Korean Chem Eng Res, Vol 43, No 6, December, 2005, pp 745-750 탄소섬유용프리커서피치를제조하기위한나프타분해잔사유의개질 zçi kçl ÇDan D Edie * 305-764 re o 220 * d (2005 8o 30p r, 2005 10o 25p }ˆ) Reformation of Naphtha Cracking Bottom Oil for the Preparation of Carbon Fiber Precursor Pitch Myoung Cheol Kim, Sang Yong Eom, Seung Kon Ryu and Dan D Edie* Department of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea Q Department of Chemical Engineering, Clemson University, Clemson, SC 29634-0909, USA (Received 30 August 2005; accepted 25 October 2005) k h ˆ o ˆ o l o ƒ rs o l NCB(naphtha cracking bottoms) oilp l} m, } e, v o p eˆ v m v p p, l r, o, q r np l rp vs p ll v o 125 vvm, l} m 380 o C, } e 3 h p k 240 o Cp l rp p n ƒ rs pl p p pp k 21 wtí, C/H 107l 134, s 085l 088p v m, r n p 300 wtí, 15 wtí pl, m ƒ p l r k 50 o C kp q p 250~1,250 ol l pv 80Í p p 250~700p sp ol pl Abstract Naphtha cracking bottoms(ncb) oil was reformed by varying the heat treatment temperature, treatment time, and nitrogen flow rate in preparation of precursor pitch for isotropic pitch-based carbon fibers and activated carbon fibers The reformed pitches were investigated in the yield, softening point, elementary analysis, and molecular weight distribution, and then the precursors reformed were melt spun to certify the optimum reforming conditions The optimum precursor pitch was prepared when the NCB oil was reformed at 380 o C, 3 h and 125 vvm N 2, and it s the softening point was around 240 o C The reforming resulted in product yield of 21 wt The C/H mole ratio of the precursor pitch increased from 107 to 134, the aromaticity increased from 085 to 088 The insolubles in benzene and quinoline were 300 wt and 15 wt, respectively The spinning temperature was about 50 o C higher than the softening point The molecular weights of the precursor components were distributed from 250 to 1250, and 80 of them were in the range of 250 to 700 Key words: NCB Oil, Precursor Pitch, Softening Point, Spinning, Carbon Fiber 1 v 10 l k, ˆ (AC, activated carbon) e ˆ r ˆ o(acf, activated carbon fiber)p pp np v l p ˆ op r ˆ l l o, p l l pl n j p, p op v, v, sp, To whom correspondence should be addressed E-mail: skryu@cnuackr v p ˆ k l n p qrp p p [1-3] ˆ op r ~ vp ˆ o o vl PAN, md,, v o } s l q l rl ˆ o ˆ p o lpl q s l,, k p l k ~ ˆ j n l r mm p r o ˆ op sr, pm r ~ eˆ l 745
746 ~Ël nëod ËDan D Edie ep ppˆ pp, r pt Že [4], l rv r [5] p p pnl v tp Otanim Sanada[6] orr qo p v np l ˆ o rs mp, p r ~ ˆ om ˆ l r r p o n p l o ˆ o q (NCB oil, naphtha cracking bottoms oil)p v, np, kr ˆ l r s p o p NCB oilp vs p p p p ƒ rs p Brooksm Taylor[7] p ˆ vp s pdp l l ~ rp l eq mp p l q, ˆ p p ˆ o l o l re m p ˆ o mq pn o r l pp n ˆ o rs o ƒ p rs n l ˆ o ˆ o rsn ƒ l o l o p NCB oilp v l pl l} m m e v o p rp p s p } rp p p o l l s l v ƒ, l r q s mp np m 2 2-1 m e l n o ˆ l lž,, Š, ˆ l m p rsel p ˆ q op (SK Co, Korea) v, ˆp l l p m p r, Š l e p s o v o p ˆ 9 r p s o p v eˆ p tv qo f ˆ 10 p p s ˆ o p Table 1l o p p re m 2-2 oo Fig 1l ˆ m p e el 6 e p l o 4 Kg(ρ=105 g/cm 3 )p pr v o (2~6 l/min~05 15 vvm)p ov, l} m (360~390 o C) v 2 o C/min l p m l e (1~3 h)p l l} l} m ql eˆ ml lv ƒ ˆ Table 1 Properties of NCB oil and precursor pitch reformed at 380 o C, 3 h, and 125 vvm N 2 Elementary analysis (wt ) Properties NCB oil Reformed pitch o43 o6 2005 12k C 8949 9414 H 695 578 N 000 008 O 456 00 Density(g/cm 3 ) 107 105 Atomic mole ratio(c/h) 107 134 Benzene insolubles (BI, wt ) - 300 Quinoline insolubles (QI, wt ) - 15 Aromaticity (F a ) 085 088 Fig 1 Schematic diagram of NCB oil reforming reactor 1 N 2 gas 5 Electric furnace 2 Temperature controller 6 Condenser 3 Motor 7 Oil receiver 4 Reactor p l r p 200 o Cm 390 o C pl n l 200 rpmp m, v p v o p p l m 2-3 m v ƒ p kk o l o (EA 1110, CE Instrument, Italia), TG (TGA-50, Simadzu, Japan) p ee mp, FT-IR(FTS-175C, Cambridge, USA) p l q sl rp r s v r, p s m [8] BI(benzene insolubles) JIS K2425, QI(quinoline insolubles) ASTM D2318-81l r mp, p krp o p m v ƒ p l l r(sp, Mettler, FP80, Swiss) p l n ƒ rs s p Ž m p o (05 mm) v p m r sr, 65 kg f /cm 2 p pv k p v t p ƒ np m v ƒ p q kk o MALDI-TOF mass spectrometry (Autoflex, Bruker Daltonics, USA) n mp q p m Edwards [9]p q rp d TCNQ (7,7,8,8-tetracyanoquinodimethane) n l m v pn l ol ˆ rq l m o r sr p l p l 480 m/min lp 1,000 mp lv lp p n p m 3 y 3-1 m Table 1l NCB oil v ƒ p o
NCB Oilp vs l ƒ p 747 Fig 2 TGA curves of (a) NCB oil and (b) precursor pitch reformed at 380 o C, 3 h, and 125 vvm N 2 Fig 3 FT-IR spectra of (a) NCB oil and (b) precursor pitch reformed at 380 o C, 3 h, and 125 vvm N 2 ˆ l v rp k m p C/H 107l 134, s 085l 088 v m, p NCB oil q vp l pp, CO 2, CO, CH 4 p r l el r q v p t l s v r p [10] v l v ˆ p v p p p t p p p p Fitzer [11]p l m p Fig 2 NCB oil v ƒ p v o l p TG p p p p o vp 150 o C 275 o C v k 50 wtí t p p p r q vp l p p 300~360 o Cl m t lt 360 o C p e t p v p 300 o C p pp pl p Ž ˆ v v p l 300 o C p l e p qn p l CO CO 2 s v p p q k r p [12] 400 o C p l e t m v l l t pp pl el krp ~ p p s pd l p r ƒ l o l 390 o C p l v p v Table 2l l s l v ƒ p p l r r n p r m pp 19~25 wtí pl p r q vp r l p p vs l p p pp 20 wtípp k p, p } e k p m m p v o l p l} p m m rp v o l p l} pp k p o mp } l pp lt p e pl p p Yamada[13]p m p p Fig 3p o m v ƒ p r s o FT-IR d p 3,030 cm -1 l s C-H e v, 2,920 cm -1 l v s e v p p ˆ p 1,600 cm -1 l s C=C o qn l p ˆ p l o p n r l s C=C l p Ž CH 2, CH 3 p v s C=C e v l p 1,450 cm -1 l, s p k v 700~900 cm -1 mll t H-C-C šv l p 750, 820, 870 cm -1 l p ˆ p Table 2 Properties of precursor pitches by varying reforming conditions Reforming conditions Properties N 2 (vvm) Temp ( o C) Time (h) Yield ( ) BI ( ) QI ( ) SP ( o C) 075 380 3 218 2570 088 1960 1 380 3 209 2730 110 2080 125 380 3 206 3000 149 2383 15 380 3 201 4200 120 2518 125 360 3 219 1500 106 2198 125 370 3 206 2200 135 2303 125 390 3 191 3000 145 2482 125 380 2 221 2300 095 1985 125 380 4 197 3800 112 2590 vvm : N 2 volume/working volume/min Korean Chem Eng Res, Vol 43, No 6, December, 2005
748 ~Ël nëod ËDan D Edie e p p s p o pp 2,320 cm -1 l v l n ˆ -v p lpp lt p s (F a ) rn d p pn l pe p [8, 13] H C F a = 1 ------------------------------------------ X ( 1 + ( Ha Hs) ) Ha Hs D 3030 1 = ----------- ----------- D 2920 ε A ε S o (1)el X' s ˆ pnp ˆ m p f p rp 2 r, H/C o p ˆ Ha/Hs s v sp p (2)el p ε A /ε S 3,030 cm -1 ( s C-H e v ) 2,920 cm -1 (v s C-H e v )p 05p, D 3030 /D 2920 s p rp m v s p rp p ˆ p e v r NCB oilp s 085 pl 380 o C, 3 h, 125 vvm N 2 p s l v ƒ p s 088 k v mp Table 1l r e m 3-2 oom no v rl o ov o l lt v p o (vvm), o Œp (kg), l} m ( o C) e (h), (rpm), l} p pp sr l ƒ p p sr p p pq t o Œp p l [10]l k p p p l m p v kp p s (Œp 4 kg, 200 rpm)p r m p n, Griffin Walker[14] m s pd mp, In [10]p 400 o C p p v krp ql m p m e l 400 o C prp p rs rp krp p lr s l e p m ˆ o rs o p skk m l r p lk p rr q sp q l sn r q vp p e d lv pp, q pr v kp rp sq q p vl p l o p v, l krp sq p p r kr p p p pp krp v k } s p rr sr el sp q k ƒ p p kk o v e e l n l np m n p tp r lp l l 480 m/min m p 1,000 m k lvp l n r m prp l [16]l p l} m 400 o C p p } e p lv v l krp p p ~ l s pd s pd l v k p l s pdp p n p lp, In [10]p QI v l r v m v p m Lee[12] l} m m e p v BI v, p l l} v r o43 o6 2005 12k (1) (2) Fig 4 Properties(SP, BI and QI) of precursor pitches reformed by 1 step(at the different temperatures, 3 h, 125 vvm N 2 ) and 2 step(1 step, and 30 o C lower temperature than 1 step, 3 h, and 125 vvm N 2 ) heat treatment kk p m Lee[12]m Hwang [15]p 2 (390 o C, 3 h 360 o C, 3 h) l } p n ƒ ll pp 2 } p v q m Fig 4l 1 m 2 l} l p v p p ˆ l 1,2 pr QI p v krp v kk s l rp 2 } e 1 2~5 o C p rm BIle 2 l p p p p 1 m e } Ž } m m e p m p r rp Š 2 p qrp v kk 1 l l} m l ƒ p p, l rp } m l l v pp pp m m l p pr m 390 o C p p m l krp v kk QI p 15Í p pr mp ƒ p p BI } m p dl v 380 o C p l v m v 360 o C p l l n vp ~l v 380~390 o Cl p s v p Fig 5 l} e p eˆ v ƒ p p r p } e p v l r BI v QI 15Í p ov l oe l l rp p } m l m p p BI le pr v p lt Fig 6p v o p l v ƒ p p r p p le v o p v l r BI v p p QI 15Íp p p r ƒ s m v, v o p 1 vvm N 2 p l p l rp l e 2 } k v prp v o p 125 vvm N 2 p p Ž Fig 7p l r m p ˆ l vs p l 180~260 o Cp l rp rs l r m mp s r m l r k 50 o C r k p m e q l
NCB Oilp vs l ƒ p 749 Fig 5 Properties(SP, BI and QI) of precursor pitches reformed at different times, 380 o C, and 125 vvm N 2 Fig 8 MALDI spectrum of precursor pitch reformed at 380 o C, 3 h, and 125 vvm N 2 Fig 9 SEM image of (a) melt spinned pitch fibers and (b) enlarged image Fig 6 Properties(SP, BI and QI) of precursor pitches reformed at different nitrogen blowing rates, 380 o C, and 3 h Fig 7 Relationship between softening point and spinning temperature pp m l r k v v ƒ p m l rl ps ~ l r k 50 o C k e m m pl Table 2l vs l p p r l Fig 8l MALDI TOF mass spectrometry n l v ƒ p q kk k X p m/z v /r kpmp q p ˆ, Y p r ˆ p r Hwang [15]p l l o p q p k 1,564 np o m MALDI v p q 250~1,250plp 250~700p s p ol k 80Í p p l p sp q o s p p lpp p el p (eutectic) vp o pl e lv lp pr o lp pl p p n ˆ o l o rp p n ƒ rs o NCB oilp r vs p v o 125 vvm, l} m 380 o C, } e 3 hp l p s l llv ƒ n p l t op SEM vp Fig 9l re m v p k 15 µmp o kr, ˆ l n p ˆ om ˆ o lp pl 4 q op NCB oil v p f ƒ lp pl p l r p vs l Korean Chem Eng Res, Vol 43, No 6, December, 2005
750 ~Ël nëod ËDan D Edie v o, l} m pe p tn pqp l} m } e v p p l rl m p ~ 1,000 mp p lv lp 15 µm p p t np p n p ƒ 125 vvmp v 380 o Cl 3e k l} p l rp k 240 o C plp r m l r 50 o C r k p p BI 300 wtí, QI 15 wtí pl p, q p 250~700 ol vp r~p 80Í p p vl p l q p o s p p l p p q p k 350 pl qn p m pp C/H m s v m p v s p r tvo ˆ q p rsl on r t p y 1 Ryu, S K, Porosity of Activated Carbon Fibers, High Temperature-High Pressure, 22(4), 345-354(1990) 2 Donnet, J B, Wang, T K, Peng, J C M and Rebouillat, S, Carbon Fibers, 3rd ed, Marcel Dekker Inc, New York(1998) 3 Eom, S Y, Cho, T H, Cho, K H and Ryu, S K, Pore Size Distribution of Metal(Ag, Cu, Co)-containing Activated Carbon Fibers, HWAHAK KONGHAK, 38(5), 591-596(2000) 4 Kim, M S and Kim, D Y, Application of Catalytically Grown Carbon Nanofiber in Double Layer Capacitor (I) - Preparation and Properties of Carbon Nanofiber-, HWAHAK KONGHAK, 36(1), 34-41(1998) 5 Shin, C S, Lee, K D, Lee, S J and Lee, T H, Fabrication of the Electrode for Proton Exchange Membrane Fuel Cell by Using Activated Carbon Fiber, HWAHAK KONGHAK, 36(3), 387-392 (1998) 6 Otani, S and Sanada, Y, Introduction to Carbonization Engineering, Ohm Co, 229-230(1980) 7 Brooks, J D and Taylor, G H, Chemistry and Physics of Carbon, Marcel Dekker Inc, New York, 4, 234-240(1968) 8 Yamada, Y, Honda, H and Abe, T, Production of Binder Pitch from Petroleum Vacuum Residue, J Japan, Petrol, 18(1), 758-762 (1979) 9 Edwards, W F, Jin, L and Thies, M C, MALDI-TOF Mass Spectrometry: Obtaining Reliable Mass Spectra for Insoluble Carbonaceous Pitches, Carbon, 41(14), 2761-2768(2003) 10 In, S J, Ryu, S K and Rhee, B S, Effect of Stirring Speed and N 2 -blowing Rate on Mesophase Formation from Naphtha Tar Pitch, HWAHAK KONGHAK, 27(3), 291-298(1989) 11 Fitzer, E, Muellur, K and Schaefer, W, Chemistry and Physics of Carbon, Marcel Dekker Inc, New York, 7, 237-240(1971) 12 Lee, G D, Effect of Heat Treatment Temperature and Time during the NCB Oil Transformed Into Mesophase Pitch, Master Dissertation, Chungnam National Univ, Daejeon, Korea(1989) 13 Yamada, Y, Characterization of Heavy Oils and its Application, J Japan, Petrol, 24(1), 74-80(1981) 14 Griffin, R R and Walker, P L 16th Biennial Conf on Carbon, Univ of California, California, 16(1983) 15 Hwang, J S, Lee, C H, Cho, K H, Kim, M S, Kim, C J, Ryu, S K and Rhee, B S, Preparation of Anisotropic/Isotropic Pitches from NCC-PFO, HWAHAK KONGHAK, 33(5), 551-558(1995) 16 Chwastiak, S and Lewis, I C, Solubility of Mesophase Pitch, Carbon, 16(2), 156-157(1978) o43 o6 2005 12k