21(1)-3(10-64)p fm

Similar documents
16(2)-7(p ).fm

16(1)-3(국문)(p.40-45).fm

약수터2호최종2-웹용

304.fm

14.531~539(08-037).fm

69-1(p.1-27).fm

12(2)-04.fm

9(3)-4(p ).fm

10(3)-09.fm

10(3)-12.fm

605.fm

< DC1A4C3A5B5BFC7E22E666D>

Microsoft Word doc

untitled

416.fm

82-01.fm

21(1)-5(10-57)p fm

12(3) 10.fm

16(2)-10(p ).fm

10(3)-10.fm

12.077~081(A12_이종국).fm

<30332DB9E8B0E6BCAE2E666D>

15.101~109(174-하천방재).fm

<30312D303720B9DAC1A4BCF62E666D>

49(6)-06.fm

11(5)-12(09-10)p fm

19(1) 02.fm

16(1)-4(국문)(p.9-13).fm

8(2)-4(p ).fm

50(1)-09.fm

16(2)-9(p ).fm

hwp

untitled

fm

07.051~058(345).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

DBPIA-NURIMEDIA

<30312DC0CCC7E2B9FC2E666D>

fm

17.393~400(11-033).fm

歯1.PDF

14(2) 02.fm

26(3D)-17.fm

14(4) 09.fm

82.fm

10(3)-02.fm

31(3B)-07(7055).fm

12(4) 10.fm

19(1)-1(09-01)p.1-17.fm

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

51(2)-09.fm

32(4B)-04(7455).fm

15(2)-07.fm

14(4)-14(심고문2).fm

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

untitled

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

06.177~184(10-079).fm

03-ÀÌÁ¦Çö

14.fm

15(1)-04(국)(p.27-33).fm

8(3)-15(p ).fm

82-02.fm

10(1)-08.fm

1..

38(6)-01.fm

50(5)-07.fm

15(2)-13.fm

27(5A)-07(5806).fm

415.fm

202.fm

untitled

Treatment and Role of Hormaonal Replaement Therapy

51(4)-13.fm

DBPIA-NURIMEDIA

11(5)-7(09-37)p fm

18211.fm

( )Jkstro011.hwp

8.fm

( )-83.fm

93.fm

<312D303128C1B6BAB4BFC1292E666D>

노인정신의학회보14-1호

13(1)-04.fm

fm

07.045~051(D04_신상욱).fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

(2)-02(최경자).fm

201.fm

fm

005송영일


57.fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

01.01~08(유왕진).fm

49(6)-10.fm

3-15(3)-05(이주희).fm

DBPIA-NURIMEDIA

27(5A)-15(5868).fm

012임수진

Transcription:

w wz 21«1y Kor. J. Clin. Pharm., Vol. 21, No. 1. 2011 3» y t sƒv e z t ½ Á x Á xk w w w (2010 12 31 Á2011 3 11 Á2011 3 13 ) Comparison of Drug Prescriptions Before and AfterG Computerized Drug Utilization Review Program Installation in a Tertiary Hospital Setting Sang Mee Kim, Hyun Soon Sohn and Hyun Taek Shin College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Korea (Received December 31, 2010ÁRevised March 11, 2011ÁAccepted March 13, 2011) Drug Utilization Review (DUR) is known to play an important role to improve appropriateness of drug prescriptions. This retrospective, observational study was conducted to compare prescription patterns after installation of Computerized DUR Program (Drug Information Framework-Korea ) (Jan-Mar 2008; After) to before DUR program (Jan-Mar 2007: Before). 8 physicians affiliated in the S University Hospital were enrolled in the study and their 3 months' prescription data were analysed for drug prescription trends and DUR conflict events per 7 DUR screening modules (drugdrug interaction, therapeutic duplication, allergy, dosing, disease contra-indication, geriatric contra-indication, pediatric contra-indication). Average rate of DUR modules usage in 2008 (After) were 0.72. Average number of prescription drug per patient were reduced from 5.6 (Before) to 3.8 (After), and DUR program seemed to effect positively on physician's prescription related decision process. Overall DUR conflict events occurred by 8 physicians for 3 months were 17,923 Before and 20,057 After DUR program, and DUR conflict events per prescription were 2.8 Before and 2.9 After, respectively. Therapeutic duplication (37%), geriatric contra-indication (34%) and dosing (18%) were high ranked DUR conflicts. As the study was not sufficient to show a consistent trend to reduce DUR conflicts After, another study to confirm it's effectiveness would be recommended. This study would be of help to develop awareness of DUR program to healthcare providers. Key words - Computerized Drug Utilization Review Program, DUR module, DUR conflict t w ƒ v w û ƒ yw» w ƒ w. w w (Adverse Drug Events, ADE) y j x wš z, k š š š. IOM (Institute of Medicine) 1999 w š To Err is Human: Building a Safer Health System y 44,000-98,000 y ƒ y š(medical error) w š wš1,2) w y ƒ 10 w š. w 3) Harvard Medical Practice Study, 51 w y 30,195 19% Correspondence to : xk w w w q z ¼ 56 Tel: +82-2-710-9575, Fax: +82-2-716-9404 E-mail: tomshin@sm.ac.kr ùkû š w. w 4), 1995 Johnson decision analysis x w, w y 766 wš, 2000 5) y š w 1,774 w. ù x t 6) ùš. 1999 w 6 23.4% y sw š7), 2003» 15 x l y t sƒv (Computerized Drug Utilization Review Program) w, 7,866,409 2,527,025 conflict ƒ ùkù, 10 s³ 3 s ƒ(drug Utilization Review, DUR) conflict ƒ ùkù y w. ù t w 8) w y š ³ d w, 2006 z š» w 14

3» y t sƒv e z t 15 y 17,644 y š w š w. w w 9) w ƒw w w» w ù ƒ» š. ù 2000 z t mƒ w ³ ù, m wš w mƒ z wš û. x ¾ ü ƒ z y w DUR, w» t sƒw t z yw. 10,11) DUR e (therapeutic duplication), - y»(drug-disease contraindication), - y (drugdrug interaction), w (incorrect drug dosage), w n» (incorrect duration), -» y (drug-allergy interaction), û (clinical abuse/ misuse) š12), w w (prospective), zw (retrospective) (concurrent) DUR w. w 11,13) DUR y ù, y mw w w» w z ƒ. 14) ù, zw DUR z ù ql sƒw, DUR w sƒ w x z v w sƒw xk. 15) x ù š mw ƒ (»,»,», w t, t ) w 16) DUR š ù z w š š, ˆ mw x wš, w w w DUR xk š, y y w» w v w. x w zw DUR sƒ w xk š, z DUR w» e»» w y. y mv, v w w w wš mw. 17) Smith DH Pacific Northwest Health Maintenance Organization y mv z w, v z 22% w š w y non-preferred agent ùkû. 18) Gregoire JP y w DUR zw DUR w, z ƒ š DUR zw DUR { ƒ k ùkû. w mv 19) š y w v w. ù pilot study š t w š š, y v» sƒ» sw ü» y mv w».» w v w» w š. v w ù y d» v z y sƒw», ü w y t w y m v w» z ql w v w z ƒ sƒ w š., ü ƒ y wš 3» wù S, y mv ew» z x ql wš w.» S w ü 8 ü y mv e» 3 (2007 1-3 ) v e z 3 (2008 1-3 ) w y x, zw w. y m v w ( )r p ƒ œ w y m v (DIF-Korea ) w, v First DataBank, San Bruno, CA( w FDB) NDDF (National Drug Data File) Plus DUR MMARM (Minimum/Maximum Adult Daily Range of Dosing Module: / m ), MMGRM (Minimum/ Maximum Geriatric Daily Range of Dosing Module: / m ), PDM (Pediatric Dosing Module: m ), ACM (Age Contraindication Module: p»), DDIM (Drug-Drug Interaction Module: y m ) w t t (KFDA) xƒ w w KADM (KFDA Labeled Korea Adult Daily dosing Module:»

16 Kor. J. Clin. Pharm., Vol. 21, No. 1, 2011 m ), KDCM (Korea Drug Contraindication Module : n» ), KACM (Korea Age Contraindication Module : p n» m ) mw. x ƒƒ w y y,,,,»,, sww 7ƒ w DUR conflict event w sƒ» w. s ƒ y 18, 60 w. ù e w t 2ƒ n w. y conflict 3ƒ ù : 1 wì w», 2 ƒw y, 3 y. DIF-Korea v l Sequential Access Method file xk x g. š l l (Windows 2000 and Database Management System: MS-SQL) ƒƒ l DUR j l kw 7ƒ w DUR sƒ» w» DUR conflicts ƒ. DUR conflict l m w Microsoft Excel spreadsheet w. DUR m v z y, y w, š w w., m v w š, v z 7ƒ m w DUR conflict event w. Microsoft Excel 2007 w» m w. p 8 ü ƒ wš ww w y 2007 1-3» (v, Before) 8,209, 2008 1-3» (v z, After) 8,264. y Before After ƒƒ 51.0% 51.5% š, Before After 18-65 ƒƒ 65.8% 63.9% wš 2 1% w 51.5 (Table 1). Before w After 3 y 2 w 3 Table 1. y p ( : ) 2007 (Before) 2008 (After) û 4,022 (49.0%) 4,008 (48.5%) 4,187 (51.0%) 4,256 (51.5%) 8,209 (100.0%) 8,264 (100.0%) ù 0-18 85 (1.0%) 70 (0.9%) 18-65 5,385 (65.8%) 5,259 (63.9%) 65 2,720 (33.2%) 2,896 (35.2%) 8,190 (100.0%) 8,225 (100.0%) l 183 ¾ ƒw 55 ƒ š, 8 ƒ ww y ƒ w 2 sww 3 wš ù ƒw ù 30 w (Table 2). 8 ƒ 3 w Before After ƒƒ 46,285 32,381 š, 3 Before 5,786 After 4,048 w š w ùkü (Fig. 1). wr, y Before s³ 5.6 After 3.8 s³ 1.8 ƒ š w ùkü (Fig. 2). mv mv w ƒ y w», 7ƒ DUR ( y, n,, m,»,, ) 2008 1-3 ( 91 ) w 1.00 w. 1.00 ƒ 3 š, ƒ û 0.37. s³ 0.76 š, y, n,, m 0.95», Table 2. 3 y y 2007 2008 2007 2008 A 914 917 +3 980 988 +8 B 486 498 +12 504 507 +3 C 1,651 1,817 +166 1,695 1,874 +179 D 793 862 +69 925 975 +50 E 182 1,845 +23 1,895 1,899 +4 F 991 808-183 124 1,013-228 G 1,084 1004-80 1,201 1,126-75 H 468 513 +45 597 626 +29 w 8,209 8,264 +55 9,038 9,008-30

3» y t sƒv e z t 17 Fig. 1. 3 Fig. 2. y w û (Table 3). 8 s³ 0.72 ùkü (Fig. 3). %63DPOGMJDUFWFOU mv w mw 3 DUR conflict event ƒ Before 17,923 After 20,057 Before 2,134 ƒw (Table 4). After conflict s, n ƒ ƒ 37% ƒ š conflict ƒ 34%, conflict ƒ 18% w. w Before s j ƒ ù (Table 4, Fig. 6). After 3 conflict ƒ w w C, E H ƒw. After s³ 2,507 Before 267 ƒw C E 1,000 conflict ƒ ùkù s³ conflict w e (Fig. 4). w w s³ DUR conflict w s³e Before 2.8

18 Kor. J. Clin. Pharm., Vol. 21, No. 1, 2011 Table 3. DUR v module 1) DUR module y n» A 1.00 1.00 1.00 1.00 0.65 0.08 0.08 0.69 B 0.60 0.60 0.60 0.60 0.14 0.04 0.04 0.37 C 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.57 D 1.00 1.00 1.00 1.00 0.87 0.87 1.00 0.96 E 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 G 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.86 H 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 s³ 3) 0.95 0.95 0.95 0.95 0.71 0.62 0.52 1) = ƒ / 2008 1-3 (91 ) 2) s³ = ƒ w / 7 ( w w) 3) s³ = ƒ w / 8 ( ƒ w w) s³ 2) Table 4. DUR conflict Fig. 3. DUR v w After 2.9 0.1 ƒw w (Fig. 5). DUR conflict ƒ Before After ƒw ùkù, conflict C E x q w wš, Before After ƒ š w w. š y w mv» ew z y w t ql DUR conflict events y w Before (2007 ) After (2008 ) (%) (%) 46,285 32,381 y 1 40 0.22 55 0.27 2 407 2.27 432 2.15 3 1,557 8.69 1,730 8.63 2,004 11.18 2,217 11.05 6,914 38.58 7,429 37.04 15 0.08 22 0.11 3,018 16.94 3,326 16.58 181 1.01 174 0.87 3,199 17.85 3,500 17.45» 45 0.25 52 0.26 1 216 1.21 259 1.29 2 5,482 30.59 6,551 32.66 5,698 31.79 6,810 33.95 1 17 0.09 7 0.03 2 19 0.11 13 0.06 3 12 0.07 7 0.03 48 0.27 27 0.13 w 17,923 100.0 20,057 100.0. DUR v e (Before) z(after) 3 ƒƒ 8,200 y w 9,000 w w, e z y 1 ƒ 5.6 3.8 w š ƒ s³ 1,700 w, computerized

3» y t sƒv e z t 19 Fig. 4. 3 DUR conflict Fig. 5. DUR conflict DUR program w e. ù m k w w DUR v š w» w. wr, DUR v ü e z x t DUR v w»¾ v w» e z 3» DUR v š š j» w, DUR v s³ 0.72 š š sƒ. w DUR conflict d DUR v e ( 18,000 ) z( 20,000 ) ƒw w ùkü. e z w wš DUR conflict ƒ ƒw ùkù, r» w d wz

20 Kor. J. Clin. Pharm., Vol. 21, No. 1, 2011 Fig. 6. DUR conflict s w w ƒ v w., DUR» 30% conflict ƒ ùkû, wz DUR w ƒ m š w w w. DUR conflict w DUR v e z (10-138 ) w w ù 2 1,000 ƒ w x ùkù, ü DUR v ew DUR v y w w š d. DUR v e w, wwš z y w w, DUR v y z yw w. w ƒ š w., y mv w y DUR conflict w w», conflict w w» w., ü 1 w 8 DUR v w» ù x š w t k yw»., DUR v ew z v w w w v e z e w» z yw y w» w ƒ. e z w 1-2 v x k š» w z sƒw ww y v w., 8 w» w ƒ DUR v w š š y ƒ w w ƒ» w ƒ w ƒ w., DUR v w e w y w» w DUR v ql w e ƒ y m w v w w w w š,, wz w w v w. w» w, mw x k q w š DUR v w m conflict alert ƒ w y w š w. DUR v e z ƒ w y w, wz» t w ü x t w mƒ z» w wš, w d mv y w w e»ƒ» w. š x 1. National Academy of Sciences Institute of Medicine. To err is human: Building a Safer Health System. Washington, DC: National Academy Press; 1999. Available at http://books. nap.edu/books/0309068371/html/. Accessed August 2009. 2. Malone DC, Abarca J, Hansten PD, Grizzle AJ, Armstrong EP, Van Bergen RC, Duncan-Edgar BS, Solomon SL and Lipton RB. Identification of Serious Drug-Drug Interactions: Results of the Partnership to Prevent Drug-Drug Interactions. J Am Pharm Assoc 2004; 44(2): 142-151.

3» y t sƒv e z t 21 3. Lazarou J, Pomeranz BH and Corey PN. Incidence of adverse drug reactions in hospitalized patients: a metaanalysis of prospective studies. JAMA 1998; 279: 1200-1205. 4. Leape LL, Brennan TA, Laird N, Lawthers AG, Localio AR, Barnes BA, Hebert L, Newhouse JP, Weiler PC and Hiatt H. The nature of adverse events in hospitalized patients. N Engl J Med 1991; 324: 377-384. 5. Johnson JA and Bootman JL. Drug-related morbidity and mortality. A cost-of-illness model. Arch Intern Med 1995; 155: 1949-1956. 6. Ernst FR and Grizzle AJ. Drug-related morbidity and mortality: updating the cost-of-illness model. J Am Pharm Assoc 2001; 41: 192-199. 7. ½,,, wx,, y, û. y ùkù y k. J Kor Hosp Pharm 1999; 16(2): 252-258. 8. xk. y DURv mw x z w w. x sƒ š 2003 6. 9. xk. y š ³ q w š. 2006. 9. 28. 10.. ƒ Drug Use Evaluation w. J Kor Soc Health-Syst Pharm 2001; 18(4): 433-439. 11. Alan L, Betsy S, Thomas R. F, Theodore M. C. Ambulatory Drug Utilization Review: Opportunities for Improved Prescription Drug Use. AJMC 2001; 7(1): 75-83. 12. t sƒ(dur) w. w z 2004. 13. Soumerai SB and Lipton HL. Computer-Based Drug- Utilization Review-Risk, Benefit, or Boondoggle? N Engl J Med 1995; 332: 1641-1645. 14. ½. k -2 ¼w sƒ mw z sƒ. w w w 2003 8. 15. The U.S. Pharmacopeia Drug Utilization Review Advisory Panel. Drug Utilization Review: Mechanisms to Improve Its Effectiveness and Broaden Its Scope. J Am Pharm Assoc 2000; 40(4): 538-545. 16. x sƒ. -.Available at http://www.hira.or.kr/common/dummy.jsp?pgmid = HIRAF011305000000. Accessed on April, 2010. 17. Forni A, Chu HT, Fanikos J. Technology utilization to prevent medication errors. Curr Drug Saf. 2010 Jan; 5(1): 13-8. 18. David H. S, Nancy P, Adrianne F, Xiuhai Y, Daniel K, Steven R. S, Dean F. S, Richard Platt, Soumerai S. B. The Impact of Prescribing Safety Alerts for Elderly Persons in an Electronic Medical Record. Arch Intern Med. 2006; 166: 1098-1104. 19. Jean-Pierre G, Jocelyne M, Louise P, Isabelle C, Rene V, Alain M. Effect of drug utilization reviews on the quality of in-hospital prescribing: a quasi-experimental study. BMC Health Medical Research. 2006; 6: 1-11.