Wire to Wire Temperature Rise type and Temperature Rise Prediction of Afterward Combined Environmental Test That of Wire to Wire Connector for Automobile 2002 2 1
Wire to Wire Temperature Rise type and Temperature Rise Prediction of Afterward Combined Environmental Test That of Wire to Wire Connector for Automobile 2002 2 2
2002 2 3
-------------------------------------------------------------------- i ABSTRACT ---------------------------------------------------------------- ii 1 -------------------------------------------------------------- 1 1-1 -------------------------------------------------------------------- 1 1-2 -------------------------------------------------------------------- 4 1-3 -------------------------------------------------------- 6 2 -------------------------------------------------------- 8 2-1 --------------------------------------------------- 8 2-2 -------------------------------------------------------- 9 2-3 ------------------------------------------------------- 10 3 ------------------------------------------------- 11 3-1 ------------------------------------------------------- 11 3-2 ------------------------------------------------------- 12 3-3 ------------------------------------------------------- 13 4 ----------------------------------------------- 15 5 ------------------------------------------------------- 18 4
5
ABSTRACT This research analyzed and classed data on the temperature elevation pattern of wire to wire connectors uses in automotive applications, and then appled the Joule's law principle to setting up an empirical formula relationship to simply the prediction of temperature elevation This involved experimental testing of 170 hour duration, which subjected the connectors to a complex matrix of environmental conditions This temperature elevation predisposition model is broken down into five categories; particularly noting that in the case of waterproof connectors, the elevation in temperature after testing under simulation of complex environmental conditions was about 5% above levels manifest after current overload tests, while the temperate elevation curve was maintained as a linear curve Further, in cases where temperature elevation run under 18% after initial temperature elevation tests and current overload tests, it is easy to use this empirical formula relationship to predict the temperature elevations that will occur in testing under complex environmental conditions 6
1 1-1,,,,,, PCB IP (INSTRUMENT PANEL),, PCB (PRINTED CIRCUIT BOARD) ETACS (ELECTRONIC TIME & ALARM CONTROL SYSTEM) ECU (ELECTRONIC CONTROL UNIT) PCB WIRE TO WIRE WIRE TO WIRE Table 1 7
0050, 0070, 0090, 0250 050, 070, 090, 250, Fig 1 1-1-1 <1> [1], Fig 2 Fig 3 <1> : 8
9, 83%89%, [2],,
1-2 40 Weills Ryder [3] Brunut Buckland [4], Barzelay [5] Tachibana [6] HFench WMRohsenow [7],,, 1980 Corman Mroczkowski [8], 1990 1988 Kenjiro Konishi Masahiro Sudia [2], 1992 Kaoru Kurita [9] 10
11
12 1-3 32 CYCLE 170,,, 170
13
2 2-1,, 2-1-1,, I = K ( A/ L ) [ W ] ( 2-1 ) 14
( 2-1 ) K [W/m K], I [A], [V], K [ /m], [m K/W] = I ( L / A ) = R I [K ] ( 2-2 ) ( 2-2 ) (thermal resistance), [K/W], (2-2) 2-2,, 15
Fig 3 2-3, R [ ] I [A] t H ( 2-3 ) H= I 2 R t [J] = 024 I 2 R t [cal] ( 2-3 ) R,, 16
3 Fig 4,,,, 050, 070, 090, 250, Table 2,, [10][11], 3-1 Fig 4 Fig 6 17
Fig 5 Fig 4 30~60cm Fig 7 (0) Table 3 Table 2 50% <1> 10% 3-2 CYCLE 2 1, 9 OFF 1000 cycle 60 C Fig 8 Table 4 1 cycle 1000 cycle 40 C <1> : 1 2 C 18
3-3,,, 10 120 C 48 Fig10 3-3-1 Fig 11 750mm Fig 14 10 5mm Fig 14 19
3-3-2 80 C, 90~95%RH 45 15 120 cycle (+) 5V, 1Ma(2W, 5K ) 20Hz 200Hz SWEEP TIME 3 44G Fig 11, Fig 12, Fig 13 X,Y,Z 3 40 Xt = A Sin Wt (3-1) W = 2 f (3-2) (3-1), (3-2) F (Hz), W (rad), A (G) 20
4 [11] 3,, Table 5 Table 2 Table 7, Table 8, Table 9, Table 10, Table 11,, Fig 15, Fig 16, Fig 17, Fig 18, Fig 19 5 Fig 15 16% 21
Fig 16 8%~36% 16~59%,, Fig 17 13~60%, 4%~175% 10P Fig 19 Fig 18 83%~192% Fig 19 18%, 4267%,, 22
Fig 19 ( 4-1 ) Fig 19 13% Fig 17 057 5% 4-1 ( 2-3 ) T T = ( I 2 * R * / S ) * 10 ( 4-1 ) R 20 ( 39 x 10-3 ) S T (4-1) 10 Fig 19 13% 23
5, 1 WIRE TO WIRE 5 2 5% 3 18% T = ( I 2 * R * / S ) * 10 24
Table 1 CONNECTOR SIZE SIZE ( A x B ) mm SIZE ( A x B ) inch 1 050 CONNTECTOR 13 x 064 0050 x 0025 2 070 CONNTECTOR 18 x 064 0070 x 0025 3 090 CONNTECTOR 23 x 064 0090 x 0025 4 250 CONNTECTOR 63 x 080 0250 x 0031 ( A x B ) SIZE Fig 20 Table 2 CONNECTOR HOUSING TERMINAL 1 050 CONNTECTOR PBT-HB BRASS COPPER ALLOY 1,2,4,6,12,1 8,23 03 ~ 05 (SQ) 25 ~ 5 (A) 2 070 CONNTECTOR PBT-HB BRASS COPPER ALLOY 3,4,6,8,10,1 2,14,20 125 ~ 20 (SQ) 45 ~77 (A) 3 4 090 CONNTECTOR 250 CONNTECTOR PBT-HB PA66-V2 BRASS COPPER ALLOY BRASS COPPER ALLOY 3,4,6,8,12,1 4,18,20 1,2,3,6,8 05 ~ 125 (SQ) 125 ~ 30 (SQ) 5 ~ 10 (A) 10 ~ 15 (A) 25
Table 3 Table 4 CYCLE 1 ON, 2 9 OFF 60 C 26
Table 5 SPEC S ( ) 1 2 Hr - DC POWER SUPPLY - DC E/LOAD 30 C - THERMO-COUPLES(TYPE J ) - DATA SCRIPTER - CHAMBER( ) 3-1 2 TEST 144 Hr 2 Hr - - DC POWER SUPPLY (0~30V DC / 0~200A) 40 C - DC E/LOAD - THERMO-COUPLES(TYPE J ) - DATA SCRIPTER - ON OFF TIMER 3-2 3 168 Hr 2 Hr - ( + + ) 40 C - DC POWER SUPPLY - DC E/LOAD SYSTEM - ON OFF TIMER - DIGITAL 3-3 ( ) 27
Table 6 ( ) (TYPE) 1 DC POWER SUPPLY 100V / 500A -- 2 DC E/LOAD 52 CH FBTS-500 3 THERMO- COUPLES(TYPE J ) -200 C~1100 C -- MARLIN (USA) 4 DATA SCRIPTER : 100 CH : 50 CH DA-100 YOGOGAWA ( ) 5 PAN RECORDER 4Hr(, ) R4110 YOGOGAWA( ) 6 ON OFF TIMER HOUR MINITS SEC 7 DIGITAL 16 CH(, ) DL 716 YAGOGAWA( ) 8 : -40 C~ 100 C 9 :-50 C~140 C ( + + ) : 0~99% RH : 100G EMIC ( ) 28
29
30
Fig1 31
Fig2,, 32
Fig 3 33
Fig 4 34
Fig5 chamber connector Fig6 35
Fig7 Fig8 36
Fig9 digital recorder Fig10 37
Fig11 ( X ) Fig12 ( Y ) 38
Fig13 ( Z ) Fig14 ( Z ) 39
Fig 15 A - 40
Fig 16 B - 41
Fig 17 C - 42
Fig 18 D - 43
Fig 19 E - 44
A B Fig 20 TAB TERMINAL 45
1 CV Madhusudana, Thermal Contact Conductance Springer-Verlag page 1 21, 1962 2 Kenjiro Konishi, Masahiro suda, Takayuki sato, and Takayuki nishimura, 1988 minimization of Connector size and its Grounds with Heat Transmission Theor, Furukawa Electric co Ltd 3 ND weills and EA Ryder, thermal Resistance Measurements of Joints Formed Between stationary Metal surfaces,transactions of the ASME, pp259-267(1949) 4 AW Brunot and Florence F Buckland, Thermal Contact Resistance of Laminated and Machined joints, Transactions of the ASME, pp253-257(1949) 5 Barzelay, Effect of pressure on thermal Conductance of Contact in Joints, NACA 3295 (1955) 6 Fujio Tachibana, Thermal Resistance of Metallic Contact parts, Journal 46
of ASME, university of Tokyo,Vol155,NO397,(1954) 7 H Fench and WM Rohsenow, Prediction of Thermal Conductance of Metallic Surfaces in Contact, Transactions of the ASME, pp15-24(1963) 8 Corman, NE, and Mroczkowski,es Fundamentals of power Contants and Connectors proc23dann Conn And interconn Tech Symposium, Toronto, Canada, 1990 9 Kaoru Kurita Mamoru Sawal, and Mitsugu Watanabe, Heat interference Analysis of Mini Auto Fuses, Applied to power Distribution Block Design, YAZAKI parts co 10 Current Capacity of Low Tension Cables for Automobiles JASO 609 90 11 1998, 47