한작지 (Korean J. Crop Sci.), 63(4): 331~337(2018) DOI : https://doi.org/10.7740/kjcs.2018.63.4.331 ISSN 0252-9777(Print) ISSN 2287-8432(Online) Original Research Article 온도상승에따른콩종실의무기영양과단백질및지방함량평가 이윤호 1 조현숙 2 김준환 2 상완규 2 신평 2 백재경 2 서명철 3, The Effects of Increased Temperature on Seed Nutrition, Protein, and Oil Contents of Soybean [Glycine max (L.)] Yun-Ho Lee 1, Hyeoun-Suk Cho 2, Jun-Hwan Kim 2, Wan-Gyu Sang 2, Pyong Shin 2, Jae-Kyeong Baek 2, and Myung-Chul Seo 3, ABSTRACT The content of nutrients, proteins, and oils of crop seeds is affected by global climate change due to the increase in temperature. Information regarding the effects of increased temperature on soybean seed nutrition is limited despite its vital role in seed quality and food security. The objective of this study was to determine the effect of increasing temperature on seed nutrient, protein, and oil content in two soybean [Glycine max (L.) Merr] cultivars ( and during the reproductive period in a temperature-gradient chamber. Four temperature treatments, Ta (near ambient temperature), Ta+1 C (ambient temperature+1 C), Ta+2 C (ambient temperature+2 C), Ta+3 C (ambient temperature+3 C), and Ta+4 C (ambient temperature+4 C), were established by dividing the rows along the temperature gradient. At maturity, increased temperature did not significantly affect the concentration of P, K, Ca, and Mg. The protein and oil content was significantly correlated with temperature. At maturity, the protein content of DWK and PSNK was reduced at Ta+4 C. The oil content was the highest at Ta+4 C in DWK, whereas it decreased in PSNK at Ta+4 C. Consequently, the biochemical composition of soybean seeds changed with the increase in temperature. These results illustrate the effects of temperature on soybean seed nutrient, protein, and oil content, which can help improve soybean quality at different temperatures. Thus, the biochemical composition of crop seeds can be changed in accordance with nutritional requirements for the benefit of human health in the future. Keywords : Climate change, Oil, Protein, Soybean, Temperature gradient chamber 최근이상고온현상으로인하여 2017년지구의평균기온은 20세기 (1901-2000) 평균기온 (14.0 C) 보다 0.84 C 높아져 1880년관측이래세번째로높게기록되었다 (www.ncdc. noaa.gov). 콩 [Glycine max (L.)] 은영양학적으로 30~40% 의단백질과 20% 의지방을함유하고있을뿐만아니라칼슘, 인산, 마그네슘을비롯한무기영양이균형있게분포되어있고, 장류용, 나물용, 풋콩용및밥밑용등다양한용도로우리식생활에서영양공급원으로이용되고있다. 그러나우리나라의대부분콩은여름을중심으로생육하는여름작물 로생식생장기간쉽게고온피해를받아종실의품질에부정적인영향을줄수있다. 일반적으로콩은개화후 40일부터동화양분을종실로공급하는시기인데, 이기간동안이상고온을받게되면종실의이화학적특성이변화가된다 (Bellaloui et al., 2016; Dornbos & Mullen, 1992; Giboson & Mullen, 1996; Mertz- Henning et al., 2018; Piper & Boote, 1999). 온도상승과관련하여콩종실연구는지난수십년간단백질과지방함량및무기영양에관해진행되어왔다. Wolf et al. (1982) 은 24/19 C와 27/22 C ( 주 / 야간 ) 에서지방함 1) 농촌진흥청국립식량과학원작물재배생리과박사후연구원 (Post-doc, Crop physiology and production, National Institute of Crop Science, Rural Development Administration, 181, Hyeoksin-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea) 2) 농촌진흥청국립식량과학원작물재배생리과연구사 (Researcher, Crop physiology and production, National Institute of Crop Science, Rural Development Administration, 181, Hyeoksin-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea) 3) 농촌진흥청국립식량과학원작물재배생리과연구관 (Senior Researcher, Crop physiology and production, National Institute of Crop Science, Rural Development Administration, 181, Hyeoksin-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea) Corresponding author: Myung-Chul Seo; (Phone) +82-63-238-5281; (E-mail) mcseo@korea.kr <Received 3 September, 2018; Revised 24 October, 2018; Accepted 7 November, 2018> c 본학회지의저작권은한국작물학회지에있으며, 이의무단전재나복제를금합니다. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
332 한작지 (KOREAN J. CROP SCI.), 63(4), 2018 량은급격하게증가한반면단백질함량은감소하였다고한다. Giboson & Mullen (1996) 은주야간온도를 30/20 C 와 30/30 C 그리고 35/30 C로처리한결과단백질과지방함량간에부의상관을나타낸다고하였다. Piper & Boote (1999) 는미국의 60개지역 20개품종에대한단백질과지방함량을분석한결과평균온도 28 C까지는지방함량이증가하고단백질함량은 U선으로 20~25 C 이하또는그이상을벗어나게되면증가되었다고한다. 무기영양과관련하여종실비대기에서성숙기사이에온도가상승하게되면인산, 칼륨, 칼슘그리고마그네슘함량은증가하게되고, 개화기에서성숙기사이온도상승은약 10% 의마그네슘을감소시킨다고한다 (Gibson & Mullen, 2001). 질소와인산함량은 40/30 C ( 주 / 야간 ) 까지증가하였으나 44/34 C ( 주 / 야간 ) 에서감소하였다 (Thomas et al., 2003). 최근 Song et al. (2016) 은중국전지역을대상으로 3년간 763개콩종실의단백질과지방함량및지방산조성을미기상과함께분석한결과단백질은평균온도와관계가있고지방함량은평균 19.8 C에서가장높다고한다. 또한 2000년대부터 CO 2 농도와온도상승에따른콩종실의무기영양과단백질과지방함량변화에대한연구가진행되고있다 (Bellaloui et al., 2016; Thomas et al., 2003; Xu et al., 2016). Xu et al. (2016) 에의하면 CO 2 농도 400 μmol mol -1 에서온도는 22/18 C ( 주 / 야간 ) 과 36/32 C ( 주 / 야간 ) 에서단백질함량은증가되었지만, 지방함량은저온보다는고온에서감소된다고하였다. 이러한기존의연구들대부분은제한된공간에서최종수확한종실만을가지고무기영양과단백질및지방함량에관한연구가되었을뿐자연적인온도상승에따른콩종실의생육시기별연구는미비한실정이다. 따라서본연구는급속도로진행되고있는이상고온현상에대응하기위해자연조건과가장유사한온도구배챔버 (Temperature Gradient Chamber: TGC) (Horie et al., 1995) 를이용하여개화기이후종실비대성기 (R6), 성숙시 (R7), 성숙기 (R8) 까지온도상승에따라종실에축적되는무기영양, 단백질, 지방함량변화를분석함으로써향후기후변화대응과인간의영양섭취에대한기초자료로활용하고자수행을하였다. 재료및방법온도구배챔버 (TGC) 및재배관리본연구는 2017년국립식량과학원포장에설치된가로 2 m 세로 30 m의 2개의온도구배챔버에서수행을하였 다. 온도구배챔버의입구는공기가챔버안쪽으로유입할수있게개방되어있으며, 가장안쪽으로두개의환풍기가설치되어있어안쪽으로들어갈수록외부온도보다 Ta+1 C, Ta+2 C, Ta+3 C, Ta+4 C씩증가하면서일정한온도구배를유지하는시스템으로온도구배지점마다온도센서 (SP-110, Apogee instruments, USA) 을설치하여온도변화를기록하였다. 시험에사용된품종은정부보급종중가장많이재배되고있는대원콩과풍산나물콩으로하였다재식거리는 50 cm 15 cm로 6월 20일에파종하였고, 시비량은 N-P 2 O 5 -K 2 O를 10a당 3-3-3.4 kg 전량기비로사용을하였다. 관수는파종후부터착협시까지주 2~3회씩하였고, 개화기부터성숙기까지주 2회공급을하였다. 종실비대성기 (R6) 부터성숙기 (R8) 사이에각온도구배챔버에설치되어있는온도센서를기준으로종실을채취하였다. 재배기간생육단계조사기준 (Fehr & Caviness, 1977) 에준하였다. 무기영양과단백질및지방함량분석분석을하기위해채취한콩종실을 72 C 건조기에약 4 일간건조후곱게분쇄하였다. 무기영양분석을위해분쇄시료를 0.5 g씩칭량후습식분해법으로분해용액 (HNO 3 : H 2 SO 4 : HClO 4 = 10: 1: 4) 을첨가하여마이크로킬달플라스크에 220 C로 4시간분해하여여과과정을거쳐분광분석기 (UV-Cintra 404, GBC Scientific Equipment Pty Ltd., Australia) 로인산분석을하였다. 유도결합플라즈마발광광도계 (Inductively Coupled Plasma Spectrophotometry Mass, ICP Integra XL, GBC Scientific Equipment Pty Ltd., Australia) 를이용하여칼륨과칼슘및마그네슘을분석하였다. 탄소와질소분석은 Dumas법 (Fred and Watts, 1993) 으로 0.2 g씩칭량후원소분석기 (Elementary, vario MAX cube., Germany) 로분석하였다. 단백질분석은질소농도에콩단백질환산계수 6.25를곱하여계산하였다. 조지방분석은 Soxhlet 추출법으로분쇄된종실 3 g을원통여지에시료를넣은후 ethanol 추출법으로항온수조에 40 C로 8시간추출하여계산하였다. 모든처리는 3반복시험을하여평균값으로구하였다. 통계분석연구결과의통계분석은 SAS 9.1 (SAS Institute Inc., Cary, NC, USA) 통계패키지를이용하여자료에대한분산분석 (ANOVA) 을통해유의성검정을하였고, Ducans의다중범위검정을실시하여유의적인차이를 p<0.05 수준에검정하였다.
온도상승에따른콩종실평가 333 결과생식생장기간온도상승변화출현기부터성숙기까지온도상승에따른 Ta+1, Ta+2, Ta+3, Ta+4 온도변화이다 (Table 1). 대원콩과풍산나물콩은출현에서개화기까지소유일수는온도구배간차이는없었지만, 종실비대시부터성숙기까지 Ta+4가다른온도구배에비하여약 4~5일정도지연되었다. 콩의개화기는 7월하순에서 8월초순으로적온은 25~30 C 로이기간온도가가장높은시기이다. 개화기의평균온도를보면 Ta+1을제외한모든온도구배간에서 30 C에근접을하였다. 종실비대기부터는평균온도가 25 C 이하로내려갔다. 온도상승에따른종실비대기의종실이화학적변화콩은개화후 26일부터 36일사이에무기영양, 단백질과지방함량이축적되는시기로이시기에저온, 고온그리고한발과같은이상현상을받게되면물질축척에변화를줄수있다. 온도상승에따른대원콩과풍산나물콩의종실비대성기에대한무기영양, 단백질및지방함량에대한결과이다 (Table 2). 대원콩의온도구배간온도범위는 22.3~25.1 C 로온도상승에따라모든무기영양과단백질그리고지방함량은고도의유성을보였다. 질소, 칼륨, 마그네슘및단백질은상승된온도인 Ta+4에서높았다. 단백질함량은상 승된온도구간인 Ta+3과 Ta+4가 Ta+1과 Ta+2에비하여높게나타났고, 지방함량은낮았다. 풍산나물콩의온도구배의온도범위는 22.3~25.0 C로 Ta+1 와 Ta+4사이의온도차이는약 3 C를보였다. 온도구배간에있어서탄소, 질소, 칼륨, 단백질그리고지방함량은고도의유의성을보였다. 특히질소와단백질함량은평균온도가증가함에따라높았지만, 지방함량은감소하였다. 온도상승에따른성숙시의종실이화학적변화온도상승에따른성숙시의무기영양, 단백질그리고지방함량변화에대한결과이다 (Table 3). 대원콩의온도구배간평균온도범위는 20.4~22.5 C이고 Ta+1와 Ta+4 간의온도는약 2 C 차이를보였다. 탄소, 질소, 단백질그리고지방함량은온도구배간에고도의유의성을보였는데, 탄소, 질소, 칼슘그리고단백질함량은상승된온도에서감소를하였다. 풍산나물콩의평균온도범위는 20.4~22.2 C로질소, 칼륨, 단백질그리고지방함량은고도의유의성을보였고, 온도가상승할수록칼륨은증가하였다. 온도상승에따른성숙기의종실이화학적변화성숙기의무기영양, 단백질그리고지방함량변화에대한결과이다 (Table 4). 대원콩의온도구배간평균온도범위는 15.8~18.8 C이고 Ta+1과 Ta+4간에약 3 C 차이를보 Table 1. Duration and mean temperature at different temperature in a temperature-gradient chamber in 2017. Cultivar and Days from Mean air temperature ( C) temperature gradient VE-R1 x R1-R5 R5-R8 VE-R1 R1-R5 R5-R8 Ta y 27.1 27.3 21.9 Ta+1 32 31 74 28.0 28.2 22.9 Ta+2 31 32 74 28.7 29.2 23.9 Ta+3 31 33 75 29.8 30.0 25.0 Ta+4 32 35 79 31.0 30.6 25.5 Ta 27.1 26.2 21.5 Ta+1 38 31 70 28.0 27.1 22.5 Ta+2 37 32 71 28.3 27.7 23.5 Ta+3 37 34 71 29.8 28.7 24.5 Ta+4 38 34 74 31.0 29.6 25.0 y Ta : Near ambient temperature, Ta+1 : ambient temperature+1 C, Ta+2 C : ambient temperature+2 C, Ta+3 C : ambient temperature+3 C, Ta+4 C : ambient temperature+4 C. x VE: Vegetative stage emergence, R1 : Beginning bloom, R5 : Beginning seed, R8 : Full maturity.
334 한작지 (KOREAN J. CROP SCI.), 63(4), 2018 Table 2. Effects of elevated temperature on developing soybean seed ( and ) nutrition, protein, and oil in full seed stage. Cultivars and Temperature C N P K 2 O CaO MgO Protein Oil temperature gradient ( C) % Ta+1 y 22.3 47.70ab 5.61b 0.38a 1.62b 0.28a 0.27ab 35.03b 13.94b Ta+2 23.6 47.43b 5.46c 0.36b 1.79a 0.29a 0.26b 34.11c 14.62b Ta+3 24.3 47.80a 5.75a 0.36b 1.81a 0.26b 0.26b 35.95a 15.20a Ta+4 25.1 47.11c 5.74a 0.37b 1.82a 0.26b 0.28a 35.87a 13.13c P value x 0.004 <0.001 <0.001 0.001 0.001 0.052 <0.001 <0.001 Ta+1 22.3 47.64ab 6.01a 0.42a 1.75b 0.21a 0.23a 37.59a 12.47c Ta+2 23.2 47.81a 5.78d 0.38ab 1.96a 0.22a 0.24a 36.12d 15.05a Ta+3 24.2 47.54bc 5.82c 0.38ab 2.02a 0.22a 0.23a 36.37c 13.52b Ta+4 25.0 47.32c 5.95b 0.37b 1.97a 0.20a 0.23a 37.19b 11.43d P value 0.006 <0.001 0.091 0.012 0.213 0.392 <0.001 <0.001 y Ta+1 : ambient temperature+1 C, Ta+2 C : ambient temperature+2 C, Ta+3 C : ambient temperature+3 C, Ta+4 C : ambient temperature+4 C. x Values followed by a common letter are not significantly different within a column (p = 0.05) against the ANOVA Table 3. Effects of elevated temperature on developing soybean seed ( and ) nutrition, protein, and oil in beginning maturity. Cultivars and Temperature C N P K 2 O CaO MgO Protein Oil temperature gradient ( C) % Ta+1 y 20.4 47.77a 5.85b 0.34a 1.90a 0.20a 0.23c 36.57b 14.78c Ta+2 21.4 47.84a 5.83b 0.34a 1.91a 0.19b 0.24ab 36.44b 16.38a Ta+3 22.4 48.01a 6.09a 0.34a 1.94a 0.19b 0.25a 38.06a 16.68a Ta+4 22.5 45.97b 5.75c 0.34a 1.92a 0.18c 0.24ab 35.91c 15.57b P value x <0.001 <0.001 0.214 0.297 0.009 0.007 <0.001 <0.001 Ta+1 20.4 47.97b 6.56a 0.40b 1.99b 0.16b 0.25b 41.03a 13.05c Ta+2 21.4 48.23ab 6.45b 0.41ab 2.08a 0.18a 0.25ab 40.32b 15.04a Ta+3 22.4 48.51a 6.41c 0.42a 2.11a 0.17b 0.25a 40.05c 15.17a Ta+4 22.2 48.34ab 6.46b 0.40ab 2.13a 0.17ab 0.25ab 40.37b 14.19b P value 0.142 <0.001 0.142 0.0002 0.055 0.085 <0.001 <0.001 y Ta+1 : ambient temperature+1 C, Ta+2 C : ambient temperature+2 C, Ta+3 C : ambient temperature+3 C, Ta+4 C : ambient temperature+4 C. x Values followed by a common letter are not significantly different within a column (p = 0.05) against the ANOVA 였으며, 탄소, 질소, 단백질그리고지방함량은고도의유의성을보였다. 단백질함량은 Ta+4 (37.8%), Ta+2 (37.7%), Ta+1 (38.4%), Ta+3 (38.9%) 순으로상승된온도구배에서감소하였다. 지방함량은상승된온도인 Ta+3과 Ta+4 각 각 19% 와 20% 로낮은온도구배에비하여높게나타났다. 풍산나물콩의온도구배평균온도가 15.6~17.9 C 범위로 Ta+1과 Ta+4간에약 2 C 정도차이를보였고, 탄소, 질소, 단백질그리고지방함량은온도구배간에고도의유의성을
온도상승에따른콩종실평가 335 Table 4. Effects of elevated temperature on developing soybean seed ( and ) nutrition, protein, and oil in full maturity. Cultivars and Temperature C N P K 2 O CaO MgO Protein Oil temperature gradient ( C) % Ta+1 y 15.8 49.92bc 6.15b 0.63a 2.14ab 0.30a 0.37ab 38.44b 17.60c Ta+2 16.7 50.34a 6.03c 0.61a 2.09b 0.28a 0.36b 37.68c 16.61d Ta+3 17.9 49.81c 6.22a 0.67a 2.29a 0.26a 0.37b 38.87a 19.16b Ta+4 18.8 50.10b 6.04c 0.70a 2.01b 0.27a 0.41a 37.78c 20.08a P value x 0.002 0.0004 0.7433 0.035 0.232 0.043 <0.001 <0.001 Ta+1 15.6 48.91a 6.84a 0.74a 2.00a 0.27a 0.35a 42.76a 15.39b Ta+2 16.7 48.71ab 6.44c 0.83a 2.01a 0.27a 0.33a 40.25c 17.96a Ta+3 17.8 48.88a 6.51b 0.74a 2.06a 0.26a 0.34a 40.71b 16.54b Ta+4 17.9 48.44b 6.52b 0.79a 2.07a 0.28a 0.33a 40.73b 15.35c P value 0.019 <0.001 0.341 0.774 0.452 0.142 <0.001 <0.001 y Ta+1 : ambient temperature+1 C, Ta+2 C : ambient temperature+2 C, Ta+3 C : ambient temperature+3 C, Ta+4 C : ambient temperature+4 C. x Values followed by a common letter are not significantly different within a column (p = 0.05) against the ANOVA 보였다. 단백질함량은종실비대성기부터성숙기까지 Ta+2 구간이 17.9% 로다른온도구배보다높았으나상승된온도인 Ta+4가 15.3% 로낮아지는결과를보였다. 이기간무기영양은칼륨이가장높고, 인 > 마그네슘 > 칼슘순이었다. 100 립중과단백질그리고지방함량변화대원콩의 100립무게는 30~34 g ( 평균 31.6 g) 으로 100 립무게와단백질함량간에정의상관관계를보였다. 풍산나물콩의 100립무게는 11~14 g ( 평균 12.8 g) 으로외부온도와가장유사한 Ta+1이 100립의무게와단백질함량이증가하였지만, 상승된온도 Ta+4에서는감소하였다 (Fig. 1). 100립무게와지방함량의결과를보면대원콩은 100립의무게가증가할수록지방함량도증가하였지만유의성은나타나지않았다. 그러나풍산나물콩은 100립의무게가증가할수록지방함량이증가하면서정의상관관계가나타났다 (Fig. 2). 고찰온도상승에따른대원콩과풍산나물콩의무기영양변화는수정된후 20일 ~28일부터인종실비대성기와성숙시에종실이급속히축적되면서무기영양의변화를알수있었다. 등숙을완료한성숙기에는온도상승에따라온도구배 간차이를보이지않았다. 전체적인무기영양의변화의폭은종실비대성기에서성숙시보다는성숙시에서성숙기의증가폭이크다는것을알수있었다. 본연구에서주목할만한것은대원콩과풍산나물콩은성숙시에칼슘이낮아졌는데, 이는일시적인저온을만나물질의동화와전류도저해를받아감소된것으로판단되었다. 그러나성숙기에는다른무기영양을제외하고질소가온도상승에따라증가폭이변화되는것을알수있었다. 온도는콩종실의단백질과지방함량변화에영향을주는가장중요한환경요인중의하나이다 (Thomas et al., 2003). 개화기에서성숙기까지평균온도가 25 C (30/20 C) 에 33 C (35/30 C) 사이에단백질함량은감소하였고, 지방함량은증가한다고보고하였다 (Giboson & Mullen, 1996). Thomas et al. (2003) 은온도를처리를 28/18 C, 32/22 C, 36/26 C, 40/30 C 그리고 44/34 C ( 주 / 야간 ) 로하였을때콩종실의지방함량은 32/22 C에서최고높았으나그이상온도에서는감소된다고하였다. 반면단백질함량은 40/30 C ( 주 / 야간 ) 까지증가하였으나 44/34 C ( 주 / 야간 ) 에서단백질과지방함량모두감소한다고보고하였다. Pipolo et al. (2004) 은 24.3 C에서최저단백질함량을나타낸다고하였다. Bellaloui et al. (2016) 은두개품종을가지고 CO 2 농도 360 μmol mol -1 에온도는 26/16 C ( 주 / 야간 ) 과 45/35 C ( 주 / 야간 ) 를비교한결과고온조건에서단백질과지방함량및무기영
336 한작지 (KOREAN J. CROP SCI.), 63(4), 2018 Fig. 1. Relationship between 100-seed weight and protein in effects of elevated temperature on full maturity. Ta+1 : ambient temperature+1 C, Ta+2 C : ambient temperature+2 C, Ta+3 C : ambient temperature+3 C, Ta+4 C : ambient temperature+4 C. Fig. 2. Relationship between 100-seed weight and oil in effects of elevated temperature on full maturity. Ta+1 : ambient temperature+1 C, Ta+2 C : ambient temperature+2 C, Ta+3 C : ambient temperature+3 C, Ta+4 C : ambient temperature+4 C. 양이감소된다고하였다. 본시험의결과단백질함량은온도가상승할수록감소하는경향을보였는데, 대원콩의단백질함량은종실비대시에서성숙기까지평균온도 25 C (Ta+4) 이상벗어나게되면감소를하였으나, 풍산나물콩은평균온도 23 C (Ta+2) 이상에서감소를하였다. 지방함량은온도가상승할수록증가또는감소하는경향을보였는데, 대원콩의지방함량은종실비대기에서성숙기까지평균온도 25 C (Ta+4) 까지증가하였고, 풍산나물콩은평균온도 21 C (Ta+2) 에서가장높았으나그이상을벗어나게되면감소하였다. 이러한결과를보았을때함량의변화는온도와품종간에상당한변이가있는것으로판단된다. 종실발달과정중단백질함량증가는종실비대성기보다성숙시에증가폭이높았으나, 지방함량은성숙시보다는종실비대기에증가폭이높다는것을알수있었다. 품종간에있어서풍산나물콩은대원콩보다다소낮은온도에 서단백질과지방함량이증가한다는것을알수있었다. 이러한결과대원콩은온도에대한반응폭이넓은반면풍산나물콩은폭이넓지않은것으로판단되며온도반응에따라종실크기와질소가크게변화되는것으로판단된다. 적요온도는콩종실의무기영양과단백질및지방함량에영향을주는환경요인중의하나이다. 본연구는향후이상고온현상을대비하여자연조건과가장유사하게만들어진온도구배챔버에종실비대기에서성숙기까지콩종실의무기영양과단백질및지방함량변화에대한연구를수행하였다. 1. 대원콩과풍산나물콩은온도상승에따라성숙기에질소를제외한다른무기영양은유의한차이를보이
온도상승에따른콩종실평가 337 지않았다. 2. 성숙기의단백질함량에있어서대원콩은상승된온도에다소감소를하였다. 그러나지방함량은대원콩이상승된온도인 Ta+4에서증가하였으나, 풍산나물콩은감소하였다. 3. 100립의무게가증가할수록풍산물콩은단백질함량이증가하였고, 대원콩은지방함량이증가하였다. 4. 온도상승은종실의이화학적성분들을변화시킬수있다. 이상기상으로온도가지속적으로상승되었을때작물의생육과수량에미치는영향도중요하지만, 인간의음식섭취에있어미네랄과단백질그리고지방함량과같은영양소변화에대한대처도중요할것이다. 사사 본논문은농촌진흥청국립식량과학원농업과학기술연구개발사업 ( 과제번호 : PJ 011952) 의지원에의해이루어진것임. 인용문헌 (REFERENCES) Bellaloui, N., Y. Hu, A. Mengistu, H. K. Abbas, M. A. Kassem, and M. Tigabu. 2016. Elevated atmospheric carbon dioxide and temperature affect seed composition, mineral, 15N and 13 C dynamics in soybean genotypes under controlled environments. Atlas Journal Plant Biology 4 : 56-65. Dornbos, D. L JR. and R. E. Mullen. 1992. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. Journal of the American Oil Chemists Society 69(3) : 228-231. Fehr, W. R. and C. E. Caviness. 1997. Stages of soybean development. Iowa State University of Science and Technology Special Report 80. Fred, S. and C. E Watts. 1993. Dumas method for organic nitrogen. Industrial and Engineering chemistry, Analytical Edition. 11(6) : 333-334. www.esrl.noaa.gov/gmd/ccgg/trends/global.html/. National Centers for Environmental Information Earth system research laboratory ESR Global monitoring division. Gibson, L. R. and R. E. Mullen. 1996. Soybean seed composition under high day and night growth temperatures. Journal of the American Oil Chemists Society 73(6), 733-737. Gibson, L. R. and R. E. Mullen. 2001. Mineral concentrations in soybean seed produced under high day and night temperature. Canadian Journal Plant Science 81(4) : 595-600. Horie, T., H. Nakagawa, J. Nakano, K. Hamotanl, and H.Y. Kim. 1995. Temperature gradient chambers for research on global environment change Ⅲ A system designed for rice in Kyoto, Japan. Plant Cell Environment. 18 : 1064-1069. Mertz-Henning, L. M., L. C. Ferreira, F. A. Henning, J.M.G. Mandarino, E.D Santos, M.C.N.D. Olivera, A.L Nepomuceno, J.R.B. Faarias, and N. Neumaier. 2018. Effect of water deficit-induced at vegetative and reproductive stages on protein and oil content in soybean grains. Agronomy 8(3) : 1-11. Piper, E. L. and K. J Boote. 1999. Temperature and cultivar effects on soybean seed oil and protein concentration. Journal of the American Oil Chemists Society 76(10) : 1233-1241. Pipolo, A. E., Thomas R. S, and G. M. Camara. 2004. Effects of temperature on oil and protein concentration in soybean seeds cultured in vitro. Annals of Applied Biology 144 : 71-76. Song, W., R. Yang, T. Wu, C. Wu, S. Sun, S. Zhang, B. Jiang, S. Tian, X. Liu, and T. Han. 2016. Analyzing the effects of climate factor on soybean protein oil contents, and composition by extensive and high-density sampling in China. Journal of Agricultural and Food Chemistry 64 : 4121-4130. Thomas, J. M. G., K. J. Boote, L. H. Allen, Jr., M. Gallo- Meagher, and J.M. Davis. 2003. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Journal of AgroCrop Sciences 43 : 1548-1577. Wolf, R. B., J.E. Cavins, R. Kleiman, and L. T. Black. 1982. Effect of temperature on soybean seed constituents: oil, protein, moisture, fatty acids, amino acids and sugars. Journal of the American Oil Chemists Society 59(5) : 230-232. Xu, G., S. Singh, J. Barnaby, J. Buyer, V. Reddy, and R. Sicher. 2016. Effects of growth temperature and carbon dioxide enrichment on soybean seed components at different stage of development. Plant Physiology and Biochemistry 108 : 313-322.