KOREAN J. FOOD COOK. SCI. Vol. 31, No. 2, pp. 207~213 (2015) ISSN 2287-1780(Print) ISSN 2287-1772(Online) http://dx.doi.org/10.9724/kfcs.2015.31.2.207 구기자추출물함유음료의산화방지활성, 항당뇨효과, 유리아미노산과무기질함량 이경애 순천향대학교식품영양학과 Antioxidative and Anti-Diabetes Activity, and Free Amino Acid and Mineral Contents of Beverage with Gugija (Lycii fructus) Extracts Kyong-Ae Lee Department of Food Science and Nutrition, Soonchunhyang University, Chungnam 336-745, Korea Abstract Free amino acid and mineral analysis of beverages with Gugija (Lycii fructus) extracts performed to determine the antioxidative and anti-diabetes activities of the beverages. The four major free amino acids in the water- or ethanol-extracts of the Gugija beverages were asparagine (115.23, 51.95 mg%), methionine (20.02, 22.07 mg%), aspartic acid (19.65, 13.72 mg%) and taurine (18.64, 22.44 mg%). The mineral contents of the Gugija beverages with water- and ethanol-extracts were in the order K>Mg>Na>Ca>Zn>Fe. Antioxidant activity determined by DPPH and ABTS radical scavenging activity. There was no significant difference in DPPH and ABTS radical scavenging activities between the water-extract beverages and the ethanol-extract beverages, although more phenolics and flavonoids were found in the ethanol-extract beverage. Higher anti-α-glucosidase activity was observed in the ethanol-extract beverage compared to acabose, which was used as the control and is an inhibitor of α-glucosidase, suggesting that the Gugija beverage with ethanol extract could be a potential hypoglycemic agent. Key words: Gugija (Lycii fructus), beverage, free amino acid, antioxidative activity, anti-α-glucosidase activity Ⅰ. 서론 구기자는가지과에속하는관엽관목인구기자나무의열매 (Lycii fructus) 를말한다. 구기자나무의뿌리의껍질, 잎, 어린순은각각지골피 (Lycii cortex), 구기엽 (Lycii folium), 청정초라고하며약리특성이인정되어오래전부터한방에서는소갈, 이뇨, 해열진해등에널리이용되어왔다. 동의보감에의하면구기자는정기를보익하고오래복용하면몸이가벼워지고늙지않으며더위와추위를견디는힘이강해지고장수한다고한다 (Lee SR 1983, Shon HK 등 2008). 본초강목에는독성이없고해열하며염증, 갈증을수반하는당뇨병, 신경이마비되는질병치료에좋고폐나신장의기능을촉진하여시력이좋아져꺼져가는등불에기름부음같다고되어있다. 구 Corresponding author: Kyong Ae Lee, Department of Food Science and Nutrition, Soonchunhyang University, 22 Soonchunhyang-ro, Asan, Chungnam 336-745, Korea Tel: +82-41-530-1262 Fax: +82-41-530-1264 E-mail: kaelee@sch.ac.kr 기자는 betaine, cholin, meliscic acid, zeaxanthin, β- sitosterol, physalien, rutin 등과같은여러기능성물질이함유되어있으며항산화효과, 항비만작용, 혈당강하효과, 항고혈압효과, 항암활성, 혈중콜레스테롤저하효과, 간기능개선효과등여러생리활성을보인다 (Chung HK 등 2004, Cho YJ 등 2005, Kang KI 등 2006, Park SJ 등 2006, Lee JS 등 2008, Shon HK 등 2008, Hwang EY 등 2009) 또한 threonine, lysine, phenylalanine 과같은필수아미노산, 불포화지방산등이풍부하다 (Lee MY & Sheo HJ 1986). 우수한건강식품소재인구기자의건강기능성과영양성을살린가공제품은소비자의건강에기여할수있을것으로기대되어구기자를이용한요구르트, 제과류, 술, 떡, 한과, 차등의다양한가공식품제조에관한여러연구가보고되어있다 (Cho IS 등 2003, Chung HK 등 2004, Park BH 등 2005, Lee DH 등 2005, Song JH 등 2011, Park BH 등 2012, Lee YS 등 2014). 최근음료소비패턴은단지청량감을주는콜라, 사이다와같은탄산음료소비는감소하고전통음료가소비자의니즈에맞게현대 207
208 이경애 화되면서천연물을원료로한제품의판매량이점차증가하는경향을보이고있으나관련연구는단편적이고체계적인연구는미비한실정이다. 음료제조의기본이되는추출물은추출조건에따라이화학적특성, 생리활성등에차이를보여최종제품의품질특성에영향을준다 (Kim JH 등 2003, Kang MK 등 2010, Lee SW 등 2010). 또한음료중의유리아미노산은맛에영향을줄뿐아니라일부아미노산은알코올해독작용, 혈청콜레스테롤저하등과같은생리활성을보이며무기질은아미노산과함께맛에영향을주거나생체효소의활성이나활성산소제거등에영향을준다 (Ugawa T 등 1992, Kawai M 등 2002, Lee KA & Park JS 2014) 따라서본연구는구기자의물추출물과 50% 에탄올추출물을이용한음료를제조하여음료에함유된유리아미노산과무기질의종류와양, 산화방지활성등을검토하여구기자를이용한건강음료제조의기초자료를제공하고자하였다. 1. 재료 Ⅱ. 재료및방법 충남청양소재구기자원예농업협동조합에서볶은구기자를구입, 분말화하여사용하였다. 구기자분말 10 g 에증류수또는 50% 에틸알코올 300 ml 를넣고혼합하여 3 시간환류냉각추출후여과하여여액을얻어동결건조하였다. 이때 70% 에틸알코올추출액은에틸알코올을제거후동결건조하였다. 사용시약은 Folin-Ciocalteu s phenol 시약 (Sigma-Aldrich Co., St. Louis, MO, USA), diphenyl-1-picrylhydrazyl (DPPH, Sigma-Aldrich Co., St. Louis, MO, USA), 2, 2'-azino-bi-(3-ethylbenzothiazoline-6- sulfonic acid) (ABTS, Sigma-Aldrich Co., St. Louis, MO, USA), L-ascorbic acid(sigma-aldrich Co., St. Louis, MO, USA) 등이었다. 2. 방법 음료의제조구기자추출액함유음료는추출액 70%, 오미자수용성추출액 10%, 당 14.5%, 구연산 0.5% 를배합하여제조하였다. 재료배합은예비실험을통해결정하였다. 유리아미노산분석유리아미노산함량은아미노산자동분석기 (S430, Sykam GmbH, Munich, Germany) 를이용하여분석하였다. 시료 10 ml 와 sulfosalicylic acid 0.2 ml 혼합하여 1 시간방치시킨다음 membrane filter(0.2 μm) 로여과하였다. 여액 1 ml 에 0.12N lithium citrate buffer(ph 2. 를가하여잘섞 Table 1. Operating conditions for amino acid analyzer Parameters Conditions Column cation separation column LCA K07/Li (4.6 150 mm) Column temp. 37~74 o C Flow rate 0.25 ml/min Reagent flow rate 0.45 ml/min Buffer citrate buffer (ph 2.90, 4.2, 7.95) Detection wavelength 440 nm, 570 nm 은혼합액을아미노산자동분석기에주입, 분석하였으며분석조건은 Table 1 에나타내었다. 3) 무기질분석시료 1 g 에 65% HNO 3 7 ml 와 30% H 2 O 2 0.5 ml 를혼합하여반응시켰다. 이용액에 1% nitric acid 를넣어 100 ml 로정용한후무기질분석에이용하였다. 무기질분석에는유도결합플라즈마분광광도기 (ICP-OES, Optima 7300 DV, Perkin Elmer, Shelton, CT, USA) 를이용하여 RF power 1400w, pump flow rate 1.5 ml/min, nebulizer gas flow 0.65 L/min 의조건에서분석하였다. 4) 산화방지활성분석 ( 폴리페놀함량및플라보노이드 Folins-Denis 법 (Kwon HJ & Park CS 2008) 으로폴리페놀함량을분석하였다. 시료 0.5 ml 에 0.2% Folin- Ciocalteu's phenol reagent 를넣고잘혼합하여 3 분간방치한후 Na 2 CO 3 포화용액 200 µl 과증류수를첨가하였다. 1 시간방치후 UV-VIS Spectrophotometer(UV mini-240, Shimadzu, Kyoto, Japan) 를사용하여 725 nm 에서흡광도를측정하였으며 tannic acid 를표준물질로이용하였다. 플라보노이드함량은 Zia Z 등 (1999) 의방법을일부수정하여분석하였다. 시료 0.25 ml 에증류수 0.25 ml 와 5% NaNO 2 75 µl 를첨가하여잘혼합한후 5 분간방치하였다. 여기에 10% AlCl 3 6H 2O 은 0.15 ml 를넣고 6 분간반응시킨후 1N NaOH 0.5 ml 를첨가하였다. 10 분간반응시킨후 UV-VIS Spectrophotometer(Shimadzu) 로 415 nm 에서흡광도를측정하였으며 quercetin 을표준물질로사용하여표준곡선을작성하였다 ( DPPH 라디칼소거능시료 1 ml 에 10-4 M DPPH 용액 1 ml 를가하여실온에서 10 분간반응시킨후 UV-VIS Spectrophotometer(Shimadzu) 를이용하여 517 nm 에서흡광도를측정하였다. DPPH 라디칼소거능 (%) 은시료첨가구의흡광도 (A 0 ) 와시료무첨가구의흡광도 (A 1 ) 를이용하여다음과같이산출하였다 한국식품조리과학회지제 31 권제 2 호 (2015)
구기자추출물함유음료의산화방지활성, 항당뇨효과, 유리아미노산과무기질함량 209 (Blois MS 1958). DPPH 라디칼소거능 (%) = A 1 -A 0 100 A 1 (3) ABTS 라디칼소거능 ABTS radical decolorization 방법을이용하여 ABTS 라디칼소거능을측정하였다 (Nicoletta P 등 1999). 7 mm ABTS(2,2'-azino-bi-(3-ethylbenzothiazoline-6-sulfonic acid)) 와 2.45 mm K 2 S 2 O 8 를동량혼합하여암소에서반응시켜 ABTS 라디칼을형성시킨 ABTS 용액을제조하였다. ABTS 용액 1 ml 에시료를넣고암소에서 7 분간반응시킨후반응액의흡광도를 UV-VIS Spectrophotometer(Shimadzu) 를사용하여 734 nm 에서측정하였다. ABTS 라디칼소거능은시료첨가구 (X 0 ) 와시료무첨가구 (X 1 ) 의흡광도를이용하여다음식에의해 ABTS 라디칼소거능 (%) 으로나타내었다. ABTS 라디칼소거능 (%) = X 1 -X 0 100 5) α-glucosidase 저해활성 0.7 U/mL 의효모유래 α-glucosidase(sigma-aldrich Co., St. Louis, MO, USA) 50 µl 와시료 10 µl 를첨가하여 37 o C 에서 5 분간반응시켰다. 5 mm p-nitrophenyl α-dglucopyranoside(in sodium phosphate buffer, ph 7.0) 50 µl 를가하고 5 분간반응시킨후 405 nm 에서흡광도를측정하였다. 표준물질로는 acabose 를사용하였다 (Choi J 등 2008). 6) 통계분석 3회반복실험한결과는 SPSS통계프로그램 (version 19.0, SPSS Institute Inc., Chicago, IL, USA) 을이용하여분산분석을실시하고시료간유의성검정을위해유의수준 5% 에서 Duncan s multiple range test를실시하였다. X 1 Ⅲ. 결과및고찰 1. 음료의유리아미노산분석 구기자의물추출물이용음료 (GBW) 와에탄올추출물이용음료 (GBE) 의유리아미노산과아미노산유도체를분석하였다. Table 2 에제시한것과같이두종류의음료에는 isoleucine, leucine, lysine, methionine, threonine, valine 등필수아미노산 6 종을포함한유리아미노산 15 종과아미노산유도체 6 종등총 21 종의유리아미노산및아미노산유도체가함유되어있었다. 물추출물함유음료의유리 Table 2. Free amino acid contents of beverages with Gugija extracts (Unit : mg%, dry basis) Amino acids & derivatives GBW GBE Essential amino acid (EAA) Non-essential amino acid (NEAA) Isoleucine 3.48 2.49 Leucine 4.74 5.31 Lysine 1.81 1.07 Methionine 20.02 22.07 Phenylalanine n.d. 3) n.d. Threonine 2.96 3.23 Tryptophan n.d. n.d. Valine 6.16 4.34 Total (EAA) 39.17 38.51 Alanine 14.26 11.59 Arginine 10.17 8.84 Aspartic acid 19.65 13.72 Glycine 1.69 1.41 Glutamic acid 4.31 4.86 Histidine 6.60 4.61 Proline 12.85 13.11 Serine 7.80 4.20 Tyrosine 4.23 2.68 Total (NEAA) 81.56 65.02 γ-amino-n-butyric acid 6.60 4.61 Asparagine 115.51 51.89 Amino acid Ethanolamine 6.95 7.98 derivative (AAD) Ornitine 0.61 0.24 Phosphoserine 2.92 3.27 Taurine 18.64 22.44 Total (AAD) 151.23 90.43 Total (EAA+NEAA+AAD) 271.96 193.96 3) not detected. 아미노산및아미노산유도체 (EAA+NAA+AAD) 의함량은 271.96 mg% 이었으며이중필수아미노산 (EAA) 은 39.71 mg% 로전체의 14.6% 를차지하였다. 비필수아미노산 (NEAA) 81.56 mg%(29.9%), 아미노산유도체 (AAD) 151.23 mg%(55.6%) 이었다. 물추출물함유음료에가장많이존재하는것은 asparagine 으로 115.51 mg% 이었으며다음으로 methionine(20.02 mg%), aspartic acid(19.65 mg%), taurine (18.64 mg%), alanine(14.26 mg%), proline(12.85 mg%) 순이었고, 이들은물추출물이용음료에존재하는총아미노산과유도체의 87.0%(236.65 mg%) 로대부분을차지하였다. 에탄올추출물이용음료에는필수아미노산 (EAA) 38.51 Korean J. Food Cook. Sci. Vol. 31, No. 2 (2015)
210 이경애 mg% (19.9%), 비필수아미노산 (NEAA) 65.02 mg%(33.5%), 아미노산유도체 (AAD) 90.43 mg%(46.6%) 이었고총아미노산및아미노산유도체 (EAA+NAA+AAD) 의함량은 193.96 mg%(100%) 으로물추출물이용음료에비해총아미노산및유도체함량은낮았다. 또한물추출물이용음료에비해아미노산의비율은높고아미노산유도체의비율은낮았다. 에탄올추출물음료에가장많이함유된것은 asparagine 으로 51.89 mg% 이었으며 taurine(22.44 mg%), methionine (22.07 mg%), aspartic acid(13.72 mg%), proline(12.11 mg%), alanine(11.59 mg%) 순이었다. 이들의함량은 133.82 mg% 로총아미노산및유도체의 69.0% 를차지하였다. Shon HK 등 (2008) 은구기자추출액의아미노산함량및조성은추출용매에따라다르다고하였다. Lee SW 등 (2010) 에의하면천마농축액이용음료에서 27 종의유리아미노산이측정되었고유리아미노산의함량은 glutamic acid>glycine >serine>arginine>hydroxylysine 순이었으며농축액의종류에따라유리아미노산의종류및함량에차이를보였다고하였다. 본연구에서두음료유리아미노산조성의차이는음료제조에사용된추출물이다르기때문으로생각된다. 유리아미노산은종류에따라다른맛특성을나타낸다 (Kawai M 등 2002, Hwang ES 2013). 두음료에서는구수한맛을내는 aspartic acid 와 methionine, 쓴맛과단맛을내는 proline, 단맛을내는 alanine 등이주요유리아미노산으로분석되었다. 두음료에서이들아미노산은함량에차이를보여두음료의맛에이들아미노산의존재뿐아니라함량이영향을줄것으로생각된다. 또한 methionine 은산화방지효과, asparagine 은알코올해독작용, taurine 은해독작용, 당대사촉진, 혈중알코올농도감소효과, 혈청콜레스테롤및중성지질감소, 산화적손상에대한보호효과등건강에유익한작용을하는아미노산및그유도체가분석되었다 (Pasantes-Morales H 등 1985, Ferko AP 1991, Park SC 등 1994, Chung EJ 등 2003). 2. 음료의무기질분석구기자물추출물과에탄올추출물을이용한음료의무기질함량을유도결합플라즈마분광광도기 (Perkin Elmer) 로분석하였다. 두종류음료의주요무기질은칼륨 (K) 이었으며이외에마그네슘 (Mg), 칼슘 (Ca), 나트륨 (Na), 철 (Fe), 아연 (Zn) 등이함유되어있었으며구리 (Cu) 와망간 (Mn) 은검출되지않았다 (Table 3). 물추출물이용음료의무기질함량은칼륨 (438.50 mg%)> 마그네슘 (11.69 mg%) > 칼슘 (11.56 mg%)> 나트륨 (10.58 mg%) 순이었다. 에탄올추출물이용음료의무기질함량은칼륨이 426.40 mg% 이었고마그네슘, 칼슘, 나트륨의함량은각각 13.18 mg%, 9.04 mg%, 8.73 mg% 이었다. 두음료의칼륨함량은나트륨의 40배이상으로두종류의무기질함량에큰차이 Table 3. Mineral contents of beverages with Gugija extracts (Unit : mg%, dry basis) GBW GBE K 438.50 426.40 Mg 19.69 13.18 Na 11.56 9.04 Ca 10.58 8.73 Zn 0.92 0.57 Fe 0.54 0.13 Cu n.d. 3) n.d. Mn n.d. n.d. 3) not detected. 가있었다. 나트륨의과잉섭취는혈압상승, 심장질환 ( 심근경색, 심부전등 ), 골다공증, 비만의발생을증가시키는것으로알려져있으며 2008 년한국인의나트륨섭취조사결과국민의 46% 가 WHO 권고량의 2 배이상섭취하고있어 (Kim HY 201, 나트륨의섭취를줄이기위해나트륨섭취를제한하는것뿐아니라과량섭취한나트륨을배설을도와주는식품섭취가필요한실정이다. 10 Brix 이상의천마농축액이용음료의칼륨함량은나트륨의 1.2-2.5 배정도많았다 (Lee SW 등 2010). 3. 음료의산화방지활성구기자의물추출물이용음료와에탄올추출물이용음료의폴리페놀및플라보노이드함량을 Table 4에나타내었다. 페놀화합물은페놀성히드록시기가단백질, 효소등고분자화합물과결합하여항산화효과를나타내며폴리페놀과플라보노이드는종류에따라다른산화방지효과를보인다 (Lee SO 등 2005, Park SJ 등 2006). 물추출물이용음료와에탄올추출물이용음료의폴리페놀함량은각각 151.91, 179.85 mg/g이었으며플라보노이드함량은각각 89.94, 103.30 mg/g으로에탄올추출물이용음료에는물추출물이용음료에비해폴리페놀과플라보노이드가더많이함유되어있었다. Kwon HJ & Park CS(2008) 는오미자의에탄올추출물이물추출물에비해폴리페놀함량이더높다고하였으며 Lim SH 등 (2010) 에의하면돌단풍잎의용매추출물의폴리페놀과플라보노이드함량을분석한결과물추출물이에탄올추출물에비해적었다. Lee HC 등 (2008) 은구기자의폴리페놀함량은수확시기, 품종등에따라차이를보인다고하였다. 구기자의물추출물이용음료와에탄올추출물이용음료의산화방지활성은 DPPH 라디칼소거활성과 ABTS 라디칼소거활성을측정하여각각 Fig. 1, Fig. 2에나타내었다. 물추출물이용음료와에탄올추출물이용음료의 DPPH 라 한국식품조리과학회지제 31 권제 2 호 (2015)
구기자추출물함유음료의산화방지활성, 항당뇨효과, 유리아미노산과무기질함량 211 Table 4. Total phenolics and flavonoid contents of beverages with Gugija extracts Total phenolics (mg/g) Flavonoid (mg/g) GBW 151.91±3.17 b 89.94±2.12 b GBE 178.85±4.56 a 103.30±3.57 a a-b Different superscripts within a column indicate significantly different (p<0.05). Fig. 3. α-glucosidase inhibitory activity of beverages with Gugija extracts. a-b Different letters on the bars indicate significantly different (p<0.05). Fig. 1. DPPH radical scavenging activity of beverages with Gugija extracts. a-b Different letters on the bars indicate significantly different (p<0.05). 디칼소거활성은각각 75.8%, 76.2% 이었으며이때대조구 (positive control) 로사용한 L- 아스코르브산의 DPPH 라디칼소거능 (97.5%) 보다낮았다 (Fig.. Kim JH 등 (2003) 은탈지홍화씨박에탄올추출물함유음료의 DPPH 라디칼소거능은 74.80-94.79% 였으며이때대조군인 BHA 의 DPPH 라디칼소거능은 93.83 이었고일부음료가대조군에비해다소높은 DPPH 라디칼소거활성을보인것은플라보노이드인 acacein 과 serotonin, 유기산등에의한복합작용에의한것이라고하였다. 한편 ABTS 라디칼소거활성측정결과물추출물이용음료는 67.3% 이었으며에탄올추출물이용음료는 68.6% 로대조구인 L- 아스코르브산 (96.8%) 에비해낮았다 (Fig.. 에탄올추출물함유음료는물추출물함유음료에비해폴리페놀과플라보노이드함량이높게나타났으나 DPPH 라디칼소거활성과 ABTS 라디칼소거활성의차이가크지않은것은추출물에존재하는폴리페놀과플라보노이드의종류가다르기때문으로여겨진다. Fig. 2. ABTS radical scavenging activity of beverages with Gugija extracts. a-b Different letters on the bars indicate significantly different (p<0.05). 4. α-glucosidase 저해효과음료의 α-glucosidase 저해효과를측정하여 Fig 3에나타내었다. α-glucosidase는소장탄수화물소화의마지막단계에서이당류를가수분해하는효소로서 α-glucosidase 저해제는식후혈당증가를완화시킬수있다. 물추출물이용음료의 α-glucosidase 저해활성은 1 mg/ml에서 24.5%, 5 mg/ml에서 34.5%, 10 mg/ml에서 49.43% 이었으며에탄올추출물함유음료는 1 mg/ml에서 52.6%, 5 mg/ml에서 61.8%, 10 mg/ml에서 79.63% 로농도가증가할수록높은 α-glucosidase 저해활성을보였다. 대조군 (positive Korean J. Food Cook. Sci. Vol. 31, No. 2 (2015)
212 이경애 control) 인 acabose 의저해활성은 1 mg/ml 에서 32.4% 로같은농도의물추출물이용음료보다는높았으나에탄올추출물이용음료에비해서는낮았다. acabose 는복부팽만감, 구토등과같은부작용을나타낼수있어사용이제한되고있으며, 토후박, 연근, 상백피, 황금, 지골피와동충하초, 가시오가피혼합추출물등의천연물유래의효과적인혈당저하제에대해연구되고있다 (Asano N 등 1994, Nishioka T 등 1998, Yin Y 등 2009, Kim DJ 등 2010, Xu ML 등 2010). Ⅳ. 요약 구기자의물추출물및 50% 에탄올추출물을이용한음료의유리아미노산, 무기질, 산화방지효과, α-glucosidase 저해활성을분석하였다. 두음료에는 6 종의필수아미노산 (isoleucine, leucine, lysine, methionine, threonine, valine) 을포함한 15 종의유리아미노산과 6 종의유도체등 21 종의아미노산및그유도체가분석되었다. 물추출물이용음료와에탄올추출물이용음료의주요유리아미노산은 asparagine(115.23, 51.95 mg%), methionine(20.02, 22.07 mg%), aspartic acid (19.65, 13.72 mg%), taurine (18.64, 22.44 mg%) 이었으며무기질은 K(438.80, 426.40 mg%) 이가장많이함유되어있었으며 Mg>Na>Ca>Zn>Fe 순이었다. 산화방지효과는 DPPH 라디칼소거능과 ABTS 라디탈소거능으로측정하였다. 에탄올추출물이용음료는물추출물이용음료에비해폴리페놀, 플라보노이드함량이높았으나두음료의 DPPH 라디칼소거능과 ABTS 라디칼소거활성에는유의적차이가없었다. 에탄올추출물이용음료는대조군인 acabose 에비해높은 α-glucosidase activity 저해활성을나타내어혈당저하효과가확인되었다. 따라서 50% 에탄올추출물이물추출물보다음료제조에적합한것으로생각된다. 감사의글 본연구는순천향대학교의학술연구비지원에의해수행되었음. References Asano N, Tomioka E, Kizu H, Matsui K. 1994. Sugar with nitrogen in the ring isolated from the leaves of Morus bombycis. Carbohydrate Res 253:235-245 Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199-1200 Cho IS, Bae HC, Nam MS. 2003. Fermentation properties of yogurt added by Lycii fructus, Lycii folium and Lycii cortex. Korean J Food Sci Ani Resour 23(3):250-261 Cho YJ, Chun SS, Cha WS, Park JH, Lee KH, Kim JH, Kwon HJ, Yoon SJ. 2005. Antioxidative and anti-hypertensive effect of Lycii fructus extracts. J Korean Soc Food Sci Nutr 34(9):1308-1313 Choi J, Jeong YK, Kang DO, Joo WH. 2008. Inhibitory effects of four solvent fractions of Alnus firma on α-amylase and α -glucosidase. J Life Sci 18(7):1005-1010 Chung EJ, Um YS, Nam HW, Park T. 2003. Changes in lipid peroxidation level and antioxidant enzyme activities of rats supplemented with dietary cholesterol and/or taurine. J Korean Soc Food Sci Nutr 32(8):1310-1317 Chung HK, Choi CS, Yang EJ, Kang MH. 2004. The effect of Lycii fructus beer intake on serum lipid profiles and antioxidant activity in rat. Korean J Food Culture 19(: 52-60 Ferko AP. 1991. Cysteine sulfinic acid can enhance the central depressant effect of ethanol in mice. Phamacol Biochem Behav 39(3):653-657 Hwang ES. 2013. Composition of amino acids, minerals, and heavy metals in differently cooked laver (Porphyra terena). J Korean Soc Food Sci Nutr 42(8):1270-1276 Hwang EY, Hong JH, Choi JH, Lee EJ, Lee IS. 2009. Study on anti-obesity and hypoglycemic effects of Lycium chinense Mill extracts. J Korean Soc Food Sci Nutr 38(1:1528-1534 Kang KI, Tung JY, Koh KH, Lee CH. 2006. Hepatoprotective effects of Lycii chinensis Miller extracts and fresh fruit juice. Korean J Food Sci Technol 38(:99-103 Kang MK, Kim IC, Chang KH. 2010. Optimization of production and antioxidative effects of beverage prepared using hot water extracts of Polygonatum odoratum, Houttuynia cordata and Lycium chinensis. Korean J Food Preserv 17(6):835-846 Kawai M, Okiyama A, Ueda Y. 2002. Taste enhancements between various amino acids and IMP. Chem Sense 27(8): 739-745 Kim DJ, Kim JM, Kim TH, Baek JM, Kim HS, Choe M. 2010. Anti-diabetic effects of mixed extracts from Lycium chinense, Cordyceps militaris, and Acanthopanax senticosus. Korean J Plant Res 23(5):423-429 Kim HY. 2011. Activation of nutrition labeling in food and restaurant industry for sodium reduction. Food Ind 44(: 28-38 Kim JH, Kim JK, Kang WW, Kim GY, Choi MS, Moon KD. 2003. Preparation of functional healthy drinks by ethanol extracts from defatted safflower seed cake. J Korean Soc Food Sci Nutr 32(7):1039-1045 Kwon HJ, Park CS. 2008. Biological activities of extracts from Ominja (Schizandra chinensis Ballion). Korean J Food Preserv 15(4):578-582 Lee DH, Park WJ, Lee BC, Lee JC, Lee DH, Lee JS. 2005. Maunfacture and physiological functionality of Korean traditional wine by using Gugija (Lycii fructus). Korean J 한국식품조리과학회지제 31 권제 2 호 (2015)
구기자추출물함유음료의산화방지활성, 항당뇨효과, 유리아미노산과무기질함량 213 Food Sci Technol 37(5):789-794 Lee HC, Lee BC, Kim SD, Paik SW, Lee SS, Lee KS, Kim SM. 2008. Changes in composition of Gugija (Lycii fructus) species according to harvest time. Korean J Medicianl Crop Sci 16(5):306-312 Lee JS, Park YC, Paik SW, Lee SS, Ahn YK, Lee JS. 2008. Physicochemical functionality of Gugija products and an in vivo examination an anti-hypertensive effects. Korean J Food Nutr 21(:115-120 Lee KA, Park JS. 2014. Antioxidative activity of beverage with water and ethanol extracts of Maegmundong (Liriope platyphylla). Korean J Cook Sci 30(6):785-791 Lee MY, Sheo HJ. 1986. Quantitative analysis of total amino acids and free sugars in Lycii fructus. J Korean Soc Food Nutr 15(:249-252 Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung island. Korean J Food Sci Technol 37(:233-240 Lee SR. 1983. Studies on quality of Korean Lycium chinensis M. Korean J Crop Sci 28(:267-271 Lee SW, Moon HK, Moon JN, Yoon WJ, Kim GY. 2010. Quality characteristics of Chun Ma (Gastrodiae rhizoma) beverage prepared with concentrated extracts. Korean J Food Preserv 17(:58-65 Lee YS, Seo EJ, Jeon SY, Kim AJ, Rho JO. 2014. Quality characteristics and antioxidative effects of Dasik added with Lycii fructus extract. Korean J Human Ecol 23(6): 1217-1229 Lim SH, Kim HY, Park MH, Park YH, Ham HJ, Lee KY, Kim YH, Park DS, Kim S. 2010. Biological activities of solvent extracts from leaves of Aceriphyllum rossii. J Korean Soc Food Sci Nutr 39(1:1739-1744 Nicoletta P, Roberta R, Min Y, Catherine RE. 1999. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2, 2'-azinobis (3-ethylenebezothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods Enzymol 299:379-389 Nishioka T, Kawabata J. Aoyama Y. 1998. Baicalein, an alphaglucosidase inhibitor from Scutellaria baicalensis. J Natural Prod 61(1:1413-1415 Park BH, Cho HS, Park SY. 2005. A study on the antioxidative effect and quality characteristics of cookies made with Lycii fructus powder. Korean J Food Cook Sci 21(:94-102 Park BH, Yang HH, Cho HS. 2012. Quality characteristics and antioxidative effect of Yukwa prepared with Lycii fructus powder. J Korean Soc Food Sci Nutr 41(6):745-751 Park SC, Ha JC, Han JA, Park YC. 1994. Aspartate decreases lipid peroxidation and protein carbonylation in liver of chronic ethanol-fed rats. Korean J Biochem 26(3):145-149 Park SJ, Park WJ, Lee BC, Kim SD, Kang MH. 2006. Antioxidative activity of different species Lycium chinensis Miller extracts by harvest time. Korean J Soc Food Sci Nutr 35(9):1146-1150 Pasantes-Morales H, Wright CE, Gaull GE. 1985. Taurine protection of lymphoblastoid cells from iron-ascobate induced damage. Biochem Phamacol 34(1:2205-2207 Shon HK, Lee YS, Park YH, Kim MJ, Lee KA. 2008. Physicochemical properties of Gugija (Lycii fructus) extract. Korean J Cook Sci 24(6):905-911 Song JH, Baek SY, Lee DH, Jung JH, Kim HK, Lee JS. 2011. Screening of fungal Nuruk and yeast for brewing of Gugija-Liriope tuber traditional rice wine and optimal fermentation condition. Korean J Mycol 39(:78-84 Ugawa T, Konosu S, Kurihara K. 1992. Enhancing effects of NaCl and Na phosphate on human gustatory responses to amino acids. Chem Senses 17(6):811-815 Xu ML, Hu JH, Wang L, Kim HS, Jin CW, Cho DH. 2010. Antioxidant and anti-diabetes activity of extracts from Machilus thunbergii S. et Z. Korean J Med Crop 18(: 34-39 Yin Y, Heo SI, Jung MJ, Wang MH. 2009. Antioxidant and antidiabetic effects of various sections of Astragalus membranaceus. Korean J Phatmacgn 40(:2009 Zia Z, Tang M, Wo J. 1999. The determination of flavonoid contents in mulberry and their scavenging effect on superoxide radicals. Food Chem 64(4):555-559 Received on Apr.15, 2015 / Accepted on Apr.20, 2015 Korean J. Food Cook. Sci. Vol. 31, No. 2 (2015)