w œwz, 47«2y 2010 Textile Science and Engineering Vol 47, No 2, 2010 PET xk Á x w» Áq œw (2010 1 23 /2010 4 9 k) Dyeing Behaviors of a Disperse Dye on Ultra-micro PET Fibers Hyeon Tae Cho and Hun Lee Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 156-743, Korea (Received January 23, 2010/Accepted April 9, 2010) Abstract: Wide range of fineness of ultra-fine denier PET filaments (02~001 denier per filament) were prepared and the effects of fineness on the dyeing properties of a disperse dye (CI Disperse Blue 56) were studied The equilibrium study of the disperse dye on the fibers at various concentrations showed that the isothermal absorption was Nernst type and that the equilibrium adsorption of the dye increased with the increase in fiber fineness Dyeing rate of the dye increased with the decrease in fiber fineness The apparent diffusion coefficient of the dye in the ultra-fine denier fibers decreased when the fiber fineness increased because of the limited dye liquor turbulence through the compactly assembled filaments in the ultra-fine denier yarn The temperature dependence of dye diffusion decreased with the fiber fineness Keywords: ultra-fine denier, PET, disperse dye, isothermal adsorption, diffusion 1 (denier per filament, dpf)ƒ 03 w ew»ƒ ƒ š t ƒ,,, w p w p ƒ ƒ š» j w jš» ƒw» w w p y w, n š, silk like s š yƒ t»w ƒw t w w xw» w v w ƒ š [1]» w» w ƒw s l w w [1,2] ù»» Correspondence to Hyeon Tae Cho (choht@ssuackr) 2010 The Korean Fiber Society 1225-1089/2010-2/077-08» w» Nernst type w Nakumara Shibusawa k Langmuir type Nernst type w Dual-mode type w š[3-5], ƒ ƒw ù ƒ w Dual-mode type Langmuir type w š w Park [6,7] 022 dpf PET Langmuir type š w ƒ»»ƒ w ey ƒw š y w ƒw w [8] ù w PET w w w w x ww ƒ» PET j ù w» PET w š,» y y 2 x 21 s l w x (sea-island type PET microfiber) 02, 006, 001 dpf(denier per filament) ü 77
78 xká x Table 1 Yarn composition of the samples Type Sample Yarn (denier/ filament) No of island Sea/ island ratio Denier per filament (dpf) Mono type Sample 1 75/144 - - 05 Sea-island type Sample 2 75/36 7 2:8 02 Sample 3 75/24 36 3:7 006 Sample 4 75/16 169 5:5 001 Figure 1 Alkaline dissolution process of sea-island type PET ultra-micro fibers K l œ w ü H l s l 05 dpf œ w ƒƒ Hot Draw Knitter(HDK-DFT, Lawson- Homphill) w yr single jersey r w x w p Table 1 ùkü 22 w» w 95 C o 05, 1, 15, 20, 25% NaOH w x w 3, 5, 10, 15, 20, 25, 30, 35, 40 w ƒ» d w r Figure 1 v ùkü 23 e w w w e z d w w w w w w z w y wš Scanning Electron Microscope(JSM-6360A, JEOL ) w mw k d w 24 sx x w 002 g, ( : CI Disperse Blue 56) 200 ml, 001, 002, 003, 004, 006, 01 g/l IR-Dyeing machine(di-6000, k, w ) w w 90 C k k n wš w o 130 C¾ o w sx x m w 10 w y w 600 ww z m 1 2z w š wš w z Auto-Dessicator Cabinet(SA0001, Sanplatec, Japan) 2 g d w 002 g, 200 ml, 01 g/l IR-Dyeing machine w w y mw d w» w 0, 5, 10, 30, 50, 100, 300 y g sp þ ƒ ú yw» w þ g z sx w ww 25 d w» w N,N-dimethylformamide(DMF) 40 mlƒ š w 90 C 20 w o w DMF w w w t wš Dyemax M System(Dyetex Engineering, w ) w ƒ l q 614 nm w l w Ÿ l Beer e w w 3 š 31 w w x w ƒƒ PET e w PET w» PET» w e w PET w w ü w x w w x w» ƒƒ w» PET y w w w NaOH PET w NaOH,, ùkù [9,10] 95 o C w e wš w Figure 2 ùkü e ƒ ƒw w œwz, 47«2y 2010
PET 79 Figure 2 Alkaline dissolution behavior of sea-island type PET ultra-micro fibers at 95 o C (a) 02 dpf, theoretical dissolution 20%, (b) 006 dpf, theoretical dissolution 30%, and (c) 001 dpf, theoretical dissolution 50%U ƒw w NaOH w y x w y j» NaOH ƒ ƒw j»ƒ y e w PET enƒ w š ù û NaOH y j»ƒ f enƒ w w š w w w 02, 006, 001 dpf NaOH ƒ ƒw y w w r z r ƒ» w NaOHƒ š w w z w» š w š NaOH w» yw» š w w ³ w» w» w š NaOH, w š w 1% NaOH 02 dpf 13, 006 dpf 19, 001 dpf 24 w w z x v w v w 32 e w w w w w y w e z d w w w w SEM mw k y w, z ep w sx w d w [11] Figure 3 e z SEM e 02 dpf w ƒ w ƒ š 001 dpf w ƒ e» ƒ 02 dpf w v p» Table 1 ù 75 denier 36 filament 2denier š 001 dpf w 75 denier 16 filament 46 denier» ù e mw w z v p ƒ yƒ y 001 dpf w ƒ ƒ ƒ» wr w z w z ƒ y y w e mw w yw y w mw w e ww y w š 3000 š SEM ƒ dpf d w z y w Table 2 ƒ e SEM mw de ùkü Textile Science and Engineering, Vol 47, No 2, 2010
조현태 이 헌 80 Average radius of the samples measured by SEM photograph Radius (µm) Denier per filament (dpf) Theoretical Measured 05 350 580 02 225 258 006 110 141 001 075 110 Table 2 SEM images of sea-island type PET ultra-micro fibers before and after alkali treatment Figure 3 Changes of sorption isotherms of CI Disperse Blue 56 on PET micro fibers of different radius at various temperatures Figure 4 등온흡착평형 섬유에 분산염료를 염색하는 경우는 비이온성 피염 물에 비이온성 염료의 염색에 해당된다 현재 인정되는 염 색기구는 염액에서 염료가 고체상 및 용해상의 두 가지 형 태로 존재하며 염욕 내에 섬유가 존재할 때는 염료의 용 해도와 섬유에 대한 친화력에 의해 평형상태가 결정된다 염료 고체상 염료 용액상 염료 섬유상 용해성 친화도 33 PET, ( ) ( ) ( ) 즉 분산염료에 의한 염색은 단분자 용액 으로부터 섬유 내로의 염료분자의 이동에 의해 일어난다 이 염색계는 가 역적이고 등온흡착 거동은 일반적으로 직선형태를 보인다 는 해당 염색온도에서 무한염욕조건으로 평형상 태에 도달할 때까지 염색을 진행하여 얻은 등온흡착선이다 섬유에 흡착된 염료의 양이 증가하는 부분의 등온식이 직 선이므로 염욕내의 염료의 양에 대한 흡착된 염료의 양의 ( ) Figure 4 한국섬유공학회지 제 권 제 호, 47 2 년 2010
PET 81 Figure 5 Maximum dye concentration (C fmax, g/kg) of CI Disperse Blue 56 on PET micro fibers of different radius at various temperatures K ùký K = C f /C b», C f : C b : ü ƒw ƒ ƒ w w ƒ ƒw ƒw ù ƒ ƒw ƒw z ƒw w w» ƒ ƒw» w p x w ƒ ƒw w w ƒ g w ƒ ƒw» w X ü w w ùkü š s ƒ sy p x w w w w yw s s³j»ƒ w w ƒ w š ƒw ù w Figure 5 ƒƒ» C f,max ùkü»ƒ ƒ ƒ ƒw ƒ» t ƒw» sx w ƒw w w wr»ƒ y y ƒ j ùkû (1) Figure 6 Partition coefficient of CI Disperse Blue on PET micro fibers of different radius at various temperatures 34 (1) w» r»ƒ w ƒw w ü w ƒ w»ƒ w t ƒw» ƒw w sye»ƒ w t j w j ù w w t ƒ ƒw w ƒw w Figure 6 š»» w w K ùkü w» t ƒ K ƒw 35 ƒ ü ƒ š t w, t ƒ, ƒ ü y ƒ» y ³e w w w x [1] ƒ t ƒ ü y ƒ ƒ w ƒ w š {» d w» w t M t d w sx w sx Má w w š t w Textile Science and Engineering, Vol 47, No 2, 2010
82 xká x Figure 7 Rate of dyeing curves of CI Disperse Blue 56 on PET ultra-micro fibers of different radius at various temperatures w Figure 7 ùkü,» û 1 ƒ¾, sx w w»ƒ w»»ƒ ƒw sx w,»ƒ w ƒ w» t ƒw ƒ sx w wr ƒ 100 o C 130 o C ƒw»»»ƒ ƒw ƒ ƒ ƒ sx w (2) ùký [12,13] M = M t 1 exp( k t) w, M t ln 1 M ------- [ ] = k t», M t : t Má : sx w (2) (3) Figure 8 Changes of dyeing rate constant(k) of CI Disperse Blue on PET ultra-micro fibers with the radius and dyeing temperature k : t : ln(1 M t /Má) t w w»»ƒ k w œwz, 47«2y 2010
PET 83 Table 3 Rate constant (k) and time of half dyeing (t 1/2 ) of CI Disperse Blue 56 on PET ultra-micro fibers of various radius Radius (µm) Rate constant Time of half dyeing (k 10 3 ) (min) 100 o C110 o C120 o C130 o C100 o C110 o C120 o C130 o C 580 147 344 1195 1689 1245 653 518 363 258 299 464 1519 2580 966 620 446 316 141 622 671 2874 3778 671 494 292 259 110 739 853 3142 5943 540 455 270 226 Figure 8 ƒ 100 o C, 110 o C, 120 o C, 130 C o k ùkü»ƒ ƒ k ƒw š» ƒ ƒw ƒ ƒw ƒ ƒw Table 3 ƒ» k t 1/2 ùkü ƒw w y w 36 y t M t y D (4) [14] M t ------- = 1 M n = 1 4 2 ---------- exp( a 2 Dα 2 nt) α n», M t : t Má : sx w a : α n : Bessel w J 0 (aα n )=0 j (4) w y» y š w (4) tƒ» (5) Crank ùký [14,15] M t ------- 4 D t 1 2 = ---------- M π r 2 w t M t» y (5) w Figure 9 t 1/2 w M t /Má»» l w y ùkü»ƒ w y w w»ƒ 25 dpf 02 dpf» y w [4-6]»ƒ w t ƒw y w ƒw w ù 007 dpf w (4) (5) Figure 9 Changes of diffusion coefficient of CI Disperse Blue 56 on PET ultra-micro fibers with the fiber radius and dyeing temperature x w [7] w x y ƒ û ùkü»ƒ w t ƒ ƒ ƒw ù y t ü w y ƒ t w w w [16]» y œ w, yƒ ƒ ƒ t ƒw w šù z v p œ x w œ y»ƒ» y ƒ w x w w 001 dpf(110 µm) w» y j w 4 x ƒ sea-island type 001 dpf 006 dpf, 02 dpf 05 dpf PET» y y w»,,, y y mw 1 PET w sx š Nernst type y w 2»ƒ w t ƒz w ƒw 3»ƒ w t ƒ w Textile Science and Engineering, Vol 47, No 2, 2010
84 xká x ƒ ƒw 4»ƒ w t ƒ w ƒ ƒwš sx w 5»ƒ w ƒ w t ƒw w œ w y w» y ƒ w y»ƒ ƒ w š x 1 K L Georgiadou, E G Tsatsaroni, I C Eleftheriadis, and A H Kehayoglou, Disperse Dyeing of Polyester Fibers: Kinetic and Equilibrium Study, J Appl Polym Sci, 2002, 83, 2785-2790 2 G Jerg and J Baumann, Polyester Microfibers : A New Generation of Fabrics, Text Chem Color, 1990, 22, 12-14 3 T Shibusawa and Y Chigira, Dual-Mode Sorption of Nonionic Azo Dyes by Nylon 6, J Polym Sci, Part B, Poly Phys, 1992, 30, 563-568 4 T Nakamura, S Ohwaki, and T Shibusawa, Dyeing Properties of Polyester Microfibers, Text Res J, 1995, 65(2), 113-118 5 T Nakamura, R R Bommu, Y Kamiishi, and T Shibusawa, Dyeing Properties of a Polyester Ultra-fine Fiber, Text Res J, 2000, 70(11), 961-968 6 K H Park, M Casetta, and V Koncar, Diffusion of Disperse Dyes into Microfibres and Conventional Polyester Fibres, Color Technol, 2002, 118, 319-324 7 K H Park and V Koncar, Diffusion of Disperse Dyes into Super-microfibers, Color Technol, 2003, 119, 275-279 8 S Dhouib, A Lallam, and F Sakli, Study of Dyeing Behavior of Polyester Fibers with Disperse Dyes, Text Res J, 2006, 76(4), 271-280 9 K D Houser, Caustic Reduction of Polyester Fabrics, Text Chem Color, 1983, 15, 70/37-72/39 10 A A M Gorrofa, Caustic Treatment of Polyester Filament Fabrics, Text Chem Color, 1980, 12, 83/33-87/37 11 J Koh, Alkaline Dissolution Monitoring of Sea-island Type Polyester Microfibre Fabrics by a Cationic Dye Staining Method, Color Technol, 2004, 120, 80-86 12 T Shibusawa, Polynomial Approximations Describing Rate of Dyeing from a Finite Bath, J Soc Dyes Color, 1980, 96, 293-296 13 T Shibusawa, The Mathematical Expression of Rate Constants in Empirical Rate of Dyeing Equations in Disperse Dyeing, J Soc Dyes Color, 1988, 104, 28-33 14 J Crank, The Mathematics of Diffusion, 2nd Ed, Clarendon Press, Oxford, 1975, pp47-49 15 J N Etters, Diffusion Equations Made Easy, Text Chem Color, 1980, 12, 140-145 16 I D Ratte and M M Breuer, The Physical Chemistry of Dye Adsorption, Academic Press, London, 1974, pp105-112 w œwz, 47«2y 2010