Journal of the Korean Society of Marine Engineering, Vol. 39, No. 6 pp. 620~625, 2015 ISSN 2234-7925 (Print) J. Korean Soc. of Marine Engineering (JKOSME) ISSN 2234-8352 (Online) http://dx.doi.org/10.5916/jkosme.2015.39.6.620 Original Paper 류영현 1 이영서 2 남정길 (Received January 21, 2015; Revised April 1, 2015;Accepted June 4, 2015) An Experimental Study of the Fuel Additive to Improve the Performance of a 2-Stroke Large Diesel Engine Younghyun Ryu 1 Youngseo Lee 2 Jeonggil Nam 요약 : IMO MEPC에서는지구온난화를늦추기위해서, 선박에서배출되는 GHG(Green House Gas) 인 CO 2 를줄이기위한방안으로선속을다운시켜운항할것을제안한바있으며, 해운회사에서도연료비절감을위해서자발적으로감속운항 (Low steaming) 을하고있어, 국제항해에종사하고있는대부분의컨테이너선들이감속운항을하고있다. 또한, 날로증가되고있는해운물동량증가로선박의연료비부담이증가되고있어연료비절감기술개발이절실히요구되고있다. 따라서본연구에서는디젤엔진의성능을향상시킬수있는연료첨가제 ( 유용성칼슘계유기금속화합물 ) 를일정량투입 ( 사용연료량의 0.025%) 하여연료비를절감하는방법을시도하였다. 실험의정확도를위해서육상발전소에설치된 2행정대형디젤엔진을실험대상으로하였다. 실험엔진의부하는저, 중및고부하 (50, 75, 100%) 로나누어서실시하였으며, 연료첨가제의투입전과투입후의엔진성능 ( 출력, 연료소비율, 최고연소압력 (P-max), 배기온도 ) 을비교분석하였다. 본실험을통해서연료첨가제를투입함으로써저부하 (50%) 에서 2% 이상의연료비절감효과를확인할수있었으며, 최고연소압력은상승하는반면에배기온도는하강함을알수있었다. 주제어 : 그린하우스가스, 연료첨가제, 유용성칼슘계유기금속화학물, 비연료소비율 Abstract: In an effort to reduce the onset of global warming, the International Maritime Organization Marine Environment Protection Committee (IMO MEPC) proposed the reduction in ship speeds as a way of lowering the proportion of carbon dioxide (CO 2 ) in the Green House Gas emissions from ships. To minimize fuel costs, shipping companies have already been performing slow steaming for their own fleets. Specifically, the slow steaming approach has been adopted for most ocean-going container lines. In addition, because of the increased marine fuel cost that is required to enable increased capacity, there is an urgent need for more advanced fuel-saving technologies. Therefore, in this present study, we propose a fuel-cost reduction method that can improve the performance of diesel engines. We introduce a predetermined amount (0.025% of the amount of fuel used) of fuel additive (oil-soluble calcium-based organometallic compound). For improved experimental accuracy, as the test subjects, we utilize a large two-stroke diesel engine installed in land plants. The loads of the test engine were classified as low, medium, and high (50, 75, and 100%, respectively). We compare the engine performance parameters (power output, fuel consumption rate, p-max, and exhaust temperature) before and after the addition of fuel additives. Our experimental results, confirmed that we can realize fuel-cost savings of at least 2% by adding the fuel additive in low load conditions (50%). Likewise, the maximum combustion pressure was found to have increased. On the other hand, we observed that there was a reduction in the exhaust temperature. Keywords: Green house gas, Fuel additive, Oil soluble calcium based organometallic compound, Specific fuel oil consumption 1. 서론 국제항해를하는 2행정대형디젤엔진을사용하는대부분의선박들은선박용중질유를사용하고있다. 중질유는동점도가높기때문에 100 이상으로가열을하지않으면 Corresponding Author (ORCID: http://orcid.org/0000-0002-4453-3971): Division of Marine Engineering, Mokpo National Maritime University, Haeyangdaehak-ro 91, Mokpo-si, Jeollanam-do, 530-729, Korea, E-mail: jgnam@mmu.ac.kr, Tel: 061-240-7220 1 Busan Technical Center of Automotive Parts, Korea Institute of Machinery & Materials, E-mail: yhryu@kimm.re.kr, Tel: 051-974-9241 2 Techno-bio. Co., Ltd, E-mail: yslee@technobio.co.kr, Tel: 031-352-1953 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright c The Korean Society of Marine Engineering 사용할수없는단점을가지고있다 [1]. 따라서, Ryu et al. 의연구에서는동점도가높은단점을지닌선박용중질유의동점도를낮추기위해서동점도가낮은단점을지닌디메틸에테르와혼합하여중질유의동점도를낮추기위한연구를
시도하였으며, 그결과로중질유의동점도를낮추어가열없이선박용디젤엔진에적용할수있는연구를시행한바있다 [2][3]. 그연구에서는디젤엔진의대체연료로주목받고있는디메틸에테르를혼합하여선박용중질유의동점도를낮추었으며 [2], 디메틸에테르를혼합한중질유의사용으로엔진성능도개선될수있음을확인한연구를보고한바있다 [3]. 또한, 다양한분야에서디젤엔진용연료첨가제에관한많은연구와실증들이이루어지고있다 [4]-[7]. 연료비는선박을운항, 관리하는해운사의예산지출에많은비중을차지하고있으며, 연료비절감을위해서대부분의국내외해운회사에서는선속을다운시켜운항하고있다. 그러나고출력엔진이장착되어있음에도불구하고저부하운전을장시간지속할경우에불완전연소로인한카본생성과고장률증가로정비비용이증가되는문제점이발생되고있다. 또한, 날로증가하는선박의연료비에대한부담은선주에게연료비절감기술개발이절실히요구되고있다. 따라서본연구에서는여러연료비절감방안들중에 T사의연료첨가제 ( 유용성칼슘계유기금속화합물 ) 를선박용중질유에투입함으로써연료비절감을시도하였다. 2. 실험장치및방법 본연구에서는실험의정확도를위해서육상화력발전소에설치된 2행정대형디젤엔진을실험대상으로하였으며, 연료첨가제는사용연료량의 0.025% 비율로투입하면서실험을실시하였다. 실험엔진의부하는배기온도가안정된열적평형을가진후에실험을진행하였으며저, 중및고부하 (50, 75, 100%) 의세단계로나누어서실험을하였고, Limiter로 ±3% 이내로일정하게유지하며, 발전기출력단전압을정격전압으로유지하면서운전하였다. 그리고연료첨가제의투입전과투입후의엔진성능 ( 출력, 연료소비율, 최고연소압력 (P-max), 배기온도 ) 을비교분석하였다. Figure 1은육상화력발전소의전경이다. Table 1은본연구에서사용된실험엔진의제원을보여주고있으며, Figure 2는본실험에서사용된 K-type 엔진의사진이다. 성능실험을위한적용대상설비는두산엔진 ( 주 ) 에서제작설치한 Diesel engine generator 설비로서 40MW급발전기이다. Figures 3, 4를통해서, 본실험에서사용된엔진의사이즈를볼수있다. Figure 3은본연구에서사용된엔진의 12,000시간운전후정비를하기위해서해체한배기밸브이며, Figure 4는같은시기에발출된피스톤이다. 그리고 Table 2는본연구에서사용된연료들의성상을나타내고있으며, 연료첨가제를선박용중질유에투입하기전의중질유와연료첨가제를 0.025% 비율로투입한후의중질유의연료성상을보여준다. 연료첨가제는유용성칼슘계유기금속화합물첨가제를사용하였다. 각각의연료에대한연료성분분석은연료의정확한성분분석을위하여실험중에샘플 3개를채취하여 국내연료전문분석기관에의뢰하여분석하였다. Figure 1: Thermal power plant Table 1: Test engine specification Item Description Engine type Low speed two stroke cycle, 12K80MC-S Bore Stroke 800 2300mm Combustion type Direct injection type No. of cylinders 12 MCR output 41,320kW MCR rpm 109.1rpm Mean effective pressure 16.4kgf/cm 2 Mean piston speed 8.36m/s Weight 1,413ton Turbo charger rpm 11,000rpm Firing order 1-5-12-7-2-6-10-3-8-4-11-9 Figure 2: Test engine Figure 3: Exhaust valve of the test engine 한국마린엔지니어링학회지제 39 권제 6 호 (2015.7) 621
류영현 이영서 남정길 Figure 4: Piston of the test engine Figure 5: Supply valve position of the additive Table 2: Properties of the heavy fuel oil and added fuel oil Item Heavy fuel oil fuel oil Density at 15, g/ml 0.9384 0.9378 Ash, mass% 0.042 0.030 Sulfur, mass% 0.254 0.273 Viscosity at 100, mm2 /s 24.27 23.39 Water by distillation, volume% 0.10 0.20 Nitrogen, mass% 0.33 0.32 Gross calorific value, kcal/kg 10,550 10,546 Net calorific value, kcal/kg 9,940 9,934 Carbon, mass% 86.68 86.56 Hydrogen, mass% 12.04 12.07 Oxygen, mass% 0.65 0.75 Table 3: Properties of the dosing pump and mass flowmeter Item Dosing pump Mass flowmeter Description CMG Techwin, AX1-12 model, 110 ml/min Endress Hauser, IP67/NEMA/TYPE4X model 첨가제주입설비는 Control tank 주변에자동으로일정량을공급할수있는 Dosing pump를설치하였으며, 공급위치는연료 Control tank 상부로공급할수있도록공급배관을연결하였다. Figure 5는첨가제주입밸브를보여주고있으며, Figure 6은 Dosing pump를포함한제어반이다. 또한, 엔진출력은현장 (Local) 적산전력량계및제어실 (Control room) 계기에서측정하였으며, 연료소모량은연료유공급라인측에설치된현장질량유량계검침을참조하였다. Table 3은 Dosing pump 와질량유량계사양을보여준다. 엔진출력및연료소비율계산시, 성능에미치는각항목은제작사가제시한보정곡선과계산식을적용하여계산하였다. Figure 7은질량유량계이며, Figure 8은본연구에서사용한엔진에대한실험장치개략도이다. Figure 6: Dosing unit including dosing pump Figure 7: Fuel flow meter Figure 8: A schematic diagram of experimental apparatus 한국마린엔지니어링학회지제 39 권제 6 호 (2015.7) 622
3.1 엔진출력 3. 실험결과및고찰 엔진출력은저, 중및고부하 (50, 75, 100%) 의세단계로나누어서측정하였다. 엔진부하 50% 의저부하에서는 4번측정한평균값을표시하였고, 엔진부하 75% 의중부하와 100% 의고부하에서는 7번측정한평균값을표시하였다. Table 4에서는각각의부하에서출력의증가및감소비율을보여주고있으며, Figure 9는그결과를도표로나타내었다. 50% 의저부하에서는출력이약 2.1% 감소하였으나, 75% 의중부하와 100% 의고부하에서는약 1.6, 0.4% 각각상승하였다. 이러한결과는 75% 부하이상에서첨가제효과로미연분을완전연소함으로써출력이향상되었다고판단된다. 본엔진출력값은측정된출력값을설계 Gen power factor 값으로보정한값이다. 이결과를통해중질유에첨가제를투입하였을경우저부하에서보다는중, 고부하영역에서엔진출력이향상됨을알게되었다. Table 4: Engine power outputs by added fuel (kw) fuel (kw) 50 21,186 20,748-438 -2.11 75 30,521 31,016 495 1.60 100 40,460 40,605 145 0.36 Figure 9: Engine power outputs by engine loads(50, 75, 100%) Table 5: Fuel consumption rate by added fuel (g/kwh) fuel (g/kwh) 50 207.430 202.833-4.597-2.27 75 186.395 185.103-1.292-0.70 100 188.422 186.913-1.509-0.81 Figure 10: Fuel consumption rates by engine loads(50, 75, 100%) 3.3 최고연소압력 Table 6와 Figure 11은엔진의최고연소압력의결과를보여준다. 각각의값은실린더 12기통을모두측정한후, 평균값을표시하였다. 저부하에서는최고연소압력이약 3.0% 상승하였으며, 중, 고부하에서는약 6.6, 0.9% 각각상승하였다. 즉, 선박용중질유에첨가제를투입함으로써전부하에서최고연소압력이상승함을확인하였다. 특히, 엔진의상용부하인 75% 의중부하에서많은상승률을보여준다. 이것은 Table 2에서보여주듯이첨가제에포함되어있는산소의작용으로엔진연소를활발하게촉진시켜연소성향상에따른것으로분석된다. Table 6: P-max by added fuel (Bar) fuel (Bar) 50 86.25 88.83 2.58 2.90 75 114.83 122.91 8.08 6.57 100 139.83 141.08 1.25 0.89 3.2 연료소비율 Table 5와 Figure 10은연료소비율의결과를보여준다. 엔진부하 50% 의저부하에서는 4번측정한평균값을표시하였고, 엔진부하 75와 100% 의중, 고부하에서는 7번측정한평균값을표시하였다. 저부하에서는연료소비율이약 2.2% 감소하였으며, 중, 고부하에서는약 0.7, 0.8% 각각감소하였다. 이러한결과는연소촉진의결과때문이라고판단된다. 즉, 중질유에연료첨가제를투입함으로써전부하에서연비가개선됨을확인하였다. 특히, 중, 고부하영역에서보다는저부하에서연료소비감소율이더높았다. Figure 11: P-max by engine loads(50, 75, 100%) 한국마린엔지니어링학회지제 39 권제 6 호 (2015.7) 623
류영현 이영서 남정길 3.4 배기온도 Table 7과 Figure 12는각부하에서엔진의연소후배기온도를보여준다. 각각의값은실린더 12기통을모두측정한후, 평균값을표시하였다. 저부하에서는배기온도가약 2.7% 감소하였으며, 중, 고부하에서는약 2.4, 0.6% 감소하였다. 즉, 중질유에첨가제를투입함으로써전부하에서배기온도가감소함을확인하였다. 이것은중질유에포함된아스팔텐, 슬러지를첨가제에포함된분산제에의해서잘분산시켜연료분사시연료의미립화및균질화효과를가져와안정된연소가될수있도록했다고판단된다. Table 7: Exhaust temperature by added fuel ( ) fuel ( ) 50 337.08 328.08-9.00-2.74 75 326.42 318.83-7.59-2.38 100 343.08 341.17-1.91-0.56 Figure 12: Exhaust temperature by engine loads(50, 75, 100%) 4. 결론 본연구에서는 2행정고출력대형디젤엔진에해양, 기상환경조건에영향을받지않는육상에서표준화된계측장비를사용하여실험하였다. 선박용중질유의연료첨가제에대하여투입전과투입후엔진의성능 ( 엔진출력, 연료소비율, 최대연소압력, 배기온도 ) 을비교분석하기위하여엔진의저, 중및고부하 (50, 75, 100%) 에서실험을실시하였으며, 다음과같은연구결과를얻을수있었다. 1. 엔진부하 50% 인저부하에서는출력이약 2.1% 감소하였으나, 엔진부하 75% 의중부하와 100% 의고부하영역에서는약 1.6, 0.4% 각각상승하였다. 이결과를통해중질유에첨가제를투입하였을경우저부하에서보다는중, 고부하영역에서엔진출력이향상됨을알게되었다. 2. 연료소비율은저부하에서는연료소비율이약 2.2% 감소하였으며, 중, 고부하에서는약 0.7, 0.8% 각각감소하였다. 즉, 중질유에연료첨가제를투입함으로써 전부하에서연비가개선됨을확인하였다. 특히, 중, 고부하영역에서보다는저부하에서연료소비감소율이더높았다. 3. 최고연소압력은저부하에서약 3.0% 상승하였으며, 중, 고부하에서는약 6.6, 0.9% 각각상승하였다. 즉, 선박용중질유에첨가제를투입함으로써전부하에서최고연소압력이상승함을확인하였다. 4. 배기온도계측결과, 저부하에서약 2.7% 감소하였으며, 중부하에서는약 2.4%, 고부하에서는약 0.6% 감소하였다. 즉, 중질유에첨가제를투입함으로써전부하에서배기온도가감소함을확인하였다. 이것은첨가제가엔진연소에영향을주어, 안정된연소가될수있도록했다고판단된다. 본연구를통해서, 현재운전되고있는 2행정고출력대형디젤엔진에서사용되고있는선박용중질유에유용성칼슘계유기금속화학물연료첨가제를투입함으로써저부하 (50%) 에서는 2% 이상의연료비절감효과를확인할수있었으며, 최고연소압력은상승하는반면에배기온도는하강함을알수있었다. 이러한결과를통해서엔진성능이향상된다고생각된다. 따라서, 선박용중질유를사용하는 2행정대형디젤엔진에연료첨가제주입을통해서연료비절감이가능하다고판단된다. 본연구에서는유용성칼슘계유기금속화학물연료첨가제의엔진성능향상에관한부분만을다루었으나, 향후에는엔진성능뿐만아니라, 연료첨가제가배기배출물에주는영향에관해서도연구를수행할예정이다. References [1] International Organization for Standard, 2012, Petroleum products-fuels(class F)-Specifications of marine fuels, INTERNATIONAL STANDARD, ISO 8217:2012(E). [2] Y. H. Ryu, T. Dan, and I. Asano, Measurement of bunker oil/dme blended fuel viscosity for diesel engine application, Journal of the Japan Institute of Marine Engineering, vol. 47, no. 5, pp. 95-100, 2012. [3] Y. H. Ryu and T. Dan, Combustion and emission characteristics of diesel engine by mixing DME and bunker oil, Journal of the Korean Society of Marine Engineering, vol. 36, no. 7, pp. 117-122, 2012. [4] A. Kadarohman, Hernani, I. Rohman, R. Kusrini, and R. M. Astuti, Combustion characteristics of diesel fuel on one cylinder diesel engine using clove oil, eugenol, and eugenyl acetate as fuel bio-additives, Fuel, vol. 98, pp. 73-79, 2012. 한국마린엔지니어링학회지제 39 권제 6 호 (2015.7) 624
[5] W. M. Yang, H. An, S. K. Chou, S. Vedharaji, R. Vallinagam, M. Balaji, F. E. A. Mohammad, and K. J. E. Chua, Emulsion fuel with novel nano-organic additives for diesel engine application, Fuel, vol. 104, pp. 726-731, 2013. [6] G. Zak, L. Ziemianski, Z. Stepien, and M. Wojtasik, Engine testing of novel diesel fuel detergent-dispersant additives, Fuel, vol. 122, pp. 12-20, 2014. [7] V. Arul Mozhi Selvan, R. B. Anand, and M. Udayakumar, Effect of cerium oxide nanoparticles and carbon nanotubes as fuel-borne additives in diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine, Fuel, vol. 130, pp. 160-167, 2014. 한국마린엔지니어링학회지제 39 권제 6 호 (2015.7) 625