14.091~100(328-하천방재).fm

Similar documents
304.fm

(1 일목 ) 제 3 발표장 47 수치기법 [I] 이은택 1, 안형택 2* SIMULATION ON FLOW PAST A CIRCULAR CYLINDER USING UNSTRUCTURED MESH BASED INCOMPRESSIBLE FLUID SOLVER(ULSAN3

15.101~109(174-하천방재).fm

27(5A)-15(5868).fm

50(1)-09.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

untitled

< DC1A4C3A5B5BFC7E22E666D>

10(3)-09.fm

416.fm

16(1)-3(국문)(p.40-45).fm

605.fm

14.531~539(08-037).fm

10(3)-12.fm

11(1)-15.fm

69-1(p.1-27).fm

9(3)-4(p ).fm

11(5)-12(09-10)p fm

50(5)-07.fm

26(3D)-17.fm

12(4) 10.fm

07.051~058(345).fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

14(4)-14(심고문2).fm

82-01.fm

19(1) 02.fm

32(4B)-04(7455).fm

12(3) 10.fm

07.045~051(D04_신상욱).fm

17.393~400(11-033).fm

10(3)-10.fm

untitled

14(4) 09.fm

27(5A)-07(5806).fm

11(4)-03(김태림).fm

202.fm

06.177~184(10-079).fm

DBPIA-NURIMEDIA

<31325FB1E8B0E6BCBA2E687770>

51(2)-09.fm

3-15(3)-05(이주희).fm

01.01~08(유왕진).fm

fm

99보고서.PDF

50(6)-03.fm

143.fm

12.077~081(A12_이종국).fm

10.063~070(B04_윤성식).fm

PDF

201.fm

16(2)-7(p ).fm

50(4)-10.fm

untitled

<30332DB9E8B0E6BCAE2E666D>

untitled

14(2) 02.fm

51(4)-13.fm

3.fm

14.fm

25(3c)-03.fm

15(2)-07.fm

10(3)-02.fm

< C0E5BFC1C0E72E666D>

415.fm

43(5)-1.fm

fm

82.fm

8-15(3)-02(손태근).fm

04-46(1)-06(조현태).fm

27(6A)-10(5570).fm

» t d» y w š q, w d» y ƒ ƒ w tree-ring t w d» y ƒ w š w. w tree-ring t mw»z y p q w š w. Tree-ring t mw, 500» ƒ wš p w» ƒ, y»z p wš»»z y. ù tree-ring

< B3E2BFF8BAB828C8AFB0E629312E687770>

31(3B)-07(7055).fm

17(2)-00(268).fm

4.fm

8(2)-4(p ).fm

116 제 2 발표장 (2 일금 ) 특별세션 - 고성능컴퓨팅 박근태 1, 최해천 1*, 최석호 2, 사용철 2, 권오경 3 ANALYSIS AND CONTROL OF TIP-LEAKAGE FLOW IN AN AXIAL FLOW FAN USING LARGE EDDY SI

(2)-02(최경자).fm

49(6)-06.fm

11(5)-7(09-37)p fm

11(4)-13(09-12)p fm

m, w, w w. xœ y t y w en, ùw,, ƒ y (, 1994; w, 2000). ƒ x œ (NGA; National Geospatial-intelligence Agency) t t wù x (VITD; Vector product Interim Terr

fm

9(2)-12(p ).fm

DBPIA-NURIMEDIA

82-02.fm

<30312DC0CCC7E2B9FC2E666D>

(163번 이희수).fm

한 fm


, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

29(4)-07(김봉채).fm

Microsoft Word - KSR2013A320

12(2)-04.fm

23(2) 71.fm

16(5)-04(61).fm

10(1)-08.fm

À±½Â¿í Ãâ·Â

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

<312D303128C1B6BAB4BFC1292E666D>

Transcription:

w wz 8«4y 2008 8 pp. 91 ~ 100 w w w e x Development of a Numerical Model of Shallow-Water Flow using Cut-cell System ½x Á Á Kim, Hyung-JunÁee, SeungOhÁCho, Yong-Sik Abstract Numerical implementation with a Cartesian cut-cell method is conducted in this study. A Cartesian cut-cell method is an easy and efficient mesh generation methodology for complex geometries. In this method, a background Cartesian grid is employed for most of computational domain and a cut-cell grid is applied for the peculiar grids where the flow characteristics are changed such as solid boundary to enhance the accuracy, applicability and efficiency. Accurate representation of complex geometries can be obtained by using the cut-cell method. The cut-cell grids are constructed with irregular meshes which have various shape and size. Therefore, the finite volume method is applied to numerical discretization on a irregular domain. The HC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. The weighted average flux method applied on the Cartesian cut cell grid for stabilization of the numerical results. To validate the numerical model using the Cartesian cut-cell grids, the model is applied to the rectangular tank problem of which the exact solutions exist. As a comparison of numerical results with the analytical solutions, the numerical scheme well represents flow characteristics such as free surface elevation and velocities in x-and y-directions in a rectangular tank with the Cartesian and cut-cell grids. KeyGwords : shallow-water equations, cut-cell method, finite volume method, HC approximate Riemann solver, TVD-WAF method Cartesian» w w x w rwš z w» w wš w. w» ³ w j» Cartesian txw e x y, z j» w p w ww w». w w w j» x, w» w w w e x w. HC Riemann w w yw, ew»w» w TVD-WAF» w. w w e x w» w w wƒ w ƒx w. w w e w» ³ w x- y- w y w y w. w :, w», w, HC Riemann w, TVD-WAF» 1. w e w, w x tx w e y j w e. w» mw k ³ew x txw» š wš, ¾ š z» w ƒ v w. rwš w ³ w j» w w» w ƒ ƒ w. w j» w w multi-block», t š t ywš k x w w š t e», ³ ƒ w e w x e». w»» w y ù, w» w v w w w ƒ w (Yang, 2000). w mw ywš z e wš e x w» wš w. * z Áw w w m œw (E-mail : john0705@hanyang.ac.kr) ** z Áy w œ w œw *** z Áw w œ w y œw ( ) 91

ü ew w ƒ y š. (2001) TVD» w 2 w w q e w, kz (2002) Roe» w w qƒ e w w. (2003) HC Riemann w TVD-WAF» w w w w w yw, ½ (2003) HC» TVD-WAF» yw Bellos (1992) q x e x xw. ½ y (2005) HC» MUSC-Hancock» w» w v w w e ³x y» w. w ü w w y w yw z, e x w. z e x ƒ v w. ³ w j» w š x tx y w w» w e wš, w» e x w e x w. w» p yw ƒ x ww w rw» (Causon, 2000; Causon, 2001; Qian, 2001). yw w w š t yw š x w (Qian, 2003). Zhou (2004) H(Harten, ax and van eer)» MUSC(Monotone Upstream-centered Schemes for Conservation aws)-hancock» e x w wš, 45 o 90 o q w CADAM(Concerted Action on Dam Break Modelling) v p(morris, 2000) x w. Gao (2006) w Roe» e x w w w Rayleigh-Taylor instability w j» w w, w q w w w w w. w w w xk j», w w xk e» w w yw e x w. yw» w Riemann w HC (Harten, ax, van eer and Contact wave)» w w, 1 e» w» w TVD-WAF(Total Variation Diminish-Weighted Average Flux)» w w»w. 2. w w» p ww, w txw z w». w w w w.» ³ w j» ƒx» txw. p yw, e ù p w ƒx w w txw, ƒx w» w ww w w ( 1 ). p w ww w w» w, w e w p w. x 1 š x x ƒ. š w tx, w w w w ƒ š ƒ. e e l» w ew 1. w 92 w wz «y

š, w ew. 2 r, wd ewš, dw š, d ƒ. w x w yw w w» w» š ƒ w w w w w. w, w š w z š rw w» ww. w w» w Ingram (2003) x wù š w ùkü z, ƒ e w w w w w w. P i = {( x 0, y 0 ),( x 1, y 1 ),,( x j, y j ),,( x n, y n )} (1) š w P i e ww» w (x i, y i ) (x j+1, y i+1 ) (x s, y s ) (x e, y e ) w wš, ƒx ƒ e w w. x ùkü š w P i t š t eƒ y w. w w sw w» w (2) w ó e (I s, J s ) (I e, I e ) w.», (x 0, y 0 ) x y t w. I s int x s x ------------- o y + 1 J x, s y = o s = ------------- + 1 y I e int x e x ------------- o y + 1, J e y = o x e = ------------- + 1 y (1) (2) w w» w w e w w w. w e 48ƒ ƒ w. w xkƒ 3ƒx l 5ƒx xk. 3. e x 3.1 x (3) x ùký. U E G ------ + ------ + ------- = S t x y x l U x y w l E G w S ƒƒ. h hu hv 0 U = hu, E = hu 2 + gh 2 /2, E = huv, S = ghs ox ghs fx hv huv hv 2 + gh 2 /2 ghs oy ghs fy (4) (4) h, u v ƒƒ x y w s³ ùkü. w sw S o S f ƒ ƒ w ùkü, Manning œ Chezy œ w w. ³ew w (3) yw» w (5) w w w. E G --- UdA+ ------dω + ------- dω = SdΩ t A Ω x Ω y Ω 3.2 Riemann w HC» 3 p š ww w, H» w w w w w». HC» Fraccarollo Toro(1995) w, Billet Toro(1997) HC» w k w. w w w w w w (6) ùký. (3) (5) U E ------ + ------ = 0 t x (6) w l š ƒ, q w (7) Riemann w. (6) 2. w Ũ = U for 0 S * U * U R U R for S R 0 for S 0 S * for S 0 S * R (7) w w e x 93

Riemann w w q (8). S l = min( u gh, u * gh * ) u + u R S * = u * = --------------- + gh 2 gh R S R = max( u R + gh R, u * gh * ) (7) (8) w w (9). E for 0 S E * = E + S ( U * U ) for S 0 S * E = E R * = E R + S R( U R * U R) for S * 0 S R E R for S R 0 2 y e» e w» w TVD w w. Toro(1999) WAF» w e x /2~ x /2 w. WAF E i + 1/2, j = x/2 x/2 E( Q i + 1/2, j( x, t/2) ) dx (8) (9) (10) HC» x/2~ x/2 3 p š w 4 w, (10) (11) ƒ ƒ s³w ùký. x š c 0 = 1, c 4 =1., (12) (11) wš w (13) w. k 1 E i + 1/2 = -- E 2 i + E i + 1 m ( ) 1 -- sign 2 ( c k )ψ i + 1/2 E i + 1/2 k = 1 4. x (13) e x mw» w w wƒ w ƒx w w w w., x» w t ew w y w., d w» t 30 o 45 o z g w wš e w w w e y w. e x w ƒ w 1 y w w ew w, l s w y š y w. e xk 5. d GA 5 (a) z w, GB GC z GA w w w. š xw» w k k E i 1/2 + WAF 4 = k = 1 ( k) β k E i + 1/2 (11) k ( k)» E i 1/2 j = E( Q (9) HC» s +, i + 1/2 ) ³ w β k (12). A k A k 1 β k = --------------------- = x 1 -- ( c 2 k c k 1 ) (12) (12) c k q S k w Courant ts k / 3. š ƒ 4. e w ƒ x 94 w wz «y

(3) (14) ƒ ƒ w. h T V T = h ij, u n, u t ( ) = V ij, ( u n, u t ) (14) 4.1 t w ƒx ynch Gray(1978) w w w ƒx ü w ew w. ƒ ƒx w ¼, k d š qšƒ ζ o (15) (17) w. ƒx ü 1/ 4» ü w, 2/4»» e s ƒ. 4/4»» sš w, k y ùkü. ζ o η() t = ----cos πx -----cos -----cos πy 2πt ------- + d 2 T ζ o gt ut () = -----------sin πx -----cos -----cos πy 2πt ------- 4 T ζ o gt vt () = -----------cos πx -----sin πy -----sin 2πt ------- 4 T T = 2/ gd (15) (16) (17) (18) ww 2 w, 2» e w. 5 d x y w y w w w w, 6 t =2T /4 t =4T /4 ƒx ü s t = T /4 t =3T /4 l s ùkü. d w e w w w, w e x j»ƒ w e mw y y wš y w. l s r, t =2T /4ƒ ù z» y š, ƒ» e š y w. 4.2 w w ƒx ƒx z k ƒ w z, w» w wš e w. z w» j»ƒ x = y =2.0m w,» ü w z ƒ w w w. e x w» w z ww (19) w (20)-(22) xw. θ ƒ z ƒ ùküš, x' y' z dw w œ t, x y z» œ t w. u' v' z t x' y' w ùkü, e w (23) x y w yw ew w. ¼ = 200.0 m d=5.0m, qš zo=1.0m» w y w. x = y =2.0m ³ w j» x' y' = cosθ sinθ sinθ cosθ x y (19) 5. d w w e ( z ) w w e x 95

6. l s ( z ) ζ o η() t ---- π xcosθ ysinθ = cos---------------------------------------cos ( + ) π -------------------------------------cos ( xcosθ ysinθ) 2πt ------- + d 2 T ζ o gt u () t ----------- π xcosθ ysinθ = sin---------------------------------------cos ( + ) π ------------------------------------- ( xcosθ ysinθ) cos 2πt ------- 4 T ζ o gt v () t = -----------cos---------------------------------------sin π( xcosθ + ysinθ) π -------------------------------------sin ( xcosθ ysinθ) 2πt ------- 4 T u' v' = cos( θ) sin( θ) sin( θ) cos( θ) u yv (20) (21) (22) (23) ³ w j» ƒx ww 30 o z e w ³ w w e w š w. 30 o z xk txw» w ww ùkù xkƒ ñ e š k ƒ. qš d =5.0m, ζ o =1.0m w e w, y w w w 7 ùkü, x w w e» w 8 t =2T /4 t=t /4 l s w. 9 10 y w 7. GB ( 100 100) 96 w wz «y

8. ³ w l s (30 o z ) 9. d w w e (30 o z ) y txw w w s l ƒ wš y w. 30 o z z txw» w 4 w w rw w. qš ƒ d =5.0m, ζ o =1.0m w. d e w w w 9 ùkü. w w w, w w e ƒ w w ewš y w. 10 t =2T /4 t =4T /4 ƒx ü s t = T /4 t =3T /4 l s ùkü. w xk w e, e ƒ w w ewš y w. l s r, x j» e ƒ w š š w w e x 97

y w., 200 m 200 m 45 o z ¼ ~ 141.42 m w» w w w. 45 o z txw» w w ³ 1/2 10. l s (30 o z ) ƒ ƒx xk. e qš 4.1 w d =5.0m, ζ o =1.0m w. d GC e w w w 11 ùkü. w w w, w w e ƒ 11. d w w e (45 o z ) 98 w wz «y

12. l s (45 o z ) w w ewš y w. 12 t =2T /4 t =4T /4 ƒx ü s t = T /4 t =3T /4 l s ùkü. l s r, ƒ x txwš, w l š tx š y w. 5. ƒx ³ š, x tx w w» w, š x x w w z e w w» w wš, w w e x w w e w. HC Riemann w w e w, TVD-WAF» w e x y w g. e x ƒ š w w š w ƒx ü w w. e x w» w t w ew w e ww, w x wš y w. t x 30 o 45 o w w w w r. ƒx ³ w w e w w w, w w e ƒ s l yw y w. w, ƒ l r, w w l w y x j š y w. w w y w w w y w š w e» w, w z š yw w q. š x ½ y, (2005) ³e x ƒ w š x w t. wm wz, wm wz, 25«, pp. 223-229. ½,, ½ w (2003) WAF» w w. w wz, w wz, 36«, pp. 777-785. kz,, (2002) w w. wm wz, wm wz, 22«, pp. 33-41., (2001) TVD e x :. w wz, w wz, 34«, pp. 187-195.,, (2003) TVD» w ew. w wz, w wz, 36«, pp. 597-608. Bellos, C., Soulis, J. V. and Sakkas, J. G. (1992) Experimental Investigation of Two-Dimensional Dam-Break Flows. J. of Hydraulic Research, Vol. 30, No. 1, pp. 47-63. Billet, S. J. and Toro, E. F. (1997) On the Accuracy and Stability of w w e x 99

Explicit Schemes for Multidimensional inear Homogeneous Advection Equations. Journal of Computational Physics, Vol. 131, pp. 247-250(4). Causon, D. M., Ingram, D. M., and Mingham, C. G. (2001) A Cartesian cut cell method for shallow water flows with moving boundaries. Adv. Water Resour., Vol. 24, pp. 899-911. Causon, D. M., Ingram, D. M., Mingham, C. G., Yang, G., and Pearson,R. V. (2000) Calculation of shallow water flows using a Cartesiancut cell approach. Adv. Water Resour., Vol. 23, pp. 545-562. Fraccarollo,. and Toro, E. F. (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J. Hydraul. Res. Vol. 33, pp. 843-864. Gao, F., Ingram, D. M., Causon, D. M. and Mingham, C. G. (2006) The development of a Cartesian cut cell method for incompressible viscous flows. Int. Journal for Numerical method in fluids, Vol. 54, pp. 1033-1053. Ingram, D. M., Causon, D. M. and Mingham C. G. (2003) Development in Cartesian cut cell methods. Math. and Computers in simulation, Vol. 61 pp. 561-572. ynch, D. R. and Gray, W. G. (1978) Analytic solutions for computer flow model testing. Journal of the Hydraulic Division, ASCE, Vol. 104, No. HY10, pp. 1409-1428. Morris, M. (2000 CADAM: Concerted action on dambreak modeling-final report. Rep. No. SR 571, HR Wallingford. Toro, E. F. (1999) Riemann solvers and numerical methods for fluid dynamics. Springer. Qian,., Causon, D. M., Ingram, D. M. and Mingham, C. G. (2003) Cartesian cut cell two-fuid solver for hydraulic flow problems. Journal of Hydraulic Engineering. Vol. 129, pp. 688?696. Qian,., Causon, D. M., Ingram, D. M., Mingham, C. G., and Zhou, J. G. (2001) A Cartesian cut cell method for incompressible viscous flows. Proc., European Community on Computational Methods in Applied Sciences (ECCOMAS), CFD 2001, Institute of Mathematics and its Applications, Southend-on Sea, U.K. Yang, G., Causon, D. M. and Ingram, D. M. (2000) Calculation of compressible flows about complex moving geometries using a three-dimensional Cartesian cut cell method. Int. Journal for Numerical Methods in Fluids, Vol. 33, pp. 1121-1151. Zhou, J. G., Causon, D. M., Mingham, C. G. and Ingram, D. M. (2004) Numerical prediction of dam-break flows in general geometries with complex bed topography. Hydraulic Engineering, Vol. 130, No. 4, pp. 332?340. ú : 08 02 26 ú : 08 02 26 ú : 08 06 09 100 w wz «y