]p l Ž - nlž p n l DMFC n t ~ p rs m. (heteropoly acid, HPA) pv el r qn p, ml p k q r v pp p o n l p n v p. p k m p n l p n l n p v p. p l l rvn q r v p p pnl ep km, Li [15]p PVAl PWA ve q r v p rs l m. l l r v p Œ p k q r eˆ o, p dšp (phosphotungstic acid, PWA) p (phosphomolybdic acid, PMA)p q p rs o n n l p reˆ qlp m. ˆm n n l op qlp pl p PPO-HPA p rs m [16-19]. o44 o2 2006 4k l p rp p PWA PPOl re p p n p rs p f rv p ˆm Œ pp t p p. PPO-PWAp s p kp sr rl m, p ˆ o SEM(scanning electron microscopy) n m. pm r m ˆm Œ r m 115 p s l rs PPO-PMA m. 2. 2-1. m (HPA)p dšp (H 3 PW 12, PWA) p (H 3 PMO 12, PMA)p Fluka Chemicalsl mp, p p sep Fig. 1l ˆ l. p HPA rr 300 o C l (calcine)e. m p (PPO, poly-2,6- dimethyl-1,4-phenylene oxide, Aldrich Co) q n m. ˆm(M) (C)p n n m, p rs o p m 15 wtí nkp n m. 2-2. m oo HPAm PPO p n l v k l, n n l pl. l l Lee [16]p l q l rp PPO-HPA p rs m, p Fig. 2l ˆ l. p PPO p o n n m. l l p PWAp kp 0.5 gp reˆ, PPO p o p kp sr l e m., ps l p PMA n l pm m. PWA(0.5 g)p 3mlp ˆml m, 0.9 g p PPO 14~20 mlp nkl p l PWA-M nkp PPO-C nkl l tl, PPO-PWA-MC nkp mr v ltl. o Ž ol PPO-PWA nkp p rs mp, PPO-PWA p k ml seˆ, o Ž p o /lˆm k( 1:1)kl 10 k. p 3~4 µm m. p PPO-PWA ol m nkp pn l p r s pl. PPO-PWA p o Ž ol, m Fig. 1. Chemical structure of (a) H 3 PMo 12 (PMA)/H 3 PW 12 (PWA), (b) poly-2,6-dimethyl-1,4-phenylene oxide(ppo).

p ~ p rs 189 Fig. 2. Preparation procedures of Nafion / PPO-HPA composite membranes. p l. o Žp 80 o C m l 8e k se, s rp v ˆp m l r se. n mr v eˆ, m v mr PPO-PWA p. l p p lt o Žp p p l. p 80 o C, 0.5 Mp H 2 SO 4 (98Í, Aldrich)p 1e k } tp qn ˆ eˆ pl, ql p r o rs p 80 o C p v l 1e k. p m nkp kp sr l d rl p l. rs PWA-PPO p 3~4 µmp, m/pwa- PPO p 100±5 µm p. 2-3. m Š SEM(FE-SEM, JSM-6700F)p n l PPO-PWA p ˆ r p m. r p o p Pt p. rs PPO-PWA p l dš o p p o l EDS p ee m. pm r ml AC r p d (EG&G model 273A potentiostat/galvanost) n l r m. AC rkp v p 10 mvpmp, l l 4-ˆ p n l l r r p r m. l ˆm Œ pp vr k p pn l ml r m. ˆm Œ pp r (NAR-3T, ATAGO) r l m. p ˆm Œ pp, e l v Œ ˆmp v m. 2-4. ns l rv l r v p p d m. r s l k p p p - r 125 o C, 13.8 MPap k l 2 k mk l rs m [20]. r p v p 4.0 mg/cm 2 p E-TEKl l n m. l rv s p ˆmp 2M, q m 80 o C, k p pp k p 2 kgf/cm 2 plp, p o p v o sr (300 ml/min) sr m. 3. 3-1. PPO-PWA m Š FE-SEM vp l PPO-PWA rp ˆ r m. Fig. 3l PPO-C nkl p Fig. 3. Scanning electron micrographs of (a) 14 ml, (b) 16 ml, (c) 18 ml, (d) 20 ml, amounts of chloroform on PPO-PWA-MC films. kp 14~20 ml eˆ rs PPO-PWA-MC p SEM p v ˆ l. p kp 12 ml p l p rs v p, 14 ml p l p ˆ m. p ˆr p n p v pl p p l, l s v plp, ƒ vp Fig. 4l ˆ l [21]. rs p p kp 14 ml p p q p r l, 16 ml p q p mp, 16 ml p p nl e s p v rs l. Fig. 5(a)l p 16 ml n mp np PPO- Fig. 4. Model for pore formation and PWA distribution through PPO-PWA. Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006

190 Ë t Ë nëp Ë tn Fig. 5. (a) EDS spectra of PPO-PWA thin films, (b) Cross-sectional EDS image of PPO-PWA thin films by mapping on tungsten(w). PWA l dšp EDS p lt. dš n 1.4, 1.8, 2.1 KeVl ~ l, p p l dšp sq ppp ˆ. Fig. 5(b)l EDS PPO-PWA p dš ˆ l. p p dšp r~l ~ p ppp p p l PWA q lpp k pl. PMA-PPO p mp l 30e p v ph r m. p ph 5.4m, 30e p v ph r ll p k, PMA n p v k rp r lpp k pl. Fig. 6p rs PPO-PWA l m nkp pn l p v rv ee p. rv Fig. 3p ˆ v p kp 16 mlp q sp p ˆ p, p p k p rp n, pl v p m. p p r s PPO-PWA p ˆ l p p lv, p s, r p 16 mlp p ~ PPO-PWA pn m l p n q sp p v p p. q p sk 16 ml p 0.35 Vl 120 ma r p m 115m kp, v m 115 lv p m. Fig. 7p p dšp p p pn l r PPO-PWAm PPO-PMAp ˆ p. p p s l rs l. p } PPO-PMA p s PPO-PWAp s s p p p pl. 3-2. mj n j j ˆ PWAm PMAp pm r ˆm Œ Table 1l ˆ l. p p p d p m 115m m. m 115l p pm r 0.0385 S/cmm, PWA, PMA pn p m 115 p pm r v, PWA PMA p pm r m. p rs p ˆ l p p, PPO-HPAp s p p p l p p k r p, Fig. 6l p } PPO-PWAp s PPO- PMAp sl p p v k, sp p l r p v e pm r l. Fig. 6. Effect of various amounts of chloroform in composite membranes on performance of single-cell DMFC at 80 o C. o44 o2 2006 4k Fig. 7. Scanning electron micrographs of (a) PPO-PMA, (b) PPO- PWA films.

Table 1. Comparison of ion conductivity and methanol permeability of composite membranes at room temperature Type of membranes Ion Conductivity (S/cm) p ~ p rs 191 Methanol Permeability (cm 2 /s) Nafion 115 0.0385 3.29 10 6 Nafion/PPO-PMA 0.0341 2.01 10 6 Nafion/PPO-PWA 0.0272 1.12 10 6 l r lpp k pl. rv q p s v 16 mlp p n l p rs mp 0.35 Vl 120 ma r q p p m p, p m 115m p tpl. p s l p p p ˆ. PWA PMAl p v, PPOl re p rs n s PMA p s p p o, ˆm Œ m 115 66Í tmp, pm r le e rv p v. PMA pn l p rs n pmr eˆv kp ˆm Œ 39Í e m 115 rv p ˆ. PMAm PWA HPA pn l p rs n, ˆm Œ r e m 115m p rv lp pl. y Fig. 8. Single cell DMFC performance of composite membranes at 80 o C. ˆm Œ le m 115 3.29 10 6 cm 2 /s q k, PPO-PMA 39Í l 2.01 10 6 cm 2 /s, PPO-PWA 66Í l 1.12 10 6 cm 2 /s m. p le p m p p n s v PPO-PWAp n p ˆm Œ v p k pl. 3-3. ns 80 o Cl PPO-PMA, PPO-PWA p DMFC p m 115m l Fig. 8l e m. l ˆ p PPO-PMA p 0.35 Vl 160 ma m 115 33Í p p p m, PPO-PWA p m 115m p p m. p PPO-PMAp pm r m v, ˆmp dm p r e ˆm Œ m 115 39Í l rv p p. PPO-PWAp nl ˆm Œ r lv, p m r le k rv p p pv. 4. PWA PPOl re p rs, pl m nkp n l p rs m. p s n t PPO p p kp sr p f d rl pl. rs p SEM EDS, 16 mlp p n mp n q p s v, PWA q 1. Smitha, B., Sridhar, S. and Khan, A. A., Synthesis and Characterization of Proton Conducting Polymer Membranes for Fuel Cells, Journal of Membrane Science, 225(1), 63-76(2003). 2. Appleby, A. J. and Foulkes, F. R., Fuel Cell Handbook, Van Nostrand Reinhold, N.Y., 3-7(1989). 3. Yu, J., Yi, B., Xing, D., Liu, F., Shao, Z. and Fu, Y., Degradation Mechanism of Polystyrene Sulfonic Acid Membrane and Application of its Composite Membranes in Fuel Cells, Journal of Power Sources, 4937, 1-6(2002). 4. Jörissen, L., Gogel, V., Kerres, J. and Garche, J., New Membranes for Direct Methanol Fuel Cells, Journal of Power Sources, 105(2), 267-273(2002). 5. Kordesh, K. V., 25 Years of Fuel Cell Development, J. Electrochem. Soc., 125(1), 77-91(1978). 6. Vielstich, W., Lamm, A., Gasteiger, H. A., Handbook of Fuel Cells, John Wiley & Sons Ltd., England(2003). 7. Scott, K. and Taama, W., Performance of a Direct Methanol Fuel Cell, J. Appl. Electrochem., 28(3), 289-297(1998). 8. Shao, Z.G G., Wang, X. and Hsing, I. M., Composite Nafion/ Polyvinyl Alcohol Membranes for the Direct Methanol Fuel Cell, Journal of Membrane Science, 210(1), 147-153(2002). 9. Cruickshank, J. and Scott K., The Degree and Effect of Methanol Crossover in the Direct Methanol Fuel Cell, Journal of Power Sources, 70(1), 40-47(1998). 10. Dimitrova, P., Friedrich, K. A., Stimming, U. and Vogt, B., Modified Nafion -Based Membranes for Use in Direct Methanol Fuel Cells, Solid State Ionics, 150(1), 115-1221(2002). 11. Dimitrova, P., Friedrich, K. A., Vogt, B. and Stimming, U., Transport Properties of Ionomer Composite Membranes for Direct Methanol Fuel Cells, Journal of Electroanalytical Chemistry, 532(1), 75-83(2002). 12. Kim, Y. S. and Yamazaki, Y., Low Methanol Permeable and High Proton-Conducting Nafion/Calcium Phosphate Composite Membrane for DMFC, Solid Stete Ionics, 176(11), 1079-1089(2005). 13. Sauk, J., Byun, J., Kang, Y. and Kim, H., Preparation of Nafion/ Polystyrene Composite Membranes Using Supercritical CO 2 Impregnation for DMFCs, Korean Chem. Eng. Res., 42(5), 619- Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006

192 Ë t Ë nëp Ë tn 623(2004). 14. Hatanaka, T., Hasegawa, N., Kamiya, A., Kawasumi, M., Morimoto, Y. and Kawahara, K., Cell Performances of Direct Methanol Fuel Cells with Grafted Membranes, Fuel, 81(17), 2173-2176 (2002). 15. Li, L., Xu, L. and Wang, Y., Novel Proton Conducting Composite Membranes for Direct Methanol Fuel Cell, Materials Letters, 57(8), 1406-1410(2003). 16. Lee, J. K., Song, I. K. and Lee, W. Y., Design of Novel Catal Yst Imbedding Heteropoly Acids in Polymer Films: Catalytic Activity for Ethanol Conversion, Fuel Journal of Molecular Catalysis A: Chemical, 120(1), 207-216(1997). 17. Kozhenvnikov, I. V. and Matveev, K. III., Homogeneous Catalysts Based on Heteropoly Acid, Applied Catalysis, 5(2), 135-150 (1983). 18. Song, I. K., Lee, J. K. and Lee, W. Y., Preparation and Catalytic Activity of H 3 PMo 12 -Blended Polymer Film for Ethanol Conversion Reaction, Applied Catalysis A, 119(1), 107-119(1994). 19. Okuhara, T., Mizuno, N. and Misono, M., Catalytic Chemistry of Heteropoly Compounds, Adv Catal, 41, 113-252(1996). 20. Sauk, J., Byun, J. and Kim, H., Grafting of Styrene on to Nafion Membranes Using Supercritical CO 2 Impregnation for Direct Methanol Fuel Cells, Journal of Power Sources, 132(1), 59-63 (2004). 21. Lee, H. Y. and Song, I. K., Design of Heteropolyacid-imbedded Polymer Films and Catalytic Membranes, HWAHAK KONGHAK, 38(3), 317-329(2000). o44 o2 2006 4k