12-KHNES (전형진)_648.hwp

Similar documents
(전형진)697.hwp

12.077~081(A12_이종국).fm

hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

DBPIA-NURIMEDIA

ePapyrus PDF Document

(....).hwp

DBPIA-NURIMEDIA

46(5)-23(최기욱).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

Journal of Life Science 2011, Vol. 21. No μ μ

Lumbar spine

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

DBPIA-NURIMEDIA

04_이근원_21~27.hwp

08-KH ( ).hwp

139~144 ¿À°ø¾àħ

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

DBPIA-NURIMEDIA

10(3)-10.fm

???? 1

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

13 KH ( ).hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

-, BSF BSF. - BSF BSF ( ),,. BSF -,,,. - BSF, BSF -, rrna, BSF.

<4D F736F F F696E74202D20B8F1C1FAB0E82C20C7D8C1B6B7F9B8A620C0CCBFEBC7D12E >

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

012임수진

DBPIA-NURIMEDIA


γ

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

인문사회과학기술융합학회

DBPIA-NURIMEDIA

82-01.fm

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: * The Grounds and Cons

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

<31335FB1C7B0E6C7CABFDC2E687770>

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

53(1)-02(김준석090).fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

433대지05박창용

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

06-KH hwp

< C6AFC1FD28C3E0B1B8292E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

°í¼®ÁÖ Ãâ·Â

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

개최요강

한약재품질표준화연구사업단 금은화 ( 金銀花 ) Lonicerae Flos 생약연구과

¹ÙÀÌ¿À °æÁ¦½Ã´ë °úÇбâ¼ú Á¤Ã¥ÀÇÁ¦¿Í ´ëÀÀÀü·«---.PDF

DBPIA-NURIMEDIA

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

歯140김광락.PDF

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

책임연구기관

10(3)-12.fm

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

(01) hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

DBPIA-NURIMEDIA

2009_KEEI_연차보고서

한약재품질표준화연구사업단 고삼 ( 苦參 ) Sophorae Radix 생약연구과

03-서연옥.hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

디지털포렌식학회 논문양식

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

- 1 -

Journal of Educational Innovation Research 2018, Vol. 28, No. 2, pp DOI: IPA * Analysis of Perc

14.531~539(08-037).fm

<B8F1C2F72E687770>

한약재품질표준화연구사업단 작약 ( 芍藥 ) Paeoniae Radix 생약연구과

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

歯Trap관련.PDF

Æ÷Àå½Ã¼³94š

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

09È«¼®¿µ 5~152s


폐비닐수거기-김태욱.hwp

DBPIA-NURIMEDIA

歯1.PDF

untitled

<313120B9DABFB5B1B82E687770>

09권오설_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),


48(6)-08(김준석).fm

Transcription:

Trans. of Korean Hydrogen and New Energy Society, Vol. 29, No. 6, 2018, pp. 648~653 DOI: https://doi.org/10.7316/khnes.2018.29.6.648 KHNES pissn 1738-7264 eissn 2288-7407 보리의도정을통한바이오에탄올생산성향상연구 전형진 1 김율 1 김신 2, 정준성 1, 1 창해에탄올종합기술원, 2 한국석유관리원석유기술연구소 Improvement of the Bioethanol Productivity from Debranned Barley HYUNGJIN JEON 1, YULE KIM 1, SHIN KIM 2,, JUN-SEONG JEONG 1, 1 Advanced Institue of Technology, Changhae Ethanol Co., Ltd., 15 Wonmanseong-ro, Deokjin-gu, Jeonju 54854, Korea 2 Research Institute of Petroleum Technology, Korea Petroleum Quality and Distribution Authority, 33 Yangcheong 3-gil, Ochang-eup, Cheongwon-gu, Cheongju 28115, Korea Corresponding author : Junpapapa@naver.com Shinnara@kpetro.or.kr Received 21 September, 2018 Revised 26 October, 2018 Accepted 30 December, 2018 Abstract >> Bran of barley causes high viscosity in bioethanol production due to the large amount of β-glucans and fiber. High viscosity is the main cause of decreased productivity and decreased facility efficiency in ethanol production. In order to prevent high viscosity, this study investigated the possibility of bioethanol from barley by debranning. As a result, it was able to reduced the viscosity (22.8 cp to 17.5 cp). And the fermentation speed and yield were improved as the activity of the enzyme and activity of yeast was also increased was improved due to the removal of non-fermentable components. In conclusion, debranning was advantageous in two ways. Firstly, bran removal increased the starch content of the feedstock and decreased viscosity of mash, improving ethanol fermentation. Secondly, by-products produced by debranning can use valuable products. It was remarkable results to the feasibility of bioethanol production from debranned barley. Key words : Bioethanol( 바이오에탄올 ), Fermentation( 발효 ), Barley( 보리 ), Debranning ( 도정 ) 1. 서론 전세계적으로수송용연료는대부분현재가솔린과디젤과같은화석연료의비중이 96% 이상에이르고있지만자원의유한성, 환경오염등으로대체에너지의필요성이점점대두되고있다. 이러한흐름으로인하여세계각국은수송용 연료를바이오에탄올및바이오디젤등의바이오연료를도입하고있는추세이며바이오연료를도입하는국가수도점점증가하고있다 1-4). 최근우리정부도신기후체제를대비하기위하여온실가스감축목표를 2030년전망치대비 37% 를목표로정하였고, 2차에너지기본계획에서는신재생에너지보급목표를 11% 로설정하였 648 2018 The Korean Hydrogen and New Energy Society. All rights reserved.

전형진 김율 김신 정준성 649 으며 4차신재생에너지기본계획은신재생에너지연료혼합의무화제도 (RFS) 추진을위하여바이오디젤의혼합의무비율로드맵을발표하고바이오에탄올과바이오가스를추후검토하기로하였다. 현재바이오디젤만의무혼합하여사용하여 RFS 제도에의하여보급되고있고바이오에탄올은국내아직보급되지않고실증연구를통하여도입타당성을검증및검토하고있는수준이다 5). 현재바이오에탄올을수송용연료로사용하는대표적인국가는미국과브라질로서지역및기후적인특성을살려미국에서는옥수수와같은전분질계바이오매스를에탄올생산원료, 브라질에서는사탕수수기반의당질계바이오매스를기질로서사용하고있다. 이외에도동남아시아등에서도카사바등을이용하여바이오에탄올을수송용에너지로사용하는국가가점점증가하고있다 6). 자국의풍부한바이오매스를이용하여바이오에탄올을보급하고있는해외사례의공통점은바이오에탄올의사용을위한바이오매스의지속적이며원활한공급이가능하다는점인데우리나라의경우에는이러한바이오매스의확보가용이하지않기때문에연료용바이오에탄올의도입에대한부담이크다. 국내의연료용바이오에탄올의도입을위해서는전량이아니더라도일부물량에대한국산바이오매스확보및사용을통하여의존도탈피, 에너지안보, 농촌경제활성화등으로인한의미를부여할수있을것이다 6-8). 국내의에탄올생산은거의음료용으로사용되고있으며주로사용되는국내바이오매스는재고현미를사용하고있다. 하지만이는향후연료용에탄올진출시바이오매스물량확보부족및식량자원과의경합으로인하여보완할수있는바이오매스의발굴이필요할것으로판단하여국내에서는 2012년부터정부수매제도가폐지되어생산량이급감된보리의사용에주목하기시작하였으며이에대한연구를지속적으로진행하고있다. 이러한흐름에맞게국내음료용에탄올업 계에서도보리의생산증대를위한노력으로 주정용보리생산단지 를조성사업을실시하여보리의생산량을증대하는정책을민간차원에서시행하였다. 그결과 2014년도부터보리의생산량이 20-30% 까지증가하여국내농촌경제활성화와농가소득등대에기여할수있는것으로나타났다 6,9-11). 바이오에탄올생산용으로서의보리는현미, 카사바, 옥수수와같은바이오매스에비교하여전분함량이낮기때문에생산성및수율측면에서불리한바이오매스중에하나이다. 반면에섬유질이나 β -glucan 등비발효성당이나불순물의함량이높아이를극복할수있는방안이필요하다. 미국의경우에도보리의생산량이많은북서부지방을중심으로보리를활용하고자섬유질이나 β-glucan 에서기인하는고점도현상을억제하고생산성및수율향상을위한연구가활발히진행되었으며현재는상용화규모설비까지 scale-up하여에탄올을생산하고있다 12,13). 이에본연구에서는연료용바이오에탄올생산용으로보리를기질로하여생산성과공정효율성을극대화할수있도록분쇄전에도정을실시하여발효실험을진행하였다. 2. 실험 2.1 실험재료 본연구에사용된바이오매스는 창해에탄올에에탄올생산용으로입고되고있는보리 (2017년수확 ) 를도정하고분쇄하여이용하였다. 전분의액화에사용된효소는 Novozymes사의 α-amylase 를이용하였고, 당화효소는 Solid-glucoamylase ( 이오엔자임 ) 을이용하였다. 점도개선을위하여비전바이오켐사의 β-glucosidase를이용하였다. 발효공정에사용된효모는현재 창해에탄올에서음료용에탄올생산에이용되고있는산업용균주인 Saccharomyces cerevisiae CHY 1011 (KCTC11250BP) 를 YPD 배지 Vol. 29, No. 6, December 2018 Transactions of the Korean Hydrogen and New Energy Society <<

650 보리의도정을통한바이오에탄올생산성향상연구 (10 g/l yeast extract, 20 g/l peptone, 100 g/l glucose) 에서 33 에서 24시간배양후사용하였다. 2.2 실험방법 2.2.1 원료의미분화및전분가분석본실험에사용된보리는부안창북정미소에설치된도정설비를이용하여도정한후분쇄기 (PC-7-F, 성창기계 ) 를이용하여미분화를실시하였다. 전분가의분석은산당화법을이용하여생성된환원당을분석하였다. 1 mm 이하로분쇄된원료 2 g, 증류수 120 ml, 5% HCl 100 ml를 500 ml 삼각플 라스크에혼합한후 95 상압에서 2.5시간가수분해후 NaOH로중화하고증류수를첨가하여 500 ml 로 mass-up 하여 HPLC 로분석하였다. 2.2.2 가수분해및발효 1.5 mm Sieve에서분쇄된보리 320 g에 Table 1과같이증류수를조절하여가한후 48 µl의 α-amylase 와 48 µl의 β-glucosidase 를첨가하여 95 에서 2.5시간호화, 액화한후 33 로냉각하여 1.92 g의 solidglucoamylase를첨가하고종균배양액 70 ml를접종시킨후 96시간동안동시당화발효를진행하였다 (Fig. 1). 2.2.3 분석방법 Table 1. Starch value of rew material (barley) Sample Starch contents(%) Raw material (barley) 62.21 Debranned barley (1 time) 62.70 Bran (1 time branning) 10.00 Debranned barley (2 times) 64.28 Bran (2 times branning) 12.12 Debranned barley (3 times) 66.80 Bran (3 times branning) 18.51 발효실험에서생성된당, 유기산및에탄올의분석은발효액을 sampling하여 Syringe filter (0.2 µm) 를이용하여여과한후 high performance liquid chromatography (HPLC, Agilent) 를이용하여분석하였다. Column 은 Bio-rad사의 Aminex HPX-87H column 을사용하였으며 oven temperature는 60, detector temperature 는 40 로설정하였다. 3. 결과및고찰 3.1 도정전 / 후물질수지 Fig. 1. Schemaitic diagram of experimental procedure and condition Table 1에도정횟수별보리의전분함량과도정으로발생되는맥강의전분함량결과를나타내었다. 도정은총 3회실시하였으며도정횟수별 sampling 을실시하여도정된보리와발생되는맥강의전분함량을분석하였다. 분석결과미도정된보리의전분함량은 62.21% 로분석되었으며, 도정횟수에따라전분의함량은 62.70%, 64.28%, 66.80% 로점점증가하는경향을보였으며, 도정에의하여발생되는맥강의전분함량도 10.00%, 12.12%, 18.51% 로점점증가하는경향을보였고상승폭또한점점높아지는경향을보였다. 이는도정에의해보리의겉표피에다량함유된섬유 >> 한국수소및신에너지학회논문집제 29 권제 6 호 2018 년 12 월

전형진 김율 김신 정준성 651 Fig. 3. Viscosity of mash (after liquefaction and fermentation) Fig. 2. Material balance results after debranning of barley Table 2. Analysis of loss of raw materials and starch by debranning The number of time (debranning) Loss of raw material (%) Loss of starch (%) 1 0.93 0.15 2 3.93 0.99 3 8.94 2.24 질이나비발효성당인 β-glucan의제거로인하여보리낱알에함유된전분의비율이상대적으로증가하기때문이다. 그리고도정횟수가증가할수록맥강의전분함량이증가하는현상이나타났는데이는도정으로인해보리의겉표피의제거뿐만아니라보리낱알에함유된전분의제거도이루어진것으로예상된다. Fig. 2는전분함량분석을이용하여도정에따른보리의물질수지를나타낸것이다. 도정결과 1차도정후 10 kg, 2차도정후 30 kg, 3차도정후 50 kg 의맥강이발생되는것을확인할수있었고총 3회의도정을통하여약 90 kg의맥강이발생되어최종적으로약 910 kg의도정된보리를얻을수있는것으로분석되었다. Table 2는도정횟수에따른전체바이오매스의 손실량과전분량의손실률을나타낸것이다. 분석결과도정으로인하여발생된원료의전체손실률에비하여전분의손실이낮은것으로분석되어전술하였듯이점도나이후발효에영향을주는섬유질과 β -glucan의제거가효과적으로이루어진것으로분석되었다. 3.2 점도변화분석높은점도는에탄올생산공정에서효소및미생물의활성도저하, 교반및이송설비의성능저하등으로인해에탄올생산성을저하시키는영향을주기때문에본연구에서는보리의도정를통하여점도개선여부를판단하고자액화와발효시 Mash의점도를비교하였다 (Fig. 3). 분석결과도정횟수가증가할수록액화후 Mash 의점도가낮은것으로분석되었다. 도정을하지않은보리의경우액화후의점도가 22.8 cp로분석된반면 1회도정은 20.1 cp, 2회도정은 18.1 cp, 3회도정의경우에는 17.5 cp까지낮아졌다. 이는도정을통하여보리의표피에존재하고있는고점도원인성분인섬유질과 β-glucan이제거되어고점도현상을억제할수있었기때문이다. 반면발효후의점도는각각 4.61 cp, 4.44 cp, 4.28 cp, 4.11 cp로분석되어점도의저감현상은보였으나액화후보다는차이가 Vol. 29, No. 6, December 2018 Transactions of the Korean Hydrogen and New Energy Society <<

652 보리의도정을통한바이오에탄올생산성향상연구 Ethanol (v/v%) 14 12 10 8 6 4 2 Raw material Debranning (1 time) Debranning (2 times) Debranning (3 times) 0 0 20 40 60 80 100 Time (hr) Fig. 4. Time course of ethanol concentration 크지않는것으로분석되었다. 이는액화, 당화, 발효에서점도에영향을줄수있는 factor들이효소에의해분해가거의이루어진것으로판단된다. Table 3. Results of ethanol concentration and yield Sample Ethanol (v/v%) Yield (L/ton) Raw material (barley) 11.74 426.60 Debranned barley (1 time) 11.84 426.43 Debranned barley (2 times) 12.10 424.26 Debranned barley (3 times) 12.70 423.35 외에도일부의전분손실이발생되어수율이낮아지는것으로판단된다. 다만도정으로인하여에탄올농도상승으로인한정제공정에서의에너지사용저감, 점도저하에따른설비부하방지등의편익을고려한다면수율의손실폭은상대적으로적게분석되며발생되는맥강의활용가능성모색을통한고부가가치화가이루어진다면이를보완할수있을것이라판단된다. 3.3 에탄올발효 Fig. 4는도정횟수에따른보리의발효시간별에탄올농도추세를나타낸것이다. 분석결과보리의도정이에탄올의생성속도와최종에탄올농도에영향을주는것으로분석되었고구체적으로보리의도정횟수가증가할수록에탄올의농도도증가하였고발효속도도개선된것을확인할수있었다. 이는도정으로인해비발효성당및섬유질의제거를통해효소와효모의활성도를증가시켜발효속도에영향을준것으로판단되며, 도정으로인하여상대적으로비발효성성분제거를통한전분함량의증가로인하여에탄올의농도가상승한것이다. Table 3은발효종료후실험조건별에탄올농도와톤당수율을나타낸것이다. 먼저에탄올농도측면에서는전술하였듯이상대적인전분함량상승으로인하여에탄올의농도가상승하는것을다시한번확인할수있었다. 톤당수율을분석한결과도정횟수가증가할수록수율이미세하게낮아지는것으로분석되었다. 이는 Table 2에서볼수있듯이도정과정에서섬유질및 β-glucan과같은비발효성 4. 결론 본연구에서는연료용바이오에탄올생산용으로서의국내산바이오매스인보리를이용하여바이오에탄올생산하고생산성증대를위하여보리의표피도정후발효를실시하였고이를통하여얻은결론은다음과같다. 1) 보리의표피도정으로점도상승유발물질인섬유질이나 β-glucan을효과적으로제거할수있었고상대적으로발효성당인전분의손실이크지않는것으로분석되었다. 2) 보리의표피도정후호화및액화를실시한결과미도정된보리와비교하여섬유질이나 β-glucan 의제거를통하여상당히점도가개선되는긍정적인결과를얻을수있었다. 이러한결과는상업화공정적용시이송펌프, 열교환기및교반등생산설비의부하를줄이는동시에효율적인공정을운영하는데있어매우유리할것이라판단된다. 3) 발효를실시한결과보리의도정으로인하여에탄올의발효속도가개선되는것으로나타났으며, 상대적인전분함량의증가로인하여생산되는에탄 >> 한국수소및신에너지학회논문집제 29 권제 6 호 2018 년 12 월

전형진 김율 김신 정준성 653 올의농도도상승되는것을확인할수있었다. 발효속도의개선은불순물의제거로인하여효소와효모의활성도가증가하였기때문이며, 이러한발효속도상승은상업화규모설비에적용시발효조의에탄올생산성을증대시켜줄것이라기대된다. 에탄올의농도상승역시발효이후공정인정제공정에서사용되는 steam 등유틸리티의사용을저감할수있을것이라판단된다. 4) 생산수율분석결과보리의도정으로인하여수율이미세하게저하되는것을확인할수있었다. 하지만앞서언급하였듯이보리의도정을통한공정의생산성증대, 설비의효율증대등의부수효과를감안한다면극히미세한수치라고사료되며, 발생되는부산물이맥강의고부가가치화가이루어진다면수율손실에대한부분을충분히상쇄할수있을것이라판단되어후속연구로서맥강의고부가가치화를위한지속적인연구가필요할것으로보인다. 후기 본연구는 2018년산업통상자원부에너지기술개발사업의제원으로지원을받아수행되었으며, 이에감사드립니다 (E3급수송용바이오연료의국내적용성향상을위한기술개발, No. 2016010092160). References 1. S. Ture, D. Uzum, and I. E. Ture, The potential use of sweet sorghum as a non polluting source of energy, Energy, Vol. 22, 1997, pp. 17-19. 2. K. L. Kadam, Environmental benefits on a life cycle basis of using bagasse-derived ethanol as a gasoline oxygenate in India, Proceedings of the South African Sugar Technology, Vol. 75, 2002, pp. 358-362. 3. G. W. Choi, M. H. Han, and Y. Kim, Study on Optimizing Pretreatment & Simultaneous Saccharification and Fermentation Process for High-efficiency Bioethanol, Korean J. Biotechnol. Bioeng., Vol. 23, 2008, pp. 276-280. 4. S. Kim, J. K Kim, C. K. Park, and J. H. Ha, Study on Fuel Characteristics Depending on Mixing Ratio of Bio-Butanol and Bio-Ethanol, Trans. of Korean Hydrogen and New Energy Society, Vol. 28, No. 6, 2017, pp. 704-711. 5. J. K. Kim, C. H. Jeon, K. I. Min, S. Kim, C. K. Park, and J. H. Ha, Study on Effect of Phase Separation of Bioethanol Blends Fuel by Water Contents, Trans. of Korean Hydrogen and New Energy Society, Vol. 27, No. 6, 2016, pp. 712-720. 6. H. J. Jeon, K. M. Go, S. Kim, and J. S. Jeong, A Study on the High-efficient Bioethanol Production using Barley, Trans. of Korean Hydrogen and New Energy Society, Vol. 28, No. 6, 2017, pp. 697-703. 7. S. K. Moon, S. W. Kim, and G. W. Choi, Simultaneous saccharification and continuous fermentation of sludge-containing mash for bioethanol production by Saccharomyces cerevisiae CHFY0321, Journal of Biotechnology, Vol. 157, 2012, pp. 584-589. 8. G. W. Choi, H. W. Kang, Y. R. Kim, and B. W. Chung, Comparison of Ethanol Fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 from Starch Feedstocks, Korean Chem. Eng. Res., Vol. 46, 2008, pp. 977-982. 9. H. J. Jeon, B. O. Lee, K. W. Kang, J. S. Jeong, B. W. Chung, and G. W. Choi, Production of Bioethanol by using Beverage Waste, Korean J. Biotechnol. Bioeng., Vol. 26, 2011, pp. 417-421. 10. N. Choi, Status Biomass and Bioethanol, Korea Alcohol Liquor Industry Association, 2013, pp. 31-45. 11. D. Johnston and A. McAloon, Protease increases fermentation rate and ethanol yield in dry-grind ethanol production, Bioresource Technology., Vol. 154, 2014, pp. 18-25. 12. W. Gys, K. Gebruers, J. F. Sørensen, C. M. Courtin, and J. A. Delcour, Debranning of wheat prior to milling reduces xylanase but not xylanase inhibitor activities in wholemeal and flour, Journal of Cereal Science, Vol. 39, 2004, pp. 363-369. 13. E. George, B. Rentsen, L.G. Tabil, and V. Meda, Optimization of wheat debranning using laboratory equipment for ethanol production, Int. J. Agric & Biol Eng., Vol. 7, 2014, pp. 54-66. Vol. 29, No. 6, December 2018 Transactions of the Korean Hydrogen and New Energy Society <<