통계학 개론

Size: px
Start display at page:

Download "통계학 개론"

Transcription

1 패널자료의 기초통계분석

2 복습 상관된관측치의분석 다수준분석 일반화추정방정식 반복측정분산분석 (RM ANOVA) 조건부로지스틱회귀분석 패널분석 2

3 복습 패널자료의장점 횡단면자료는변수들간정적 (static) 관계만을추정할수있는데비해, 패널자료는동적 (dynamic) 관계를추정할수있다. 개체들의관찰되지않은이질성 (unobserved heter ogeneity) 요인을모형에서고려할수있다. 횡단면자료, 시계열자료에비해더많은정보와변동성 (variability) 을제공하며, 선형회귀모형에서다중공선성 (multi-collinearity) 문제를완화시킬수있다. 3

4 복습 패널자료의단점 데이터수집이어려우며, 결측치가발생할가능성이크다. 국가, 지역이패널그룹일경우패널그룹간상관관계가있을수있다. 개인이패널그룹일경우시간변수의길이가짧다. 4

5 복습 패널데이터의정렬 패널분석을하기전 tsset, xtset 을사용하여데이터를정렬한다. tsset 패널변수명 ( 개체 ) 시간변수명 ( 시간 ) xtset 패널변수명시간변수명 xtset 다음에오는패널변수는반드시숫자변수이어야한다. 문자변수 숫자변수 : encode 숫자변수 문자변수 : decode 5

6 복습 패널데이터의유형 균형패널 vs. 불균형패널 균형패널 : 각개체의데이터포괄기간이서로동일한경우 불균형패널 : 각개체의데이터포괄기간이서로동일하지않은경우 시간갭 (time gap) 이있는패널 vs. 시간갭이없는패널 6

7 패널데이터관리 : reshape use P_data3_5, clear (NLS Women in 1968) db reshape reshape long pop, i(state) j(year) * Stata 에서패널데이터분석을위해서는데이터구조가반드시 long type 이어야한다. 7

8 복습 기초통계분석 8

9 기초통계분석 : xtsum use P_data4_1, clear tsset id t 전체관측치 40 개의평균임금 xtsum lwage un fem /* 패널데이터에대한기초통계량계산 */ Variable Mean Std. Dev. Min Max Observations lwage 전체 overall N = 40 패널그룹간 between n = 10 패널그룹내 within T = 4 union overall N = 40 between n = 10 within T = 4 fem overall N = 40 between n = 10 within T = 4 시간불변변수 (time-invariant variable) 의 within 변환표준편차는 0 이된다. 9

10 기초통계분석 : xtsum /* overall */ su lwage un fem /* between, 각개체별로시계열평균값을구한뒤그값을사용하여그룹간특성측정 */ by id, sort: egen float lwage_m=mean(lwage) egen byte tag1=tag(id) su lwage_m if tag1==1 Variable Obs Mean Std. Dev. Min Max lwage_m /* within */ su lwage Variable Obs Mean Std. Dev. Min Max lwage gen lwage_with=(lwage-lwage_m+r(mean)) su lwage_with Variable Obs Mean Std. Dev. Min Max lwage_with

11 기초통계분석 : xttab use P_data4_3 tsset id t 11

12 기초통계분석 : xttab use P_data4_3 xttab union /* 패널데이터에서빈도표산출 */ tab 실행결과와일치 Overall Between Within union Freq. Percent Freq. Percent Percent Total 명패널개체의각 4 개시계열관측치중 0 이한번이라도있는경우와 1 이한번이라도있는빈도수 노조에계속가입해있었거나잠깐이라도가입한적이있는사람을대상으로한평균적인노조가입기간 노조에가입해있었던사람들은평균적으로전체조사기간중 62.5% 의기간에노조에가입해있었음. 12

13 기초통계분석 : xttrans use P_data4_2, clear tsset idcode year 13

14 기초통계분석 : xttrans use P_data4_2, clear xttrans msp, freq /* 조건부전이확률 (conditional transiton probability) 계산 */ 1 if 다음기의배유자 married, 1 if married, spouse 여부 spouse present present 0 1 Total 0 7,697 1,866 9, ,133 13,100 14, Total 8,830 14,966 23,796 현재시점의배우자 여부 현재배우자가있는사람이다음기에배우자가없을확률 = 1133/

15 패널그래프작성 15

16 패널그래프작성 : tsline use P_data5_1, clear tsset firm year db tsline /* 패널개체의시계열변화그래프작성 */ 16

17 패널그래프작성 : tsline use P_data5_1, clear tsset firm year db tsline /* 패널개체의시계열변화그래프작성 */ 17

18 패널그래프작성 : tsline use P_data5_1, clear tsset firm year db tsline /* 패널개체의시계열변화그래프작성 */ 18

19 패널그래프작성 : tsline use P_data5_1, clear tsset firm year 각회사별로그래프그리기 db tsline 19

20 패널그래프작성 : tsline use P_data5_1, clear tsset firm year 패널개체별로 Y 축스케일을다르게지정 db tsline 20

21 패널그래프작성 : xtline use P_data5_1, clear tsset firm year db xtline /* 패널개체의시계열변화그래프작성 */ xtline f c, byopts(yrescale) recast(line) lpattern(solid longdash) 21

22 패널그래프작성 : xtline use P_data5_1, clear tsset firm year xtline f, overlay scheme(s2mono) 22

23 패널그래프작성 : xtgraph use P_data5_1, clear tsset firm year findit xtgraph xtgraph invest, list /* 패널평균값과그신뢰구간을그릴수있음 */ 23

24 패널그래프작성 : xtgraph ci invest if year==1935 /* 연속형변수의모평균의신뢰구간 */ Variable Obs Mean Std. Err. [95% Conf. Interval] invest tsset year firm /* 각회사별 20 년동안의평균 invest 수준 */ xtgraph invest 24

25 복습 패널자료분석 : Between Effects 모형 패널데이타의시계열특성을고려하지않고개체간변동만을고려하는모형이다. 각개체의시계열관측치그룹의평균값을이용하여계수를추정한다. y it = α + βx it + u i + e it i: 개인 t: 시간 u i : 시간에따라변하지않는패널개체특성을나타내는오차항 e it : 시간과패널개체에따라변하는순수오차항 = α + β + u i + 25

26 복습 패널자료분석 : 고정효과 (fixed effect) 모형 오차항 u i 를확률변수 (random variable) 가아닌추정해야할모수 (parameter) 로간주한다. 기울기모수는모든패널개체에대해동일하지만, 상수항 (α + u i ) 는개체별로달라진다. y it = α + β x it + u i + e it (1) = (α + u i ) + β x it + e it i: 개인 t: 시간 u i : 시간에따라변하지않는패널개체특성을나타내는오차항 e it : 시간과패널개체에따라변하는순수오차항 26

27 복습 패널자료분석 : 고정효과 (fixed effect) 모형 y it = α + β x it + u i + e it (1) = (α + u i ) + β x it + e it = α + β + u i + (2) (1)-(2): within 변환을적용한추정모형 (y it - ) = (x it - ) +( e it - ) 고정효과모형추정방법 1 패널개체별더미변수이용 y it = α i + βx it + e it 고정효과모형추정방법 2 27

28 복습 패널자료분석 : 확률효과 (random effect) 모형 u i 를확률변수로가정한다. u i ~ N(0, ) Between effect 모형과고정효과 (fixed effect) 모형의 weighted average 로파라미터를추정한다. 패널간정보와패널내정보를모두활용하며, 시간에따라변하지않는변수의효과를추정할수있다는장점이있다. 설명변수의외생성이성립하지않는다면파라미터추정이정확하게되지못하는단점이있다. 28

29 패널 GLS(generalized least squares)

30 패널데이타를합동 (pooled) OLS 로 추정할경우의가정 모든패널개체에대해모든시점에서오차항의기대값이 0 이되어야한다. 모든패널개체에대해모든시점에서오차항의분산이 σ 2 이어야한다. ( 동분산성 homoskedasticity) 패널개체와시간에따라오차항의분산이변하지않아야한다. 패널개체의오차항이서로상관관계가없어야한다. 동시적상관 (contemporaneous correlation) 이없어야한다. 한개체의서로다른시점의오차항사이에상관관계가없어야한다. 자기상관 (autocorrelation, serial correlation) 이없어야한다. 오차항과설명변수사이에상관관계가존재하지않는다. 설명변수의외생성 (exogeneity) 을만족한다. 이러한가정이위배되는경우 OLS 추정량에문제가있을수있으나, 패널데이터는오차항에이분산성이나자기상관이존재할가능성이있다. 30

31 패널자료분석 : OLS use P_data6_1, clear tsset state year /* fatal: 교통사고사망률, perinck: 1 인당소득, spircons: 1 인당술소비량 */ 31

32 패널자료분석 : OLS reg fatal perinck spircons /* 7 년관측치를 pooling 하여 OLS 로추정 */ Source SS df MS Number of obs = 336 F( 2, 333) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = fatal Coef. Std. Err. t P>t [95% Conf. Interval] perinck spircons _cons 소득이높을수록교통사고사망률은낮아지고, 술소비량이많을수록교통사고사망률이높아진다. 32

33 패널자료분석 : OLS OLS 추정량이최우수선형불편추정량 (best linear unbiased estimator, BLUE) 이되기위해서는모든시점 t 에서의오차항 it 의공분산행렬이항등행렬이어야한다. 패널그룹간오차항의상관관계가존재하지않아야하고, 오차항의분산은 σ 2 로서로같아야한다. 33

34 공분산행렬 (Covariance Matrix ) 공분산 (Covariance) 두측도가어떻게조화롭게변하는지, 얼마나상호영향을주며변하는지를나타냄 두변량의공유된성격이나독립성을나타내는데유용 공분산행렬 : n 개의 dimension 에서의공분산을행렬로나타낸것 C n n = cov( x, x) cov( y, x) cov( z, x) cov( x, cov( y, cov( z, y) y) y) cov( x, z) cov( y, z) cov( z, z) 34

35 패널자료분석 : GLS /* 공분산행렬가정에위해되는경우효율적인추정량을구하기위해 GLS 사용 */ xtgls fatal perinck spircons /* GLS, generalized least squares */ Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: homoskedastic Correlation: no autocorrelation 동분산성을가정한다. Estimated covariances = 1 Number of obs = 336 Estimated autocorrelations = 0 Number of groups = 48 Estimated coefficients = 3 Time periods = 7 Wald chi2(2) = Log likelihood = Prob > chi2 = fatal Coef. Std. Err. z P>z [95% Conf. Interval] perinck spircons _cons OLS 와동일추정계수, 표준오차가 OLS 보다약간작다. 35

36 패널자료분석 : GLS xtgls fatal perinck spircons, nmk /* nmk 옵션사용시 OLS 와동일결과 */ Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: homoskedastic Correlation: no autocorrelation Estimated covariances = 1 Number of obs = 336 Estimated autocorrelations = 0 Number of groups = 48 Estimated coefficients = 3 Time periods = 7 Wald chi2(2) = Log likelihood = Prob > chi2 = fatal Coef. Std. Err. z P>z [95% Conf. Interval] perinck spircons _cons OLS 와동일한결과를보여준다. 36

37 패널자료분석 : GLS( 오차항에서패널개체간이분산성가정 ) xtgls fatal perinck spircons, panel(hetero) Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: no autocorrelation 패널개체간이분산성을가정한다. Estimated covariances = 48 Number of obs = 336 Estimated autocorrelations = 0 Number of groups = 48 Estimated coefficients = 3 Time periods = 7 48 개패널개체의오차항의분산을추정하였다. Wald chi2(2) = Prob > chi2 = fatal Coef. Std. Err. z P>z [95% Conf. Interval] perinck spircons _cons

38 패널자료분석 : GLS( 오차항에서패 널개체간이분산성가정 ) xtgls fatal perinck spircons, panel(hetero) /* 모형추정후 e-class 에저장된내용을확인한다. */ ereturn list scalars: e(n) = 336 ( 전체표본수, 48 x 7) e(n_g) = 48 ( 패널개체수 ) e(n_t) = 7 ( 패널개체의시계열관측개체개수중가장큰값 ) e(g_min) = 7 e(g_avg) = 7 e(g_max) = 7 /* 행렬의구체적인값을확인한다 */ mat list e(sigma) 오차항의공분산행렬추정치 symmetric e(sigma)[48,48] c1 c2 c3 c4 c5 c6 c7 c8 c9 r r r r r

39 패널개체간이분산성검정 /* 제약모형 (restricted model): 오차항의분산이패널그룹에따라다르지않고모두같다. */ xtgls fatal perinck spircons estimates store R_model Log likelihood = /* 비제약모형 (unrestricted model): 오차항의분산이패널그룹에따라다르다. */ xtgls fatal perinck spircons, panel(hetero) igls nolog estimates store UR_model Log likelihood = /* LR(likelihood ratio; 우도비 ) test */ lrtest UR_model R_model, df(47) 48 개분산 ( 비제약모형 ) - 1 개분산 ( 제약모형 ) Likelihood-ratio test LR chi2(47)= (Assumption: R_model nested in UR_model) Prob > chi2= 오차항의등분산성을기각한다. 39

40 패널자료분석 : GLS ( 오차항에서자기상관가정 ) xtgls fatal perinck spircons, corr(ar1) ϵ it = ρ ϵ it-1 + u it Cross-sectional time-series FGLS regression 추정된자기상관계수 Coefficients: generalized least squares Panels: homoskedastic Correlation: common AR(1) coefficient for all panels (0.8166) Estimated covariances = 1 Number of obs = 336 Estimated autocorrelations = 1 Number of groups = 48 Estimated coefficients = 3 Time periods = 7 Wald chi2(2) = Prob > chi2 = fatal Coef. Std. Err. z P>z [95% Conf. Interval] perinck spircons _cons

41 패널자료분석 : GLS( 패널개체별로 서로다른 1 계자기상관계수가정 ) xtgls fatal perinck spircons, corr(psar1) ϵ it = ρ i ϵ it-1 + u it Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: homoskedastic Correlation: panel-specific AR(1) Estimated covariances = 1 Number of obs = 336 Estimated autocorrelations = 48 Number of groups = 48 Estimated coefficients = 3 Time periods = 7 Wald chi2(2) = Prob > chi2 = fatal Coef. Std. Err. z P>z [95% Conf. Interval] perinck spircons _cons

42 자기상관검정 : Wooldridge 검정 findit xtserial xtserial fatal perinck spircons Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F( 1, 47) = Prob > F = % 유의수준에서 1 계자기상관이존재한다. 42

43 패널자료분석 : GLS( 동시적상관가정 ) 동시적상관 (contemporaneous correlation) corr(ϵ it, ϵ jt ) 0, 모든 i j에대해 시점 t에서서로다른패널개체의오차항사이에상관관계가존재한다. 이분산성도가정된다. 43

44 패널자료분석 : GLS( 동시적상관가정 ) xtgls fatal perinck spircons, panel(corr) Cross-sectional time-series FGLS regression n(n+1)/2 = (48 *49)/2 Coefficients: generalized least squares Panels: heteroskedastic with cross-sectional correlation Correlation: no autocorrelation 이분산성과동시적상관을함께가정한다. Estimated covariances = 1176 Number of obs = 336 Estimated autocorrelations = 0 Number of groups = 48 Estimated coefficients = 3 Time periods = 7 Wald chi2(2) = Prob > chi2 = fatal Coef. Std. Err. z P>z [95% Conf. Interval] perinck spircons _cons 추정하는모수의개수 (1,176) 가관측개체수 ( 336) 보다많아추정결과의신뢰성에문제가있다. Note: you estimated at least as many quantities as you have observations. 44

45 패널자료분석 : GLS( 이분산성, 자기상관가정 ) xtgls fatal perinck spircons, corr(ar1) panel(hetero) Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: common AR(1) coefficient for all panels (0.8166) Estimated covariances = 48 Number of obs = 336 Estimated autocorrelations = 1 Number of groups = 48 Estimated coefficients = 3 Time periods = 7 Wald chi2(2) = 추정해야할모수는 52개 Prob > chi2 = fatal Coef. Std. Err. z P>z [95% Conf. Interval] perinck spircons _cons

46 과제제출 한글 /MS Word 문서사용 구성 연구목적 연구방법 연구결과 : STATA output 을붙이고하단에해석추가 결론 6/25( 수 ) 까지이메일로제출 46

통계학 개론

통계학 개론 고정효과모형과 확률효과모형 2014. 6. 21. 복습 패널데이타를합동 (pooled) OLS 로 추정할경우의가정 모든패널개체에대해모든시점에서오차항의기대값이 0 이되어야한다. 모든패널개체에대해모든시점에서오차항의분산이 σ 2 이어야한다. ( 동분산성 homoskedasticity) 패널개체와시간에따라오차항의분산이변하지않아야한다. 패널개체의오차항이서로상관관계가없어야한다.

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

통계학 개론

통계학 개론 패널자료의구조 및데이터관리 2014. 5. 31. STATA 로 통계분석하기 2 Stata 프로그램의파일저장 주실행프로그램은 C:\Program Files\St ata10 폴더에설치된다. 많은명령어들이 C:\Program Files\Stata 10\ado\base 폴더에설치된 ado 파일로정의된다. 업데이트할경우새로운 ado 파일이나수정된파일이 C:\Program

More information

민인식 / Revisiting Panel Data Analysis (1) : Stata 와 R 코딩 패널데이터개요와유형 패널데이터 는멀티레벨 의한종류라고말할수있 다 멀티레벨데이터는상위레벨 과하위레벨 의 구조로 되어있는경우가대표적인예이다 상위레벨내에속하는하위레벨관측치로구

민인식 / Revisiting Panel Data Analysis (1) : Stata 와 R 코딩 패널데이터개요와유형 패널데이터 는멀티레벨 의한종류라고말할수있 다 멀티레벨데이터는상위레벨 과하위레벨 의 구조로 되어있는경우가대표적인예이다 상위레벨내에속하는하위레벨관측치로구 The Korean Journal of Stata 제 5 권 1 호 2018. 6. pp.31-46 와 코딩 요약 본논문에서는패널데이터분석의기초적인내용을 버전과 통계패키지를활용하여리뷰하고자한다 패널분석초심자를위해패널데 이터의개념과구조에대한설명으로시작한다 더나아가기초통계분석과정을설명한다 예제데이터는한국노동패널 차 차데이터를활용한다 명령문을주 로설명하며 통계패키지언어를이용해서도유사한결과를얻을수있다는것을보여주고있다

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

II. 기존선행연구

II. 기존선행연구 수익용부동산의임대수익영향요인에관한연구 I. 서론 II. 기존선행연구 Ⅲ. 실증분석모형및자료 yit = a + b xit + ui + eit yit = ( a + ui ) + b xit + eit α α cov( it, i ) 0 x u = cov( x, ) 0 it u i ¹ H : cov( x, u ) = 0 0 H : cov( x, u ) ¹ 0 1 it

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드] 제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임

More information

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - 에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

KDI정책포럼제221호 ( ) ( ) 내용문의 : 이재준 ( ) 구독문의 : 발간자료담당자 ( ) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. 우리나라경

KDI정책포럼제221호 ( ) ( ) 내용문의 : 이재준 ( ) 구독문의 : 발간자료담당자 ( ) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다.   우리나라경 KDI정책포럼제221호 (2010-01) (2010. 2. 10) 내용문의 : 이재준 (02-958-4079) 구독문의 : 발간자료담당자 (02-958-4312) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. http://www.kdi.re.kr 우리나라경기변동성에대한요인분석및시사점 이재준 (KDI 부연구위원 ) * 요 약,,, 1970. * (,

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

시스템경영과 구조방정식모형분석

시스템경영과 구조방정식모형분석 2 st SPSS OPEN HOUSE, 2009 년 6 월 24 일 AMOS 를이용한잠재성장모형 (Latent Growth Model ) 세명대학교경영학과김계수교수 (043) 649-242 gskim@semyung.ac.kr 목차. LGM개념소개 2. LGM모형종류 3. LGM 예제 4. 결과치비교 5. 정리및요약 2 적합모형의판단방법 Tips SEM 결과해석방법

More information

歯4차학술대회원고(장지연).PDF

歯4차학술대회원고(장지연).PDF * 1)., Heckman Selection. 50.,. 1990 40, -. I.,., (the young old) (active aging). 1/3. 55 60 70.,. 2001 55 64 55%, 60%,,. 65 75%. 55 64 25%, 32% , 65 55%, 53% (, 2001)... 1998, 8% 41.5% ( 1998). 2002 7.8%

More information

abstract.dvi

abstract.dvi 통계자료분석 강희모 2014년 5월 14일 목차 제 1장 여러가지평균비교 1 1.1. 단일표본검정.............................. 2 1.2. 독립인두표본검정........................... 4 1.3. 대응표본검정.............................. 9 제 2 장 분산분석(ANalysis Of VAriance)

More information

슬라이드 1

슬라이드 1 Principles of Econometrics (3e) 013 년 1 학기 윤성민 10.0 서론 The assumptions of the simple linear regression are: SR1. SR. yi =β 1 +β xi + ei i= 1,, N Ee ( i ) = 0 SR3. var( e i ) = σ SR4. cov( e, e ) = 0 i

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4

More information

R t-..

R t-.. R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)

More information

경영학석사학위논문 투자발전경로이론의가설검증 - 한국사례의패널데이타분석 년 8 월 서울대학교대학원 경영학과국제경영학전공 김주형

경영학석사학위논문 투자발전경로이론의가설검증 - 한국사례의패널데이타분석 년 8 월 서울대학교대학원 경영학과국제경영학전공 김주형 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

untitled

untitled 통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법

More information

Y 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are

More information

메타분석: 통계적 방법의 기초

메타분석: 통계적 방법의 기초 메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성

More information

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사 회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,

More information

Resampling Methods

Resampling Methods Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )

More information

수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론

수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 Ⅱ. 선행연구고찰 집적경제메커니즘의유형공유메커니즘매칭메커니즘학습메커니즘 내용기업이군집을형성하여분리불가능한생산요소, 중간재공급자, 노동력풀등을공유하는과정에서집적경제발생한지역에기업과노동력이군집을이뤄기업과노동력사이의매칭이촉진됨에따라집적경제발생군집이형성되면사람들사이의교류가촉진되어지식이확산되고새로운지식이창출됨에따라집적경제발생

More information

슬라이드 1

슬라이드 1 계량경제학강의소개 2013 년 1 학기 윤성민 < 교재 > Principles of Econometrics / 계량경제학 (3판) 저자 : Hill, Griffiths and Lim / 이병락역 출판사 : Wiley / 시그마프레스 http://principlesofeconometrics.com/poe3/poe3.htm - 예제 program, data 등등

More information

2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형

2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 M-Plus 의활용 - 기본모형과예제명령어 - 성신여자대학교 심리학과 조영일, Ph.D. 2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 3 / 27 1. M-plus 란? 기본정보 M-plus 는구조방정식모형과종단자료분석 ( 잠재성장모형 ) 의분석에사용되기위해서고안된프로그램임.

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

Microsoft Word - skku_TS2.docx

Microsoft Word - skku_TS2.docx Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (

More information

01_°íºÀÂùöKš

01_°íºÀÂùöKš Total Return Swap 1997 7 J.P. Morgan TRSTotal Return Swap 1998 10 J.P. Morgan 75800 1996 1997 J.P. Morgan SK LG 17100 SK 16129 12593 10235 8150 7300 19981023 1 J.P. Morgan 27550 1 48250 75800 TRS SK SK

More information

슬라이드 1

슬라이드 1 Principles of Econometrics (3e) Ch. 6 다중회귀모형에관한 추가적인논의 013 년 1 학기 윤성민 6장의주요내용 다중회귀모형의모수에관한둘이상의가설로구성된귀무가설을동시에검정하는경우 ( 결합가설의검정 ) F-검정 표본의정보이외에비표본정보도함께이용하는경우 제한최소제곱법 모형설정의오류를찾는방법 RESET 검정 다중공선성문제의탐지와해결방법

More information

Microsoft Word - SAS_Data Manipulate.docx

Microsoft Word - SAS_Data Manipulate.docx 수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )

More information

Microsoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx

Microsoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx Mti Matrix 정의 A collection of numbers arranged into a fixed number of rows and columns 측정변수 (p) 개체 x x... x 차수 (nxp) 인행렬matrix (n) p 원소 {x ij } x x... x p X = 열벡터column vector 행벡터row vector xn xn... xnp

More information

R

R R 과데이터분석 상관관계 양창모 청주교육대학교컴퓨터교육과 2015 년여름 양창모 ( 청주교육대학교컴퓨터교육과 ) Data Analysis using R 2015 년여름 1 / 20 상관관계 양적변수quantitative variables 사이의관계relationships를나타내기위하여상관계수correlation coefficients를사용한다. ± 기호를사용하여관계의방향을나타낸다.

More information

BK21 플러스방법론워크숍 Data Management Using Stata 오욱찬 서울대사회복지학과 BK21 플러스사업팀

BK21 플러스방법론워크숍 Data Management Using Stata 오욱찬 서울대사회복지학과 BK21 플러스사업팀 BK21 플러스방법론워크숍 Data Management Using Stata 2014. 10. 17. 오욱찬 ukchanoh@daum.net Why use Stata statistical software? 1 - Fast, accurate, and easy to use - Broad suite of statistical features - Complete data-management

More information

표본재추출(resampling) 방법

표본재추출(resampling) 방법 표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과

More information

제 4 장회귀분석

제 4 장회귀분석 회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.

More information

슬라이드 1

슬라이드 1 Prncples of Econometrcs (3e) 013 년 1 학기 윤성민 8.1. 이분산의본질 ( 예 ) 식료품지출 / 식료품지출과소득에관한 40 개표본 8.1 이분산의본질 3 8.1 이분산의본질 4 8.1 이분산의본질 동분산가정 5 8.1 이분산의본질 이분산가정 6 8.1

More information

Microsoft Word - SPSS_MDA_Ch6.doc

Microsoft Word - SPSS_MDA_Ch6.doc Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (

More information

01-07-0.hwp

01-07-0.hwp 선거와 시장경제Ⅱ - 2000 국회의원 선거시장을 중심으로 - 발간사 차 례 표 차례 그림 차례 제1부 시장 메커니즘과 선거시장 Ⅰ. 서 론 Ⅱ. 선거시장의 원리와 운영방식 정당시장 지역구시장 문의사항은 Q&A를 참고하세요 정당시장 한나라당 사기 종목주가그래프 c 2000 중앙일보 Cyber중앙 All rights reserved. Terms

More information

<B0A3C3DFB0E828C0DBBEF7292E687770>

<B0A3C3DFB0E828C0DBBEF7292E687770> 초청연자특강 대구가톨릭의대의학통계학교실 Meta analysis ( 메타분석 ) 예1) The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection?? -:> 1998.1 ~2007.12.31 / RCT(2),

More information

164

164 에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 163~190 학술 시변파라미터일반화해밀턴 -plucking 모형을이용한전력소비의선제적경기국면판단활용연구 * 163 164 165 166 ~ 167 ln 168 [ 그림 1] 제조업전력판매량 (a) 로그변환

More information

<C7A5C1F620BEE7BDC4>

<C7A5C1F620BEE7BDC4> 연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new

More information

슬라이드 1

슬라이드 1 Principle of Econometric (3e) 03 년 학기 윤성민 .0 서론 연립방정식모형 - 둘이상의종속변수가있는일련의방정식들로구성 OLS로추정하면부적절함 새로운추정방법필요 - 연립방정식추정법은계량경제학이통계학의회귀분석기법을넘어서는학문이라는것을보여주는분야이기도함 . 공급및수요모형 Demand: Supply: Q=α P+α X + e Q=β P+ e

More information

(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> Par II. 다중회귀모형및기본가정의완화 I. 다중회귀모형 A. 다중회귀모형에대한가정 = β+β x + +β x +ε, =,..., ( x ) 관측치의수, 설명변수의수 K-, 추정모수의수 K 개별모수들의의미 : E( ) 예컨대, β = : 다른설명변수들이일정할때, x 의한 x 단위변화에대한종속변수의평균값의변화 즉다른변수들의영향력이통제 (conrol) 된상황에서첫번째설명변수의종속변수에대한영향력을나타내는값임

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

선형모형_LM.pdf

선형모형_LM.pdf 변수선택 8 경제성의 원리로 불리우는 Occam s Razor는 어떤 현상을 설명할 때 불필요한 가정을 해서는 안 된다는 것이다. 같은 현상을 설 명하는 두 개의 주장이 있다면, 간 단한 쪽을 선택하라. 통계학의 유 의성 검정, 유의하지 않은 설명변 수 제거의 근거가 된다. 섹션 1 개요 개념 1) 경험이나 이론에 의해 종속변수에 영향을 미칠 것 같은 설명변수를

More information

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라 제 절 two way ANOVA 제절 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라고 한다. 교호작용은 두 변수의 곱에 대한 검정으로 유의확률이 의미있는 결과라면 두 변수는 서로 영향을

More information

슬라이드 1

슬라이드 1 대한의료관련감염관리학회학술대회 2016년 5월 26일 ( 목 ) 15:40-17:40 서울아산병원동관 6층대강당서울성심병원김지형 기능, 가격, 모든것을종합 1 Excel 자료정리 2 SPSS 학교에서준다면설치 3 통계시작 : dbstat 4 Web-R : 표만들기, 메타분석 5 R SPSS www.cbgstat.com dbstat 직접 dbstat 길들이기

More information

- 2 -

- 2 - 상대적임금과효용 정세은 1) 본연구에서는한국노동패널자료를이용하여상대적임금이개인의효용 ( 행복지수, 직업 / 삶만족도 ) 에어떠한영향을끼치는지실증적으로분석한다. 노동패널자료에서행복지수, 삶만족도, 그리고직무만족도를 Likert Scale에따라수집하는데이는경제학에서의효용에대한근사치로사용될수있다는점에서의미를갖는다. 상대적임금은개인이자신의소득을비교하는집단의평균임금으로계산이될수있다.

More information

공휴일 전력 수요에 관한 산업별 분석

공휴일 전력 수요에 관한 산업별 분석 에너지경제연구 Korean Energy Economic Review Volume 15, Number 1, March 2016 : pp. 99 ~ 137 공휴일전력수요에관한산업별분석 1) 99 100 ~ 101 102 103 max m ax 104 [ 그림 1] 제조업및서비스업대표업종전력사용량추이 105 106 [ 그림 2] 2014 년일별전자및전자기기업종 AMR

More information

회귀분석의 기초 한국보건사회연구원 2017년 6월 19일(월요일) & 22일(목요일) 강의 슬라이드 9 1/ 78 목차 1 2 3 4 2/ 78 지난 시간 복습 모집단 평균 µ에 대한 통계적 추론을 하는 방법: σ 신뢰구간: x ± t 유의성 검정: t = x µ σ/ 위 공식을 보면 모집단 표준편차 σ가 들어 있는데 이 σ를 모르니까 표본 표준편차 s로 대체해서

More information

고객관계를 리드하는 서비스 리더십 전략

고객관계를 리드하는  서비스 리더십 전략 제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0

More information

슬라이드 1

슬라이드 1 회귀분석 (Regression Analysis) 회귀분석은종속변수와독립변수들갂의관련성, 또는독립변수를 이용하여종속변수를예측하는데사용하며, 종속변수와독립변수 들의함수적관련성을이용하여분석한다. 회귀분석의목적 (1) 예측을목적 주어진독립변수를이용하여종속변수의평균값을추정할목적으로 기존의자료를이용하여회귀모형을세움 (2) 각독립변수가종속변수에미치는영향을평가 종속변수에어떤독립변수들이유의한영향을미치는지를알아보고

More information

자료의 이해 및 분석

자료의 이해 및 분석 어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의

More information

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint 제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re EMF Health Effect 2003 10 20 21-29 2-10 - - ( ) area spot measurement - - 1 (Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern

More information

1) 주거이동과관련된이론적배경및선행연구들에대한자세한사항은조성진 (2014), 문근식 이현석 (2016) 등참고. 특정주거지 ( 주택 ) 에서의거주기간이아닌이주여부 / 계획을종속변수로하여로짓 (Logit) 이나프로빗 (Probit) 모형등을이용하여분석한연구들도많이있다 (

1) 주거이동과관련된이론적배경및선행연구들에대한자세한사항은조성진 (2014), 문근식 이현석 (2016) 등참고. 특정주거지 ( 주택 ) 에서의거주기간이아닌이주여부 / 계획을종속변수로하여로짓 (Logit) 이나프로빗 (Probit) 모형등을이용하여분석한연구들도많이있다 ( KLIPS 에근거한주거력데이터구축및활용 Ⅰ. 서론및선행연구 ----------------------------------------------------- * 한국노동연구원연구위원 (kheelee@kli.re.kr) ** 경희대학교경제학과교수 (imin@khu.ac.kr) - 1 - 1) 주거이동과관련된이론적배경및선행연구들에대한자세한사항은조성진 (2014),

More information

<30352D20C1A4C0AFB0E62DBAA3C6AEB3B220B3BB20C7D1B1B9B0E820C0C7B7F920B9D720BDC5B9DF20BBFDBBEABEF7C3BCC0C720C6C4BEF720B0E1C1A4BFE4C0CE5F33B1B32E687770>

<30352D20C1A4C0AFB0E62DBAA3C6AEB3B220B3BB20C7D1B1B9B0E820C0C7B7F920B9D720BDC5B9DF20BBFDBBEABEF7C3BCC0C720C6C4BEF720B0E1C1A4BFE4C0CE5F33B1B32E687770> 베트남 진출 한국계 의류 및 신발 생산업체 내 파업의 결정요인 : 이익분쟁으로 인한 파업사례 실증분석 1) 정 유 경 * Ⅰ. 문제제기 최근 우리나라와 베트남 양국 간의 관계가 '전략적 협력 동반자 관계'로 격상되었다. 이는 1992년 12월 수교 이래, 양국 간 무역 및 투자 등의 경제영역 뿐 아니라 정치 사회 문화 등 다양한 부문에서 활발하게 이뤄진 협력적

More information

Microsoft PowerPoint - LM 2014s_Ch4.pptx

Microsoft PowerPoint - LM 2014s_Ch4.pptx 1. 회귀모형및가정 모형설명 선형 linearity 함수 (,,,, ) 회귀계수 : 모수, unknown but fixed 절편 : y-축을통과하는곳 기울기 : 편미분, 한단위증가 p개의설명변수 들은결정변수 ( 확률변수아님 ) 종속변수만확률변수 모형 설명변수개수 p 개 관측치개수 n, 1,2,, ~ 0, ( 행렬 ),, 가정 ~ 0, 정규성 normality

More information

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드] 제 11 강 자기상관 Auocorrelaion 111 유효성 (efficiency, accurae esimaion/predicion) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Auocorrelaion) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임

More information

MATLAB for C/C++ Programmers

MATLAB for C/C++ Programmers 오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

nonpara6.PDF

nonpara6.PDF 6 One-way layout 3 (oneway layout) k k y y y y n n y y K yn y y n n y y K yn k y k y k yknk n k yk yk K y nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(rato) F- (normalty assumpton), Medan,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Web Browser Web Server ( ) MS Explorer 5.0 WEB Server MS-SQL HTML Image Multimedia IIS Application Web Server ASP ASP platform Admin Web Based ASP Platform Manager Any Platform ASP : Application Service

More information

<B3EDB4DC28B1E8BCAEC7F6292E687770>

<B3EDB4DC28B1E8BCAEC7F6292E687770> 1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)

More information

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표 Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function

More information

cat_data3.PDF

cat_data3.PDF ( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 7 주차 회귀분석 Regression Analysis 최종후, 강현철 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 -

More information

歯4차학술대회원고(황수경이상호).PDF

歯4차학술대회원고(황수경이상호).PDF 1) 2).. 1-4.,,,, k?,,,. -, 4.... (norm alization ) (social inclusion ),..,. 1990.. 2000 145 100 3.1% 1, 1* *** 4. ( ). 3) 133 15 64, 56. 47.8% 71.6% 28.4%. 4.1% 7 ( 1). 4) < 1> 1 2 (2000) 47.8 71.6 28.4

More information

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63> 제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

에너지경제연구 제12권 제2호

에너지경제연구 제12권 제2호 에너지경제연구 Korean Energy Economic Review Volume 12, Number 2, September 2013 : pp. 33~58 지구온난화가가정부문에너지소비량에미치는 영향분석 : 전력수요를중심으로 33 ~ ~ ~ ~ ~ ~ ~ 34 ~ 35 ~ 36 ~ 37 < 표 1> 변수들의기초통계량 ~ ~ ~ ~ 38 [ 그림 1] 로그변수들의시간에대한추세

More information

Chapter4.hwp

Chapter4.hwp Ch. 4. Spectral Density & Correlation 4.1 Energy Spectral Density 4.2 Power Spectral Density 4.3 Time-Averaged Noise Representation 4.4 Correlation Functions 4.5 Properties of Correlation Functions 4.6

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:3~20 Received: 2016/12/04, Accepted: 2016/12/27 Revised: 2016/12/27, Published: 2016/12/30 [ABSTRACT] This study aims to comprehensively analyze

More information

R&D : Ⅰ. R&D OECD 3. Ⅱ. R&D

R&D : Ⅰ. R&D OECD 3. Ⅱ. R&D R&D : 2012. 6. Ⅰ. R&D 1. 2. OECD 3. Ⅱ. R&D 1. 2. - 1 - Ⅰ. R&D R&D. R&D (TFP). R&D R&D, GDP R&D (Ha and Howitt, 2007). : (1), R&D. 1. ( )(), 1 ( ), ( ). (2) -, (Penn World Table 7.0) (growth accounting)

More information

untitled

untitled Six Sigma - - Grouping Brainstorming : Observ. 8 - - 22 27 32 37 5 5 Capability -27.7552 63.7552 22 Capability 3.SL=69.82 X=29.73-3.SL=-.35 3.SL=49.24 R=5.7-2.29 7.7578-3.SL=.E+ 22 Data Source: Time Span:

More information

- 1 -

- 1 - - 1 - External Shocks and the Heterogeneous Autoregressive Model of Realized Volatility Abstract: We examine the information effect of external shocks on the realized volatility based on the HAR-RV (heterogeneous

More information

슬라이드 1

슬라이드 1 Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b + 0 1 b x 0 Ch. 4 예측, 적합도, 모형화 /60 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값

More information

<283529C0CCBBF3C1D82E687770>

<283529C0CCBBF3C1D82E687770> 149 인센티브 지급 방식이 성과와 부정행위에 미치는 효과 연구* 이 상 준** 논문초록 1) 이 논문은 인센티브 지급 유형에 따라 성과와 부정행위 간의 관계를 분석하고 있 다. 또한 부정행위가 단순히 개인이 도덕적이지 못해서 이루어지는 것인지 아니 면 인센티브라는 제도가 사람이 부정행위를 저지르게 만드는지를 분석하였다. 이 를 위해 본 연구에서는 현장실험

More information

비선형으로의 확장

비선형으로의 확장 비선형으로의확장 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 비선형으로의확장 1 / 30 개요 선형모형은해석과추론에장점이있는반면예측력은제한됨능형회귀, lasso, PCR 등의방법은선형모형을이용하는방법으로모형의복잡도를감소시켜추정치의분산을줄이는효과가있음해석력을유지하면서비선형으로확장다항회귀 (polynomial regression): ( 예 )

More information

자료분석론 - 국민건강영양조사 분석

자료분석론 - 국민건강영양조사 분석 2014. 5. 10 ( 토 ) 자료분석론 국민건강영양조사자료 - 자료분석 (2) 서울대학교보건대학원 홍지민 강의순서 1) 국민건강영양조사이해 (4/19) - 자료의개요및원시자료 DB 2) 가중치및자료분석개요 (4/26) 3) 국민건강영양조사자료활용실습 (5/10) 2014-05-10 2 목차 자료분석개요 복합표본설계자료회귀분석 복합표본설계자료로지스틱회귀분석

More information

한국정책학회학회보

한국정책학회학회보 한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

3GA1Æ2Æ3 /4GA1Æ2Æ3 Series B-137

3GA1Æ2Æ3 /4GA1Æ2Æ3 Series B-137 3GA1Æ2Æ3 /4GA1Æ2Æ3 Series B-137 4GA1 1 0 C6 E2 P 1 3GA1 1 0 C6 E2 P 1 3GA123/4GA123 Series 1 2 3 4 5 1 11 C4 C6 C8 C10 M5 06 08 E0 E00 E01 E02 E03 E2 E20 E21 E22 E23 E0N E2N E3 E1 E01J E02J E03J E21J E22J

More information

에너지경제연구 제13권 제1호

에너지경제연구 제13권 제1호 에너지경제연구 Korean Energy Economic Review Volume 13, Number 1, March 2014 : pp. 23~56 거시계량모형을이용한전력요금 파급효과분석 * 23 24 25 26 < 표 1> OECD 전력요금수준 ( 단위 : $/MWh) 27 28 < 표 2> 모형의구성 29 30 31 [ 그림 1] 연립방정식모형의개요 32

More information

<3231B9DABAB4C8A32E687770>

<3231B9DABAB4C8A32E687770> 패널자료를 이용한 가로구간 교통사고분석 - 청주시 간선도로를 사례로 - 김준용 나 희 * 박병호 * 한국건설기술연구원ㆍ * 충북대학교 도시공학과 (2011. 8. 19. 접수 / 2012. 5. 2. 채택) Traffic Accident Analysis of Link Sections Using Panel Data in the Case of Cheongju Arterial

More information

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 Ch4 one-way ANOVA ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 One-way ANOVA 란? Group Sex pvas NSAID

More information

Microsoft Word - ch8_influence.doc

Microsoft Word - ch8_influence.doc REGRESSION / 8 장. 영향치및잔차분석 172 Chapter 8 영향치와잔차분석 단순회귀모형에서관측점이이상치 (outlier) 인지영향치 (influential) 인지판단하는것은 매우쉽다. 산점도에서이상치혹은영향치의존재여부를미리감지한다. x- 축 ( 설명변수 ) 의 동일수준의다른관측치에비해종속변수의값이상이한빨간점은이상치이다. 반면판 단할다른관측치가동일설명변수수준에없는파란점은영향치이다.

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63> 제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics) 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion) 고검정 (es) 하는학문 거시소비함수 (Keynse). C=f(Y), 0

More information