45(4)-14(양지원).fm

Similar documents
<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

44(3)-16.fm

10(3)-02(013).fm

44(5)-10.fm

국706.fm

82-01.fm

국705.fm

10(3)-06(021).fm

44(2)-08.fm

43(5)-11.fm

45(3)-07(박석주).fm

한1009.recover.fm

국9209.fm

43(4)-08.fm

44(2)-06.fm

44(5)-03.fm

44(4)-06.fm

국9409.fm

제 1 장 서 론 1. 연구 배경 및 목적 환경부는 토양오염이 우려되는 지역에 대한 적극적인 조사와 정화를 추진하기 위해 2001년 3월 토양환경보전법을 개정하여 측정망 중심의 토양오염 관리체 계를 토양오염조사 중심 체계로 개편하고, 토양오염원인자의 정화책임을 대폭 강

06국306.fm

44(2)-11.fm

03-ÀÌÁ¦Çö

04_이근원_21~27.hwp

~41-기술2-충적지반

DBPIA-NURIMEDIA

10(1)-08.fm

국906.fm

untitled

121_중등RPM-1상_01해(01~10)ok

( )-83.fm

개최요강

국816.fm

43(6)-07.fm

03-서연옥.hwp

( )국11110.fm

16(3)-08.fm

1

00내지1번2번

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

Microsoft Word - KSR2012A038.doc

03-2ƯÁý -14š

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

44(2)-02.fm

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

년AQM보고서_Capss2Smoke-자체.hwp

45(2)-02(최대근).fm

44(1)-13.fm

433대지05박창용

Lumbar spine

04김호걸(39~50)ok

특허청구의 범위 청구항 1 Na-알지네이트(Na-alginate), 합성 제올라이트(synthetic zeolite)와 분말활성탄(powdered activated carbon) 을 혼합하여 2 ~ 6 %의 CaCl 2 용액에서 경화시켜 만들어진 직경 1 ~ 5 mm의

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

2 수자원 광역 상수도 평균 가동률 지속적 감소 에너지 낭비 주요 원인으로 지적 서는 더욱 심각하다고 말했 이런 불확실하고 비효율 적 운영으 로 최근 지자체 공무원들을 대상으로 국회 예산처가 조사한 설문에서 지자체 공무원들 중 7.1% 만 이 원수요금 이 저렴하 다 라

PDF


<C0FCC3BC28C0DAB7E1C6ED5FC1A6BFDC292E687770>

16(4)-05.fm

Microsoft Word - KSR2012A103.doc


µµÅ¥¸àÆ®1

국9308.fm

38(6)-01.fm

(최준우).fm

<B8F1C2F72E687770>

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

09구자용(489~500)

09권오설_ok.hwp

Æ÷Àå½Ã¼³94š

02Á¶ÇýÁø

09È«¼®¿µ 5~152s

사단법인 커뮤니케이션디자인협회 시각디자인학회

歯kjmh2004v13n1.PDF

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

44-4대지.07이영희532~

국707.fm

untitled

10 (10.1) (10.2),,

Microsoft Word _kor.doc

44(2)-14.fm

¹ýÁ¶ 12¿ù ¼öÁ¤.PDF

03신경숙내지작업

국8411.fm

Microsoft Word - KSR2012A172.doc

<313120B9DABFB5B1B82E687770>

19(1) 02.fm

2 I.서 론 학생들을 대상으로 강력사고가 해마다 발생하고 있다.범행 장소도 학교 안팎을 가리지 않는다.이제는 학교 안까지 침입하여 스스럼없이 범행을 하고 있는 현실 이 되었다.2008년 12월 11일 학교에 등교하고 있는 학생(여,8세)을 교회 안 화장 실로 납치하여

[수도권대기환경청 소식] 1. 제10차 수도권 대기환경정책 연구회 년도 1/4분기 직장교육 26 제5절 환경용어 해설 교토메카니즘(Kyoto Mechanism) 라돈(Rn) 배출가스 재순환장치(EGR, Exhaust G

04-다시_고속철도61~80p

<BCF6BDC D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>

< D3135C8A35FC3D6C1BEBCF6C1A4BABB5F E687770>

°ø±â¾Ð±â±â

Microsoft Word - KSR2013A291

45(4)-12(송명호).fm

12(3) 10.fm

< B3E2BFF8BAB828C8AFB0E629312E687770>

<23C0B1C1A4B9E65FC6EDC1FDBFCFBCBA E687770>

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010


10(3)-12.fm

Transcription:

Korean Chem. Eng. Res., Vol. 45, No. 4, August, 2007, pp. 311-318 { ji h k hsk Çmls o 305-701 re o 373-1 (2007 6o 5p r, 2007 6o 6p }ˆ) Status of Soil Remediation and Technology Development in Korea Ji-Won Yang and You-Jin Lee Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea (Received 5 June 2007; accepted 6 June 2007) k p rp Škmm v pp, mm vp v q p Škmmp p o o np p r. n l Šk mml r ep v l 1990 t Šk m op o r}rp o p mmšk o lp v p. mmšk o p } o oo oo, mmop r l r, r, lr p. l ~ ~ v, p o mm vll o lp ee p o v p mm p q~l rp } pl p l v k pv p p. p o ll q r p pv Škv, r p oo r p n l. l ~ p p l r Šk o p l v tp, p l p m q r p pn o, p o p p. prp mmškp op o mm v mm vp p l l p q rn p lk, l Škl pe m p o v rp p n. h Abstract Soil contamination in Korea has been accelerated every year. Because of their persistence and cumulative tendency in the environment, soil contaminants have potential long-term environmental and health concerns and it is estimated to cost enormous expense for clean-up. Korea government has legislated the law on conservation of soil environment in mid 1990s, and managed and treated hazardous wastes in contaminated sites as a remediation policy since then. Soil remediation technologies are classified into in-situ/ex-situ or biological/physico-chemical/thermal processes according to applied places or methods, respectively. In Korea, clean-up of polluted sites has been mostly carried out at military areas, railroad-related sites and small-scale oil spilt sites. For these cases, in-situ remediation technologies such as soil vapor extraction (SVE) and bioventing were mainly used. In recent days, an environmental-friendly soil remediation emerged as a new concept - for example, a new soil remediation process using nanotechnology or molecular biological study and an integrated process which can overcome the limitation of individual process. To have better applicability of remediation technologies, comprehensive understandings about the pollutants and soil characteristics and the suitable techniques are required to be investigated. Above all, development of environmental technologies based on the sustainability accompanied by public attention can improve soil environment in Korea. Key words: Soil Contamination, Remediation Technology, Pollutant, Clean-up 1. Škp p e p k rp ol pl q p, v rl k p p s p o To whom correspondence should be addressed. E-mail: jwyang@kaist.ac.kr p, r r p p. rp ˆ ov pv r p n r p e l mmp v. Škl p mmp l } v o pp e p v mm, v mm, mm p 2 mmp k l p~ ˆ l v rp m p p. 311

312 kvoëpov Škp p mmp v r rp n q l n p np n p p. mmp p l v k m p q tn, p mm Škl mmop ˆl pr r p rnp tn. Škp (Šk pq), k (Šk, n k~), (Šk )p k v l pp p vp p el l Šk mmp lk. Škmml r ep v mmškp o l n p v l, n l 1995 Šk r p rr Šk mm vm mmšk ol l m lp r}rp v l m. q 16sp Škmm vp vr p, p Šv pn ˆl mm tp p Š p. r rp mmeˆ Ž kp o Šk r Škmm o e ee kp v p. p l Šk r r e mmšk e r m q} r p l Škp r } l r o p l s rp ~ rp Šk o p v tp [1]. pm p Šk r p rr rl p l r r r p lp, vp mm} n l vrrp tv k q l ~ rrp ˆ Škmmp mm r v pl p o p e. n l 1994 r ol Šk r p eq mp, 1980 p o lp eq v l kv v tp l r pp v p p p v mm l p n. l n p Škmm o lp l qp o l Žk p f r p mmškp op o n k l p q m. 2. hji tn Škmmo mm vp Table 1. l s p Škmm r vlp t mmp teplp, l ~ lp o l p mmp r p. Šk l p p r p l p p, t p n t Šk Š l r pp, o p Šk e v l v Šk v mmeˆ p p ˆ [2]. n l t 6s(,,, p,, 6 ) o (BTEX(bezene, toluene, ethylbenzene, xylene)p o ˆ p TPH(total phetroleum hydrocarbons)), o p, PCB(polychlorinated biphenyls),, ek p 11 p Škmm v vr l p rp } q, kl,, TCE(trichloroethylene), PCE(tetrachloroethylene) p l 16sp vr l p. l r Škl mm Žk mm n vll mmeˆ s l Škmmp m mmškp r Šk r }p o q n o l Šk r p nm Škmm eˆs ee p. 2005 Šk r eˆs, r rp r Škmm Škmm n tp v kkp, 2001 l e vr Ni, Zn, F r ˆ., s v r 3,902vr t, 56vr(1.4%)l Škmm n tp m, mm v Ni 19vr, Cu 17vr, Zn 12vr, As 9v r t p v pp p p ˆ p, p l TPH 3vr, BTEX 2vrp n tp m [3]. Škmmp mmškp v m r v k p p p ll p vlp mm r l mmp l p p v k n p er Škmm e p r. Škmmp o p p e v v, o o v rqe, vl, t vlp p, vp n np s vt 81.6%l } pv kp, v rq o e p nl rp k 23% el p p k r p [4]. q v s 29 p t v t 26 (k 90%) q n nn l p mm p p lp n p mmp p e p r [5]. pm p e p rp Š kmm p pn l r, Škmm e v lp 2,432~7,427 p p, p vlp rp 7,649~7.958 ha p p p m [4]. p l le vlp Š kmmp v k pl r p Škmm p j p p. l m l rr l Škmm v pp, 2002~2005 Šk v mm q ˆ p r 2015 2020 l mm n v Table 1. Soil pollutants and pollution sources Pollution sources Origin of pollution Pollutants Refining and storage of petroleum Corrosion and leakage of pipes and BTEX, TPHs, PAHs, PCP etc. hydrocarbons storage tanks Storage tanks of toxic chemicals Corrosion and leakage of pipes and storage tanks VOCs, PAHs etc. Industrial area o45 o4 2007 8k Corrosion and leakage of pipes and storage tanks TPHs, chlorinated organic compounds (TCE, PCE, 1,1,1-TCE etc.), Raw chemicals (Toluene, Phenol etc.), heavy metals (Cd, Pb, Cr 6+, As, Hg etc.) Landfill site Landfill leakage Organic compounds, heavy metals, VOCs etc. Incineration plant Exhaust gas, incineration ash Dioxin, PAHs heavy metals (Pb, Cd etc.) Abandoned mines Mine tailing, mine water Mine tailing: heavy matals Mine water: heavy metals, acid wastewater Military site landfill, oil leakage, training field BTEX, PAHs, heavy metals etc.

p m [5]. p o o pr v v m mšk v r l 5,000l op np n p [5] 8,062l o~2s 1.395l op np n p m [4]. p p rp o o r}r p e erp. 3. k m p Š mmšk o p s n k, rp mmšk o Table 2m. o p mmškp } o l oo (in-situ)m oo (ex-situ) l v, mmp p v o mm v m m vp r. oo r p mmškp l p e } } rp p np, p l p np n rl v p k e m mp p o p p. pl oo p mm Škp ql vr } t p mm vp p r n oo l r p. q Škp v l p r pp r pp v m p n. p p mmop r l r, r, l r p. lr } p r l Šk p ml e p l Šk tl o l Table 2. Soil remediation technologies [6] Class Remediation technology In-situ technology Ex-situ technology Biological Physical/chemical Bioventing Enhanced biodegradation Natural attenuation Phytoremediation Chemical oxidation Electrokinetic separation Fracturing Soil flushing Soil vapor extraction Solidification/stabilization Thermal Thermal Biological Physical/chemical Biopiles Landfarming Composting Slurry-phase biological Chemical extraction Chemical reduction/oxidation Dehalogenation Soil washing Separation Solidification/stabilization Hot gas decontamination Incineration Thermal Open burn/open detonation Pyrolysis Thermal desorption Landfill cap Containment Landfill cap enhancement Cut-off wall Excavation Other technology Off-site disposal Retrieval mmšk o 313 p o vp eˆ k p. vp vr l l p l} (, 800~1,200 o C)m r l l p l} (l, 400~800 o C)p v ˆ. lr p } pl m p pq, p r mm vp r p p. p p r pp v rn o p qrp pp, l v } n p, t p nl pr m l } v kp m l o rp p. r }, o n, r n v pn l r r l p mmo p Šk v l ~ p eˆ, r / o l p eˆ, / r p Ë eˆ p p. Škv, Šk r, Šk }, r mm p pp r pp r nl mm p (v k, n,, ) Škp k pm, ph, o ˆ, p, rš, p pl m p. kr p mm vp p v rp ~ rm mm vp pl p p p eˆ p t r/kr rp rp p lk. r } p Šk rr eˆ p ~ s s p r e o p veˆ p l rp rrp p. l p mm p p tp qp p p lv r v p. o p, p mm l pp r s p l rp p. ~ mm vp mmvl qp nl lr }, mm vp mmvl n r } o p, r } k rn p. p o p mm p s m Švl rn p s v pp, p mm v l s p m m vl p rp mm l p, vp rnp pp p. p p p n rp np }, e mm p v vp p l o p r lk. 4. ji h k n Šk o p p p o mm vlp to r Škmm ve l p l er l o np. l mmškp op v o p l vl k n p vl mms m o lp v pp pl ~ ~ q l o lp v l. l q l v r } ( v )p 2000 150l o p r lpl. pm l 2006 v H l 50l o p l p rp t lp 2007 ot vl 120l o Korean Chem. Eng. Res., Vol. 45, No. 4, August, 2007

314 kvoëpov p r t l v p. ~ ~ vp nl 2003 l l 65l o p lp rqp mp 2005 l p l l 105l o p lp t l op v p [7]. l t vlp Škmm v lp 1995 ee pp, p qprp Šk op v o o 5 ro m q rp kp ~ l ro p vl op p lv p. 4-1. s h k [8, 9] e qp o r2 r } o lp p erp p r lp 2001 2003 v 106,500 m (k 32} )p vl 150l o p r 2 lp ee l (Fig. 1). 1996 p v s p o e e t, Šk m mp p l tv r s ee l. mmo p vp o TPHl r~ e t 52.5% Škmm n t(2,000 mg/l)p p ˆ p, BTEXl 7% n tp m. mm vp v e 5 m p l mp 2~3 m e p Škp e mm l. v l o p v opl p v l p o (free oil layer-lnapl)p v e l o p lp, v e p 80%l (Pb)p v v tp n t p l l. ql o pp o mmšk/ mmš k l /krp } mmškp, /kre /r, Šk mmškp, kr t pm Žp p r r } p rn m. vl Šk q, lˆ, pm Žp p 3 v o p rn l. Šk q p n mm, rš p rp Škp p m. p rp Šk q p rn p o ˆ p 10 6 CFU/g p, Šk ph 6~8 op, qp 9.8Ë10 3 ~6.0Ë10 5 CFU/g, ph 5.3~6.5 } eˆ o ph srrm p Œl q mep pn l m m p sr m. o o p mm l Šk q p } pp p Šk rp mm Škl lˆ p rn l. n lˆ q e 7~20 Š( 18 Š)p Škp Fig. 1. MoonHyun remediation site in Busan. o45 o4 2007 8k }, lˆ m l p m 800, 900 o C ˆ 40(C40) v op o l 55,000 ppm v } pl. kr ( 8 o) tl r o p m Žp p rn l,, mk, ph srr, Œ l p ov krq dp 2 mm o, d v}, v } edšp l. pm p o p rn, 2003 6o tp r t TPH q 33.9%(271/800 mg/kg), Šk r p r n t k 13.5%(271/2,000 mg/kg) r tp mp v s l ql tp r l r ˆ l. 4-2. q q ji h z t vlp t 1920~1930 p l ˆp r rl p oe, o p t v Škp t l mm p. pl p o l mm n 158 p tr pp mm p l n rp t vl Škmm v lp ee p. 1995 p 2003 v 25 l l 360l o p v lp v m. r~ p l o lp v p p r p erp [4]. p el o lq 7.83 kmp p 1995 3,841 op Œp l e rp o lp ee m. t vll, kl,, p p t mmp e p ˆ, klp n tp 17 m 8 l p s l. pl mmop oep v e p, } rvšp t, vl Š, Šk r n mm Škp l t vl p p~ m r rm [9]. p t vlp mm v lp np,, } q s,, q, mmšk }, o } e,, n r, r, mmšk },, eq, s, t p [10] mmop vp rp } Š op ql v pl v t p n p lr sq rrp vr p. l t mm Škp } o e,, p pn /kr, m r2 ~ pn p n, Œ p ~, r p e e t Žp e pp [11] kv p p rn o lp, q rnp o p evl v lk p p. 5. ji h k m i n l 2000 p Škr ee 434 p vl rn o p p Fig. 2m. t Škv r p oo r p p v

mmšk o 315 pq m ~, pm k n ˆ, aluminasuppoted noble metal p pp p t m ~p pn l q p lv p [15]. m ~p rp p p ƒ vl p rs [16]. Fig. 2. Soil remediation technologies applied in Korea (2000~2006). p (83.3%), p r np rp r oo p p lt p. oo p pp r ršv Škl oo p rn ˆ [7], p o rœ Šk v Švl p }p n erp. lr } r } p n r kv p p, }, lˆ }, } l v 2 mmp o p p p p n kv r~ p. }, }, } p ropp kv p, p mm p mr r l qq p tp p Škr p r ppp p [12]. o p v l 2 mmp ~r p p q rnl rp p [14]. p n l v mmp p rp p l r Šk o l l v tp. (NT) (BT) p ~ p l p l p p e v p. mm v sp t o nl n Škmmp r p o p PCE TCE m t p p l k o p e p. l p l p p p rp o l q. 5-1. l nk h/s ji s o 1~100 nm p p pq p vp q m p rqr, r, r p v. p p q sq, rl p k l k l pn l sp p rp eˆ p t p. pq sp vp sp p p vl rp v l mm vl p p, kl p pn l Šk v mm vp prp r s o p pp p l v p. p p oo Šk r l rn pq p l(reactive zone)p rp re rn, Šk p pq mmvl p p p eˆ p pn. rp 4Fe 3 + + 3BH 4 + 9H 2 O 4Fe 0Ë+3H 2 BO 3 +12H + +6H 2 m ~p p p p o nr rp r p p p. TCE, 1,1,1-trichloroethane p o nr m ~ rq k α-elimination, β-elimination, hydrogenolysis, hydrogenation p ˆm pp pl ethane p v s [17]. l m ~p pn k t p r l l p. Cr(VI)m Pb(II) m ~ p l Cr(III) Pb(0) o, p p pvp m ~l m ~p pn n 30 p n r pp p p l [18]. l v tl l p As(III) m As(V)l m ~p pn l, r l v l sp m ~l 1,000 p p p p m. p pp ph 4~9p ol rp, HCO 3, H 4 SiO 4 0, H 2 PO 4 2 qpmp sq nl p r ppp m [19]. m ~p o nrmp p p o p Ž, Šk v l p p p o q, r pn k v p e p [19]. l el m ~p d p l n rp m o ~l r m ~p rs ~p q n p e m. ~ kpm kv p pn l r m ~l p p p mp r ~ q n l }p d pp lp pl (Fig. 3, 4). r ~p ˆ n l rq p f Šk v p mm vp m ~p pn l rrp rp pp p. 5-2. n km l l l m n i mmškp r } p Šk p pn l mm vp eˆ rl q rp o, Š k p orr, r r l p p lv. Fig. 3. SEM images of the surface of membrane w/o (a) and w/immobilized nanoscale zero-valent irons (b). Korean Chem. Eng. Res., Vol. 45, No. 4, August, 2007

316 kvoëpov Fig. 4. Degradation of TCE using immobilized nanoscale zero-valent iron on cation-exchange membrane (a) and reuse of the membrane (b). Fig. 5. Molecular biological study for the analysis of microbial behavior and biodegradation mechanism for organic contaminants. r r v k npp l p v orq k l l r o m r, m, o n n e p l rp nr s p r. pl Šk/v o mm vp r qp ~r p r r p e q r p p l v p (Fig. 5)[20]. l k q r p pn p v l v p. Biofilml p v r l vp FISH(fluorescent in situ hybridization) pn, kp v p l v p qn v } p p p q k k p m [21]. T-RFLP(terminal restriction fragment length polymorphism) pn mm v p v p l v t 3 l 5 l tl kk p, sp l l vq t er pn p [22]. k biostimulation, bioaugmentation k r Šk o p p p rn r p vp DGGE(denaturing gradient gel electrophoresis) p f pl [23]. o45 o4 2007 8k l el o mmškl mm p t, mmškp r ol Š n p o pp, Šk o rl p v l v p. PCR(polymerase chain reaction) DNA l p q r p pn o mm Škl o op ˆ op n p Rhodococcus erythropolis sl t 4sp p mp, p p mmškl bioaugmentation p ~ l p rp o p n k v n t ~ nm o pp m. o l n t ~ mmškp o r pp kp e p v Š p ~ Škp o r pp skr rp sp o pp ˆ l. p e el v DGGE pn Šk vp e p v k Ž p ˆ (Fig. 6), p op v l mm p kvl r~r p p v pp k pl. s l, n t ~ n l mm p r p l p p Š p p vl n p tl lp DGGE Ž p ˆ

mmšk o 317 Fig. 7. Schematic diagram of electrokinetic remediation. Fig. 6. Change of microbial diversity by bioaugmentation of (N) indigenous and (G) foreign microorganisms. p p 4sp nl o mm l q p Š p ppp p p. pm p q r v p Šk v p p qnl p pp k, p sr eˆp f r o v eˆ p. 5-3. ji s kl l ~ mmop Šk v p r r, r, r o p rp rn p prp m op p l v l. p p mm mm Škp prp r o n p rp r n p l l v p. p p mm vp l p r rn, o p edšp n p p p p. p o 2 v p p n p rp r } p o r } p, mm p ˆ p pp eˆ o lr } p rn p p pn p. p m r r p pn rp p. r r(electrokinetics, EK)p r l l e q oo Šk r Škl r p r p f r q l p m pm vp p p o e mm p r p (Fig. 7). p rœ Š kl n rp k r pp s t, o m p pm mm vl t rn l m [24]. p Šk }/ r l o mm l } pp eˆ [25], r l rœ Šk l mm vp pp veˆ [26], r p pn l Šk mk p sr l r } p pp p [27] k rl l v l. l el r rp r e r r l r pp pl p r q n l mm p o r -r rl l v tp. mm vp o edš p m l el 2002 vrl e lp p p p p n v o r l l p. o o mm Šk/v p -k, -, - pp l pl k p pn n p rp rn p f mm vp r pp eˆ n rp r v p p l rp re m. TCE mm Škp r o Šk r /MEUF (micellar-enhanced ultrafiltration) r/œ v r(pervaporation) p rp re p p rn p p m (Fig. 8). oo r p Šk r l r M-TWO1030 5%m isopropyl alcohol 5% l pn m, 10 Pore volumep 90% p p r pp m. n rp rp nkp mm p r o Œ v r p rn l, p 5 g/l p p p r nkl 90% p p r pp lp pp sq m k Fig. 8. Schematic diagram of integrated remediation process for TCEcontaminated soil. Korean Chem. Eng. Res., Vol. 45, No. 4, August, 2007

318 kvoëpov mp m p p ll. MEUF rp r rp p rp l [28]. 6. oh mmšk op 2001 v p o lp e qp r pp, mmšk o l l v p. rp o p p r r np r r p p r pp, l p l l q r p ~ p pn p o p e p. o l l e e tl pl er ql vp p r rp rn p. p l p q rn p p o mm vl v r mm p m l p v r p Š n p p. p l mm s p o r ~ p p prp op p l v k p. l Škp ˆ p op p e o k pep tn Šk p v rp p n. p p vrl e lp l vol p l ld (M1-0412-00-0001). o45 o4 2007 8k y 1. Kim, J.-S., Policy of Soil Environmental Conservation Current Issues and the Future, Environment preservation, 6-9(2005). 2. Jeong, S.-W., Environmental Impact Assessment Schemes Considering Fate and Transport of Soil Contaminants, Research report, Korea Environment Institute(2003). 3. Ministry of Environment, Operational Results of Soil Network and Investigation of Actual Conditions in 2005, Korea(2006). 4. Park, Y.-H., Yoon, S.-S., Bang, S.-W., Kim, M.-J., Yang, J.-U. and Lee, Y.-H., Management and Remediation Policy of Contaminated Lands in Korea, Research Report, Korea Environment Institute(2002). 5. Lee, C.-H., Status and Prosect of Soil Remediation Industry, Konetic report, http://www.konetic.or.kr/. 6. http://www.frtr.gov/matrix2/section3/sec3_int.html. 7. Kwak, M., Prospect and Present Status of Soil Environmental Remediation Industry, J. KSEE, 29(3), 271-274(2007). 8. Ministry of Environment, Case Study of Soil Remediation Technology, Korea(2002). 9. Lee, J.-Y. and Moon, C.-H., Remediation and Reuse of Contaminated Site, J. Korean Geotechnical Society, 21(11), 26-44(2005). 10. Shin, J.-K., Case Study of Soil Pollution in Abandoned Mines, Symposium on Geological Disaster and Remediation Technology, Nov., Seoul, 95-116(2002). 11. Kim, M.-J., Cleanup and Remediation of Heavy Metal Contaminated Soil, Symposium on Geological Disaster and Remediation Technology, Nov. Seoul, 117-141(2002). 12. www.konetic.or.kr/env_info/report/13-6.pdf, Analysis of Current Status of Soil Remediation, Konetic report(2002). 13. Lee, J.-Y. and Park, K.-J., Current Status and Method of Soil Remediation Treatment in Korea, Konetic report, http://www. konetic.or.kr/. 14. Kim, K.-W., Emerging Remediation Technologies for the Contaminated Soil/groundwater in the Metal Mining Area, Econ, Environ., 37(1), 99-106(2004). 15. Tratnyek, P. G. and Johnson, R. L., Nanotechnologies for Environmental Cleanup, Nanotoday, 1(2), 44-48(2006). 16. Wang, C. and Zhang, W., Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs, Environ. Sci. Technol., 31(7), 2154-2156(1997). 17. Amold, W. A. and Roberts, A. L., Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles, Environ. Sci. Technol., 34(9), 1794-1805(2000). 18. Ponder, S. M., Darab, J. C. and Mallouk, T. E., Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported Nanoscale Zero-valent Iron, Environ. Sci. Technol., 34(12), 2564-2569 (2000). 19. Ryu, A. and Choi, H., Application of Nano-technology to Contaminated Soil/groundwater Remediation, J. KSEE, 29(3), 257-261(2007). 20. Lee, K.-K., Development of Environmental-friendly Technology for the Remediation of Soil/groundwater System, News & Information for Chemical Engineers, 22(2), 152-158(2004). 21. Daims, H., Taylor, M. W. and Wagner, M., Wastewater Treatment: a Model System for Microbial Ecology, Trends in biotechnology, 24(11), 483-489(2006). 22. Casiot, C., Pedron, V., Bruneel, O., Duran, R., Personné, J. C., Grapin, G., Drakidès, C. and Elbaz-Poulichet, F., A New Bacterial Strain Mediating As Oxidation in the Fe-rich Biofilm Naturally Growing in a Groundwater Fe Treatment Pilot Unit, Chemosphere, 64(3), 492-496(2006). 23. Baek, K. H., Yoon, B. D. and Kim, B. H., Monitoring of Microbial Diversity and Activity During Bioremediation of Crude Oilcontaminated Soil with Different Treatments, J. Microbiology and Biotechnology, 17(1), 67-73(2007). 24. Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., Marks, R. E., Puppala, S., Bricka., M. and Parker, R., Electrokinetic Remediation: Basic and Technology Status, J. Hazard. Mater., 40(2), 117-137(1995). 25. Yang, J.-W., Lee, Y.-J., Park, J.-Y., Kim, S.-J. and Lee, J.-Y., Application of APG and Calfax 16L-35 on Surfactant-enhanced Electrokinetic Removal of Phenanthrene From Kaolinite, Eng. Geol., 77(3-4), 243-251(2004). 26. Park, J.-Y., Kim, S.-J., Lee, Y.-J., Baek, K. and Yang, J.-W., EK-Fenton Process for Removal of Phenanthrene in a twodimensional Soil System, Eng. Geol., 77(3-4), 217-224(2004). 27. Kim, S.-J., Park, J.-Y., Lee, Y.-J., Lee, J.-Y. and Yang, J.-W., Application of a New Electrolyte Circulation Method for the ex Situ Electrokinetic Bioremediation of a Laboratory-prepared Pentadecane Contaminated Kaolinite, J. Hazard. Mater., 118(1-3), 171-176(2004). 28. Ministry of Science and Technology, Integrated Remediation of Underground Environment by Applying Micro-interfacial Phenomena, Research Report of National research laboratory program, Korea(2004).