2012 년도한국철도학회추계학술대회논문집 KSR2012A216 동봉과탄소접지극의접지임피던스비교 Comparison of Ground Impedance between a Copper- and a Carbon- Electrodes 진창환 *, 박대원 *, 길경석 *, 서재석 ** Chang-Hwan Jin *, Dae-Won Park *, Gyung-Suk Kil *, Jae-Suk Seo ** Abstract This paper describes the ground impedance on copper- and carbon-electrode by the application of a low frequency square waveform, a standard lightning impulse, and a fast-rise step pulse. The ground impedances were measured using the fall-of-potential method specified in IEEE Std. 81. 2. and were calculated as the ratio of the peak potential rise to the peak injection current at same time. Two types of grounding systems buried at a depth of 0.8 [m] were compared ; a three linked copperelectrodes of equilateral triangles with 1 [m] spacing and a carbon-electrode. Experimental results showed that the ground impedances increased with the applied frequency, and the three linked copper-electrodes had a lower impedance compared to the carbon-electrode in high frequency range. Keywords : Copper-electrode, Carbon-electrode, Impulse, Grounding impedance, Fall-of-potential method 초록본논문에서는동봉과탄소접지극을매설하여저주파수구형파, 표준뇌임펄스및급준파펄스에따른접지임피던스응답특성에대하여기술하였다. 접지임피던스의측정은 IEEE Std. 81.2에서규정하고있는전위강하법을적용하였으며, 인가전류에따른전위상승을측정함으로써임피던스를산출하였다. 1 [m] 간격의정삼각형으로배치한 3연접동봉과 0.8 [m] 깊이에매설한탄소접지극을사용하여실험을수행하였다. 실험결과, 접지임피던스는주파수에비례하는특성이나타났으며, 고주파수영역에서는 3연접동봉이탄소접지극에비해더낮은임피던스응답특성을보였다. 주요어 : 동봉, 탄소접지극, 임펄스, 접지임피던스, 전위강하법 1. 서론 접지란뇌격이나지락, 단락사고등에의해서발생하는과도전류및고장전류를대지로흘려전위상승을억제함으로써각종전기, 전자, 통신장비및설비에서발생하는재해를방지하는데목적이있다 [1,2]. 이에따라서접지저항을낮추기위해다양한형태의접지극이개발되고있다 [3,4]. 교신저자 : 한국해양대학교전기전자공학부 (kilgs@hhu.ac.kr) * 한국해양대학교전기전자공학부 ** 이엠아이테크 ( 주 )
일반적으로접지시스템의성능은 1 [khz] 이하의저주파전류를인가하여평가한다. 그러나뇌격이나단락사고등에의해발생하는과도전류에서는접지선의인덕턴스에의한전압강하, 대지의정전용량및도체간의유도전압에대한영향이매우커지게된다 [5-6]. 이때, 저주파전류로측정된접지저항의값은고주파성분에의한값과많은차이가생기게되어접지저항으로계산된전압보다더큰전압이발생하여사고를유발한다. 따라서, 낙뢰보호시스템또는전력계통에서의접지시스템은고주파영역의접지임피던스로정의되어야한다. 본논문에서는동봉과탄소접지극의매설방법과인가전류에따른접지임피던스를분석하였다. IEEE Std. 81.2에서규정하고있는전위강하법을적용하여다양한인가전류에따른접지임피던스를비교하였다. 2. 본론 2.1 접지임피던스임펄스에대한접지임피던스는접지시스템의보호종류와보호수준결정에필요하며, 임펄스전압과전류의비로정의된다 [7]. 또한, Fig. 1에나타낸바와같이임펄스전압및전류의각최대값을기준으로다음과같이정의한다. Fig. 1 Definition of ground impedance for impulse Z 1 = max( Z( t)) (1) V( t1) Z 2 = I ( t1) (2) V( t1) Z 3 = I( t 2) (3) V( t 2) Z 4 = I ( t2) (4) 여기서 ; Z 1 = 전압과전류비의최대값 Z 2 = 전압이최대값에도달할때, 전압의최대값과전류값의비 Z 3 = 최대전압과최대전류의비 Z 4 = 전류가최대값에도달할때, 전압과전류값의비
이는일반적으로다음과같은관계가성립한다. Z 1 > Z 2 > Z 3 > Z 4 > R (5) 특히, Z 3 은실효서지임피던스라하여임펄스에의한접지시스템의보호종류와보호수준을결정하는중요한요소가된다. 본논문에서는실효서지임피던스를이용하여각접지극과임펄스에대한응답특성을비교하였다. 2.2 접지극접지극은동봉과탄소접지극을사용하였다. 동봉은길이 1 [m], 직경 10 [mm] 이며 3개의동봉을거리 1 [m] 간격의정삼각형형태로매설후서로연결하였다. 탄소접지극은길이 1 [m], 직경 215 [mm] 인정육각형형태이며, Fig. 2와같이 0.8 [m] 깊이에가로로매설하였다. 탄소접지극의경우, 동봉주위의흑연은접지극과토양사이의접촉면적을극대화시켜전류흐름의완충역할을하며, 동봉에비해부식이적은장점때문에현장에서자주사용되고있다. (a) Three linked copper-electrodes (b) Carbon-electrode Fig. 2 Photograph of ground electrodes 2.2 실험계구성측정은 IEEE Std. 81.2에서규정하고있는전위강하법을적용하였으며, Fig. 3과같이실험계를구성하였다. Fig. 3 Configuration of the experimental setup
E극과 C극의이격거리는 10 [m], E극과 C극의 61.8 [%] 인지점에 P극을위치시키고저주파수구형파, 표준뇌임펄스및급준파펄스를인가하여대지전위상승을측정하고접지임피던스를산출하였다. Fig. 4에인가전류파형의예를나타내었다. (a) Fast-rise Step Pulse (b) Standard Lightning Impulse (c) Low frequency Square waveform Fig. 4 Example waveforms of applied current 0.1 [V/A] 의변류기와 500 [MHz], 1 [GS/s] 의디지털오실로스코프를사용하여인가전류및전위상승을측정하였다. 2.3 측정결과 Fig. 5와 Fig. 6에 3연접동봉과탄소접지극에서의측정파형을나타내었다. 3연접동봉의경우, 저주파수구형파에서전류는 14.5 [ma], 대지전위상승은 916.7 [mv] 로측정되었으며, 표준뇌임펄스에서는전류가 6.6 [A], 전위상승이 520 [V] 로측정되었다. 급준파펄스에서는인가전류와전위상승이각각 1.45 [A], 245 [V] 로측정되었다. 탄소접지극의경우, 저주파수구형파에서인가전류는 14.5 [ma], 전위상승은 604.2 [mv] 가측정되었으며, 표준뇌임펄스와급준파펄스에서인가전류와전위상승이각각 6.5 [A], 660 [V] 및 1.4 [A], 245 [V] 로측정되었다. (a) Fast-rise Step Pulse (b) Standard Lightning Impulse (c) Low frequency Square waveform Fig. 5 Example waveforms of applied current and potential rise (Three linked copper-electrodes)
(a) Fast-rise Step Pulse (b) Standard Lightning Impulse (c) Low frequency Square waveform Fig. 6 Example waveforms of applied current and potential rise (Carbon-electrode) 동봉과탄소접지극에서전류원에따라측정된전압과전류의비로접지임피던스를산출하였으며, Table 1에측정결과를나타내었다. Table 1 Grounding Impedance for applied current Current source Electrode Copper-electrodes [Ω] Carbon-electrode [Ω] Low frequency Square waveform 63.2 41.7 Standard Lightning Impulse 78.8 101.5 Fast-rise Step Pulse 169 175 두종류의접지극에서접지임피던스는주파수성분이높아질수록커지는경향을나타내었다. 하지만탄소접지극의경우, 저주파수의구형파전류에서에서는 3연접동봉에비해낮은응답특성을보였지만고주파펄스전류에서는크게나타났다. 3. 결론본논문에서는동봉과탄소접지극의매설방법과인가전류에따른접지임피던스를분석하였다. 실험을위하여동봉은 1 [m] 간격의정삼각형으로배치하여 3연접하였으며, 탄소접지극은 0.8 [m] 깊이에매설하였다. 측정은 IEEE Std. 81.2에서규정하고있는전위강하법을적용하였으며, 인가전류에따른전위상승을측정하고접지임피던스를산출하였다. 실험결과, 인가전류의주파수성분이높아짐에따라접지임피던스가증가함을알수있었으며, 3연접동봉이탄소접지극에비해저주파수구형파전류에서큰접지임피던스를나타냈지만고주파펄스전류에서는접지임피던스가낮아지는특성을나타냄을확인하였다. 또한, 탄소접지극을단독적으로사용하는것보다동봉을연접하여접지를하는것이접지임피던스를낮추는데더효율적이다.
참고문헌 [1] I. F. Gonos, M. K. Antonioy, F. V. Topalis, I. A. Stathopulos (1998) Proceedings of the 6th International Conference and Exhibition on Optimization of Electrical and Electronic Equipments(OPTIM 98), pp.171~174 [2] Chien-Hsing Lee, A. P. Sakis Meliopoulos (1999) A Comparison of IEC 479-1 and IEEE Std. 80 on Grounding Safety Criteria, Proc. Natl. Sci. Counc. ROC(A), 23(5), pp.612~621. [3] A. Geri (1999) Behaviour of Grounding Systems Excited by High Impulse Currents:the Model and Its Validation, IEEE Trans. on Power Delivery, 14(3), pp.1008~1017. [4] G. Vijayaraghavan, Mark Brown, and Malcolm Barnes (2004) Practical Grounding, Bonding, Shielding and Surge Protection, Newnes, Linacre House, Jordan Hill, Oxford OX2 8DP. U.K, pp.62~78. [5] 高橋健彦, 金聖模, 李炯秀 (1997) 接地技術入門, オーム社, pp.203~218. [6] Ralph Morrison, Warren H. Lewis (1990) GROUNDING AND SHIELDING IN FACILITIES, John Wiley & Sons, pp.44~45. [7] I. F. Gonos, F. V. Topalis, I. A. Stathopulos (1999) Transient Impedance of Grounding Rods, High Voltage Engineering Symposium, 2(467), pp.272~275.