w y wz 11«1y 73~80 (2011.8.) Journal of Korean Society of Urban Environment SWMM 을이용한도시지역비점오염부하저류시설용량산정 Áw«Á *Áy **Á½ yá½ Á x w w Á* û w y œw Á** w y lœw (2011 6 13, 2011 6 27 k) Determine Capacity of the Nonpoint Source Pollution Storage Facilities in Urban Areas by SWMM Rae-Seong Baek ½ Kwon-Chul Ha ½ Yong-Un Lee* ½ Seong-Chul Hong** ½ Myung-Mi Kim Min-Ho Kim ½ Do-Hyeon Paek Department of Biochemistry & Health Sciences, Changwon National University *Department of Environmental Engineering, Chonnam National University **Department of Regional Environmental System Engineering, Pusan National University (Received 13 June 2011 : Accepted 27 June 2011) Abstract Over the past 30 years, there has been an effort to run the facility which manages the domestic, industrial, and animal related sewages in Korea. Despite the effort, there has not been much improvement in the water quality in the lakes and marshes as expected. The limitation of the current water system is that, an inflow of the rainfall and other contamination elements are not being managed properly and so, there are a lot of efforts being made to effectively contain the contamination. The modeling locations are the Gwang-ju stream in Young-san river. These River of water quality was exceeded between level II~III, and the cause for that were determined as the non-point pollution material. The Ministry of Environment has set the Gwang-ju as supervised area to plan, establish, and to preform the 5.0 mg/l BOD concentration. We have carried out this research to improve the water quality at the main course of the Young-san river by proper calculation of capacity for the efficient management with non-point pollution source processing facility installation G stream in drainage area of Gwang-ju stream. Key Words : Nonpoint Source Pollution, SWMM, Rainfall-Runoff ù ù 30 y» mw w ù, w w. w». Ÿ BOD» II~III ùküš, w w ùkû. y Ÿ Ÿ BOD 5 mg/l t w w, wm wš. Ÿ G e z w mw t wš ww. : w, SWMM, - Corresponding author E-mail : pdh315@changwon.ac.kr 73
74 Áw«Á Áy Á½ yá½ Á x I. ù w y ƒ w z ƒ w š. ù 30 yw, s, š s w y» ù w w ( x, 2002).» Á ƒ jš d yƒ,» Á Á x w p š» w š. w (BOD» ) 44.5% w w e ùkûš, e w ƒwš. Ÿ BOD» II~III ùk üš, ùkû. y Ÿ Ÿ Áš wš, Ÿ BOD 5.0 mg/l t w w Á wm wš (y š 2007-20y, y» z). w w š yw ƒ w mw v w ( y, 2000). w w w y w v ƒ w x w. ƒ š SWMM x w. SWMM version 3 l ƒ ƒ w, x ¾ š (Baffaut, C. and J. W. Delleur, 1990). ƒ w EPA œwš Manual(Lewis A. Rossman, 2004)» x w (, 2004, ½, 2002). GIS w w. GIS œ w w w (, 1998). Ÿ G w» w wz w wì w w» w w» w x w. w w x mw wš l» w. 1. II. Ÿ Ÿ G w 9 w(fig. 1)w ƒ, s,, n w. s x xy x ùkü w ƒx xk ƒ w w. Table 1. Subcatchment information of study area Subcatchment Area (ha) Width (km) Slope ( o ) Residence (%) Commerce (%) Land Use Forest (%) S1 95.6 2.295 2.68 54 46 S2 53.5 1.93011 4.69 90 10 S3 27.8 1.28905 7.66 80 10 10 S4 196.4 4.39777 25.98 85.3 14.7 S5 85.7 2.05491 18.91 66 34 S6 125 1.21573 25.67 89.7 10.3 S7 25 0.88221 0.00 89 11 S8 243 5.52420 21.40 100 S9 330 6.01653 37.41 80 10 10 Etc (%)
SWMM w w 75 Fig. 1. The subcatchment division in G river area. W = ( 2 S k ) L W : Total width of overland flow (= 2 L) (m) S k = ( A2 A1) A S k :skew factor (0 S k 1) (dimensionless)»ww xkƒ w tš ¼ ù w, xkƒ w w ¼ ƒ s³w w. Table 1 eš (DEM) w Arc/Info v mw w. m w,,, œl, 5ƒ w. m v w m w GIS w š ùkü m w m w. 2. SWMM SWMM(Storm Water Management Model) x 1971 w w v 1971 EPA š. SWMM x ü w, w tw,, w w x ( k, 1996). SWMM Version 5.0 w G w w. 3. š SWMM x w Ÿ G p w. x v w Auto CAD, GIS w w, w DEM(Digital Elevation Model) k w. en, Runoff w Horton en ( š x) w š, conduit w» w Kinetic Wave w.» y w š w, Ÿ Ÿ G» (2009.8~2010.3) w x w. 1. x III. š d l k ƒ»,» w, w SWMM x w w x Ÿ Ÿ G y w. x y q w» w» d w, w dw k x w. SWMM x RUNOFF, TRNSPORT, EXTRAN Bolck w (calibration)w, k w x (verification) w.
76 Áw«Á Áy Á½ yá½ Á x Table 2. Data for rainfall situation Event '09.8.11 04:00 ~ '09.8.12 13:00 '10.2.24 9:00 ~ '10.2.25 18:00 '10.3.30 2:00 ~ '10.3.30 21:00 Rainfall (mm) Duration time in Rainfall (hr) 38.5 34 77.0 34 22.5 20 2009 8 11 ~12, 2010 2 24~25, 2010 3 30 ~31 G» (Table 2)w e k wp w. w e w q w mw w. G w 9 ù 3 (A1, A2, A3) w 3 w ùkü. d Fig. 2 A1 S7 ƒ l, A2 S3 y, A3 S9 3 ƒ, SS, BOD, COD, TN, TP w d w, d k w Fig. 2. Oserved point for subcatcment. w k w. Ÿ Ÿ G x 2009 8 11 ~12 w d k w x wš k 2010 2 25 ~26, 2010 3 30 ~31 k G w x ww Table 3, Table 4, Table 5 ùkû. 2. Ÿ Ÿ G (2009.08.11~12, 2010.02.25~26, 2010.03.30~31) k x mw G 3 (A1, A2, A3) w w Fig. 3 ~Fig. 12 ùkü. Table 3. Correlation coefficient of calibration results (2009. 8. 11~12) Basin Flux SS BOD COD TN TP A1-S7 0.172 0.019 0.114 0.439 0.000 0.007 A2-S3 0.298 0.430 0.512 0.284 0.052 0.049 A3-S9 0.134 0.281 0.001 0.208 0.090 0.081 Table 4. Correlation coefficient of verification result (2010. 2. 25~26) Basin Flux SS BOD COD TN TP A1-S7 0.108 0.194 0.347 0.168 0.056 0.029 A2-S3 0.001 0.000 0.220 0.428 0.180 0.013 A3-S9 0.620 0.029 0.018 0.068 0.138 0.11 Table 5. Correlation coefficient of verification result (2010. 3. 30~31) Basin Flux SS BOD COD TN TP A1-S7 0.173 0.711 0.065 0.037 0.000 0.066 A2-S3 0.00 0.034 0.625 0.319 0.029 0.331 A3-S9 0.022 0.239 0.167 0.232 0.207 0.077
SWMM w w 77 Fig. 3. Hydrograph of Runoff for 2010.2.25~26. Fig. 7. Pollutograph of TP for 2010.2.25~26. Fig. 4. Pollutograph of TSS for 2010.2.25~26. Fig. 8. Hydrograph of Runoff for 2010.3.30~31. Fig. 5. Pollutograph of BOD for 2010.2.25~26. Fig. 9. Pollutography of TSS for 2010.3.30~31. Fig. 6. Pollutograph of TN for 2010.2.25~26. Fig. 10. Pollutograph of BOD for 2010.3.30~31. v wƒ», w x G w washoff x w. ü w washoffƒ ù wƒ w w. 3. w» ùkû. w» w w w œœ w w. G w w w e» w
78 Áw«Á Áy Á½ yá½ Á x Fig. 11. Pollutography of TN for 2010.3.30~31. Fig. 12. Pollutograph of TP for 2010.3.30~31. Table 6. Accumulated flow in G river area (2009.08.11 ~ 12) TSS BOD TN TP Mean Accumulated Load (%) 7 0 Accumulated Flow (ton) 29352 39516 28350 32001 32304 Accumulated Load (%) 8 0 Accumulated Flow (ton) 32538 39750 32001 36837 35281 Accumulated Load (%) 9 0 Accumulated Flow (ton) 36837 39867 36096 38733 37883 Table 7. Accumulated flow in G river area (2010.02.25 ~ 26) TSS BOD TN TP Mean Accumulated Load (%) 7 0 Accumulated Flow (ton) 11793 24123 50007 41442 31841 Accumulated Load (%) 8 0 Accumulated Flow (ton) 16056 32922 60435 57684 41774 Accumulated Load (%) 9 0 Accumulated Flow (ton) 21912 48750 72678 75063 54600 Table 8. Accumulated flow in G river area (2010.03.30 ~ 31) TSS BOD TN TP Mean Accumulated Load (%) 7 0 Accumulated Flow (ton) 57410 55967 10413 58736 58131 Accumulated Load (%) 8 0 Accumulated Flow (ton) 59006 58016 11973 11736 10182 Accumulated Load (%) 9 0 Accumulated Flow (ton) 11241 10704 13644 14097 12421 w mw w wš w. 3z w TSS, BOD, TN, TP w w w 70%, 80%, 90% w w w (Table 6~Table 8, Fig. 13 ~Fig. 16). w 70% w w w» w w ƒ ù s³ 24,092 ton ³ ƒ v w 80% w w» w 29,079 ton š 90% w w» w
SWMM w w 79 Fig. 13. The relation between cumulated flow and TSS % loading (2010.2.25~26). Fig. 14. The relation between cumulated flow and BOD % loading (2010.2.25~26). Fig. 15. The relation between cumulated flow and TN % loading (2010.2.25~26). 34,968 ton ³ v w ùk û. IV. w Fig. 16. The relation between cumulated flow and TP % loading (2010.2.25~26). w w» w w z w ü w wì w» w w. w wì SWMM x w w w x e w w w ³ w. w. 1. 10 d w 0 wù, Runoff w w.»» š,» ƒ w w. 2.» 2009 8 11 ~12, 2010 2 24~25, 2010 3 30 ~31 3z d w G w SWMM x ww ƒ 2009 8 11 ~12 2010 2 25 ~26 2010 3 30 ~31 w. 3. Ÿ Ÿ G w w ù», w» z w w œœ w» w. wƒ» w SWMM e w
80 Áw«Á Áy Á½ yá½ Á x w. 4.» Ÿ Ÿ G w w» w» w. w 70%, 80%, 90% w k w w. w ƒ ù 70% w w w» w s³ 24,093 ton, 80% w w» w 29,080 ton š 90% w 34,969 ton ³ v w ùkû. 2009~2010 w ü w. References 1. ½, ½,», «,. 2002. dp. wy œwz. 24(11). 2019-2027. 2. x. 2002. GIS y w mw x. w. w. 3.,,. 2004. m p. wy œwz. 26(7). 729-735. 4.. 1998. ƒ l w x. w, w. 5. k, ky, ½ y. 1996. m w SWMM x. 4z w wz j. 97-204. 6. y. 2000. ƒ l l w mw. 2 š. w w. 7. Baffaut, C. and J. W. Delleur. 1990. Calibration of SWMM Runoff Quality Model With Expert System. Journal of Water Resources Planning and Management. ASCE. 116(2). 8. Lewis A. Rossman, 2004, STORM WATER MANGEMENT MODEL USER`S MANUAL Version 5. EPA.