KOREAN J. FOOD SCI. TECHNOL. Vol. 45, No. 5, pp. 550~556 (2013) http://dx.doi.org/10.9721/kjfst.2013.45.5.550 The Korean Society of Food Science and Technology 열수추출조건이동결건조오미자의추출및항산화특성에미치는영향 박은주 안재준 권중호 * 경북대학교식품공학부 Effect of Reflux Conditions on Extraction Properties and Antioxidant Activity of Freeze Dried-Schisandra chinensis Eun-Joo Park, Jae-Jun Ahn, and Joong-Ho Kwon* School of Food Science & Biotechnology, Kyungpook National University Abstract Reflux extraction properties of Schisandra chinensis were investigated with different extraction conditions of ethanol concentration (0-99%), extraction time (2-8 h), and extraction temperature (40-100 o C). Different chemical properties, such as reducing sugars (RS), titratable acidity (TA), Hunter s color values, total phenolic compounds (TPC), and antioxidant activity (DPPH and ABTS assays) were analyzed for the corresponding extracts. The results showed that RS and TA increased as the extraction temperature increased. For each parameter, the maximum value was achieved, when extraction was carried out with 50% ethanol for 8 h at 100 o C. Redness (a*) of the extract decreased as all 3 extraction parameters were increased. TPC increased significantly as the extraction time and temperature increased; further, the highest TPC was achieved, when extraction was carried out with 50% ethanol. The same tendency was observed for DPPH and ABTS radical scavenging activities. The highest TPC and antioxidant activity were obtained, when extraction was carried out with 50% ethanol for 4-6 h at 60-80 o C, respectively. Keywords: Schisandra chinensis, reflux extraction, ethyl alcohol, total phenolics, antioxidant activity 서 오미자나무의종실인오미자 (Schisandra Chinensis Baillon) 는목련과에속하는낙엽성만성목본식물로서 6-8 월에개화하여 9-10 월에과실이열리고서리가내린후채취하여사용하며, 주로우리나라중북부지방에분포하고있다 (1). 오미자는수렴, 자양, 강장, 목마름등의약효를가지고있어오래전부터생약원료로한방에서사용해오던소재로중추신경억제작용, 혈압강하작용및알콜해독작용이있는것으로알려져있다. 또한암예방활성 (2,3), 노화억제활성 (4), 면역조절작용 (5), 항균활성 (6) 등다양한생리적기능성이보고되고있다. 오미자는신맛, 단맛, 매운맛, 쓴맛, 짠맛등다섯가지맛과향이어우러진독특한풍미를나타낼뿐만아니라폴리페놀이다량함유되어있어항산화능이매우높은것으로알려져있다 (7). 최근세계음료시장은높은생리활성을지닌식품소재의추출물을이용한음료의소비가급증하는추세이며, 오미자는상품성이높은추출소재로서새롭게주목받고있다 (8). *Corresponding author: Joong-Ho Kwon, School of Food Science & Biotechnology, Kyungpook National University, Daegu 702-701, Korea Tel: 82-53-950-5775 Fax: 82-53-950-6772 E-mail: jhkwon@knu.ac.kr Received April 22, 2013; revised August 22, 2013; accepted August 26, 2013 론 오미자의기능성성분으로는 schisandrin, schisandran, γ-schisandrin, ethamigrenal, gomisin 유도체등이알려져있으며특히오미자종자의 gomisin 유도체들이높은항산화작용을나타낸다고보고된바있다 (9). 또한정유성분으로서 citral, sesquicarene, α, β-chamigrene 등이보고되었다 (9). 오미자성분에관한연구는 Yang 등 (10) 이오미자 anthocyanin 색소의안정성과 Lee 와 Lee(11) 의오미자부위별유리당, 지질및비휘발성유기산조성에대한연구가보고되었다. 또한오미자의추출과관련된연구로는주로물과에탄올을이용한연구가주를이루고있다 (12-14). Lee 등 (12) 은오미자를열수추출하여추출온도 65 o C, 용매비 25 배의최적추출조건을얻었으며, Cho 등 (13) 은실온에서추출하였을때, 60% 에탄올추출물이물추출물보다높은생리활성을나타낸다고보고하였다. 또한 Kim 등 (14) 의연구에서도 60 o C 에서 60% 에탄올로추출한오미자추출물이가장높은항산화능을나타내었다고보고된바있다. 현재산업적으로오미자는주로실온에서물추출하여농축하는방법이이용되고있지만, 이방법은수율도낮고, 생리활성도약할뿐아니라효율성도크게낮으므로, 이를개선할수있는최적의추출조건의확립이필요하다. 따라서오미자의기능성성분과높은항산화활성을최대한유지하면서경제적이고, 효율적인추출방법이필요한실정이나아직오미자의추출조건에대한연구는아직체계적으로이루어지지않은상황이므로향후이러한연구가필요하다고생각된다. 이에본연구는오미자를이용한효과적인추출과추출물의항산화특성을확인하기위하여물과에탄올을용매로하여온도및추출시간에따른추출특성을확인하고기능성추출소재를얻고자하였다. 550
동결건조오미자의열수추출및항산화특성 551 재료및방법 실험재료본연구에서사용한오미자는 2012 년에문경에서생산된생오미자를구입하여심온고 ( 70 o C) 에서하루동안보관후동결건조 (MCFD8518, Ilshinbiobase, Yangju, Korea) 하였다. 동결건조된시료의수분함량은 6.21±0.09% 이었으며, 건조된시료는 40 mesh 로분쇄한후실험에사용하였다. 추출방법및조건동결건조된오미자의추출방법은환류추출방법을이용하여에탄올농도 (%), 추출시간 (h), 추출온도 ( o C) 를달리한 3 가지의조건에따른추출특성을분석하였다. 농도에따른추출특성시험은 60 o C, 2 시간동안에탄올농도 0, 50, 70, 99% 에서추출하였으며, 온도에따른추출특성시험은 50% 에탄올, 2 시간동안 40, 60, 80, 100 o C 의조건에서추출하였다. 시간에따른추출특성시험은 50% 에탄올, 60 o C 에서 2, 4, 6, 8 시간동안추출하였다. 이때얻어진각추출물은감압여과장치 (JP/N-1000SW, EYELA, Tokyo, Japan) 에의해여과 (Whatman No. 1, Whatman plc, Maidstone, UK) 하여 20 o C 에서냉동보관하면서시료로사용하였다. 환원당함량측정오미자추출물의환원당함량은 Nelson-Somogyi 변법 (15) 에의해 A 시약 (Na 2 CO 3, NaHCO 3, Rochelle salt, Na 2 SO 4 ) 과 B 시약 (H 2 SO 4, CuSO 4 ) 을 1:24 로혼합하여 D 시약을제조하였고, Ammonium molybdate, H 2 SO 4 와 Na 2 HASO 4 7H 2 O 를혼합하여 C 시약을제조하였다. 시료 0.5 ml 에 D 시약 0.5 ml 를첨가하여 20 분간가열한후 C 시약 0.5 ml 와증류수 5mL 를가하여흡광도 520 nm 에서 5 회반복측정하였다. 기계적색도측정오미자추출물의기계적색도는색차계 (CM-3600d, Konica Minolta, Osaka, Japan) 를이용하여 Hunter s Scale 에의한 L*( 명도 ), a*( 적색도 ), b*( 황색도 ) 값을측정하였으며, 증류수를대조구 (L* =100, a* =0.00, b* =0.00) 로하여 5 회반복하여측정하였다. 적정산도측정오미자추출물의총산함량은 0.1 N NaOH 용액으로 ph 8.35 까지적정하여초산함량 (%) 으로나타내었으며 5 회반복측정하여평균값으로나타내었다. 총페놀함량측정오미자추출물의총페놀함량은 Folin-Ciocalteu 방법 (16) 에의해, 시료 0.2 ml 과증류수 1.8 ml 를혼합하고 Folin-Ciocalteu s phenol reagent 0.2 ml 를가하였다. 6 분후, 7% Na 2 CO 3 2mL 를혼합하여 750 nm 에서분광광도계 (Optizen 2120UV, Mecasys Co. Ltd., Daejeon, Korea) 를이용하여 5 회반복측정하였다. 함량은 gallic acid 를표준물질로하여 0, 25, 50, 100, 200 ppm 으로검량선을작성한후건물량기준 mg gallic acid equivalent (GAE)/ 100 g 으로나타내었다. 항산화능측정시료의항산화능은 α,α'-diphenyl-β-pycrylhydrazyl (DPPH) radical 소거능 (17) 및 2,2'-azino-bis-3-ethylbenozothiazoline-6-sulfonic acid (ABTS) radical 소거능 (18) 으로측정하였다. DPPH radical 소 거능은시료 1 ml 에 517 nm 에서흡광도를 1.00±0.02 로조정한 DPPH 용액 5mL 를혼합하고 30 초후 517 nm 에서흡광도를측정하였다. ABTS radical 소거능측정은 7.4 mm ABTS 와 2.45 mm potassium persulfate 를약하루동안혼합및암소방치하여 ABTS 양이온을충분히형성시킨후 734 nm 에서흡광도값을 0.70±0.02 로조정하였다. 시료 0.2 ml 에희석된 ABTS 용액 4mL 를가하여흡광도의변화를정확히 6 분후에측정하였다. 항산화능은 trolox 를표준물질로하여검량선을작성한후건물량기준 µm trolox equivalent antioxidant capacity (TEAC)/g 으로나타내었다. 결과및상관성분석본실험은분석에영향을미치는모든변수들은 Excel 2010, SAS program (SAS Institute, Cary, NC, USA) 을이용하여 (19) Duncan's multiple range test 방법으로결과값들의유의성을분석하였으며 (20), 결과정리는 Origin 8.0 software (Origin Lab. Co., Northampton, MA, USA) 를사용하였다 (21). 결과및고찰 용매및용매농도에따른추출특성동결건조한오미자로부터용매의농도에따른추출특성을알아보고자, 열수추출물과에탄올추출물 (50, 70, 99%) 에대해 60 o C 에서 2 시간동안추출하여이화학적특성과항산화능을분석하였다. 에탄올농도에따른오미자추출물의환원당함량은 50% 에탄올추출물에서가장높은함량을나타내었으며, 열수추출물과 70% 에탄올추출물은 50% 에탄올추출물과크게차이를나타내지않았으나, 99% 에탄올추출물은환원당함량이크게감소하였다 (Table 1). 즉, 환원당함량은에탄올 (50, 70%) 추출물 > 열수추출물 > 에탄올 (99%) 추출물순으로나타나, 에탄올이물과혼합할경우환원당추출에크게영향을미치는것으로나타났다. 적정산도역시 50% 에탄올추출물에서가장높은산도를나타내었으며, 열수추출물, 70% 에탄올추출물은약간감소하였지만, 99% 에탄올추출물은산도가크게감소하였다 (Table 1). Na 등 (22) 과 Kim 등 (23) 은결명자와오미자를에탄올농도에따라추출하였을때, 열수추출물이가장높은적정산도를나타내었고, 에탄올농도가증가할수록적정산도는감소한다고하여본연구와상이한결과를나타내었다. 에탄올농도에따른오미자추출물의기계적색도는에탄올농도가증가할수록적색도 (a*) 와황색도 (b*) 는유의적으로감소하였다. 명도 (L*) 는열수추출물과 70% 에탄올추출물에서는변화가거의없었으나, 50% 에탄올추출물은명도가감소하였으며, 99% 에탄올추출물은가장높은명도를나타내었다 (Table 1). 오미자추출물의적색도가감소한이유는주색소인안토시아닌이에탄올농도가증가할수록추출률이낮아지는데기인하는것으로사료된다 (24). 에탄올농도에따른총폴리페놀함량은 50% 에탄올추출물에서 71.59 mg GAE/ 100 g 으로가장높은함량을나타내었고, 에탄올농도가증가할수록감소하였으며, 열수추출물에서가장낮은함량을나타내었다 (Fig. 1). 이와같은경향은 DPPH 라디칼소거능과 ABTS 라디칼소거능에서도유사한경향을나타내어오미자추출물의항산화성과폴리페놀함량은매우밀접한관계가있는것으로판단되었다. 특히 DPPH 및 ABTS 라디칼소거능은폴리페놀함량과마찬가지로 50% 에탄올추출물에서가장높은결과를나타내었고, 에탄올농도가증가함 (70, 99%) 에따라감소하였다. 그러나에탄올농도가증가함에따라각라디칼소거능 (DPPH 및
552 한국식품과학회지제 45 권제 5 호 (2013) Table 1. Effect of ethanol concentration on reducing sugar, titratable acidity and Hunter s color value of Schisandra chinensis extracts 1) Ethanol Reducing sugar Hunter s color Titratable acidity conc. (%) (mg/100 g) L* a* b* 0 513.34±3.62 2)b 0.93±0.00 b 57.75±0.53 b 58.75±0.38 a 16.22±0.08 a 50 523.96±4.17 a 0.94±0.00 a 49.86±0.06 c 45.92±0.04 b 13.13±0.02 b 70 518.58±3.67 ab 0.91±0.01 c 57.67±0.01 b 42.53±0.02 c 11.31±0.01 c 99 395.11±6.78 c 0.76±0.00 d 59.93±0.42 a 36.42±0.22 d 6.93±0.08 d 1) Extraction was performed at 60 o C for 2 h on a mixture composed of 5 g of Schisandra chinensis powder and 50 ml of different ethanol concentration. 2) Mean of standard deviation (n=5). a-d Values with different superscript within a same column are significantly different (p<0.05) by Duncan s test. Fig. 1. Effect of ethanol concentrations for the reflux extraction of freeze-dried Schisandra chinensis on total phenolics, DPPH radical scavenging capacity and ABTS radical scavenging capacity. ABTS) 의감소정도는차이를보였는데, ABTS 라디칼소거능은에탄올농도 50% 이후급격하게감소하였으나, DPPH 라디칼소거능의경우소폭감소하였다. 이러한차이는 DPPH 라디칼소거능의경우자유라디칼을소거하는반면, ABTS 는양이온라디칼을소거하는차이를가지므로, 오미자에탄올추출물에존재하는폴리페놀류의추출정도와각기질에결합하는정도가다르므로, 라디칼을소거능의차이가나는데기인하는것으로판단된다 (25). Kim 과 Suh(26) 는용매와농도를달리하여대황을추출하였을때총폴리페놀함량은 50% 에탄올 >80% 메탄올 >95% 에탄올 > 열수순으로나타났다고하여, 본연구와유사한결과를나타내었다. 따라서오미자의에탄올농도는 50% 가유용성분의추출에가장적당한것으로판단되었다. 추출시간의영향오미자항산화유용성분의효과적인추출을위해환류추출방법을이용한추출실험에서온도는 60 o C, 에탄올농도는 50% 로고정한후추출시간의영향을검토하였다. 환원당함량은 2 시간추출시가장낮은추출률을나타내었고, 4 시간추출시가장높 은함량을나타내었다 (Table 2). 적정산도는추출시간이증가할수록유의적으로증가하였다. 기계적색도는추출시간이증가할수록명도 (L*) 와적색도 (a*) 는감소하였고, 황색도 (b*) 는증가하였다 (Table 2). Lee 등 (12) 은오미자열수추출조건최적화시험에서추출온도및시간이증가할수록색상은모두매우크게증가하나, 6 시간이후에는서서히감소한다고하여, 용매에따라추출물의색상변화가크게다른것으로나타났다. 추출시간이증가함에따라총폴리페놀함량및항산화력역시증가하였는데폴리페놀의경우 6 시간까지크게증가하고, 이후에는소폭감소하여, 6 시간추출시폴리페놀이거의추출되는것으로확인되었다 (Fig. 2). DPPH 및 ABTS 라디칼소거능은 2 시간추출시가장낮은항산화력을나타내었으나, 4 시간이후에는모두비슷한항산화력을나타내었다. 따라서환원당, 적정산도등이화학적특성과항산화능을고려하면 4-6 시간의추출시간이가장적합한것으로판단되었다. 온도에따른추출특성오미자추출물의추출온도에따른영향을확인하기위하여에
동결건조오미자의열수추출및항산화특성 553 Table 2. Effect of reflux extraction (RE) time on reducing sugar, titratable acidity and Hunter s color of Schisandra chinensis 1) Extraction time (hr) Reducing sugar (mg/100 g) Titratable acidity Hunter`s color L* a* b* 2 492.18±3.36 2)c 0.94±0.00 d 51.82±0.39 a 47.29±0.31 a 11.69±0.08 d 4 565.53±2.20 a 1.04±0.00 c 46.15±0.47 b 44.43±0.39 b 14.41±0.13 c 6 563.57±1.53 ab 1.08±0.00 b 42.68±0.26 c 39.45±0.22 d 14.72±0.18 b 8 560.39±2.54 b 1.09±0.00 a 41.59±0.17 d 40.55±0.15 c 15.22±0.05 a 1) Extraction was performed at 60 o C on a mixture composed of 5 g of Schisandra chinensis powder and 50 ml of 50% ethanol. 2) Mean of standard deviation (n=5) a-d Values with different superscript within a same column are significantly different (p<0.05) by Duncan s test. Fig. 2. Effect of extraction time for the reflux extraction of freeze-dried Schisandra chinensis on total phenolics, DPPH radical scavenging capacity and ABTS radical scavenging capacity. 탄올농도 50%, 추출시간은 2 시간으로고정하여온도조건별 (40-100 o C) 추출특성을비교하였다. 환원당함량은 40-80 o C 까지는서서히증가 (500.49-535.94 mg/100 g) 하였으나, 100 o C 온도구간에서 934.96 mg/100 g 으로급격히증가하였다 (Table 3). 적정산도역시 80 o C 이하에서는 0.96-1.03 으로차이가크지않았으나, 100 o C 구간에서 1.83 으로매우높은산도를나타내었다. 기계적색도측정결과, 명도 (L*) 는 40-60 o C 구간은큰변화가없었으나, 60 o C 이후에는크게감소하여어두운색상으로변화하였고, 황색도 (b*) 는 40-80 o C 구간까지서서히증가하다가 80 o C 이후에는빠르게감소하였다. 적색도 (a*) 는온도가증가함에따라안토시아닌색소가파괴되어적색도가유의적으로감소함을알수있었다. Lee 등 (12) 은오미자열수추출시추출온도가증가함에따라명도와적색도는급격히증가하며, 황색도는감소하다 80 o C 이후다시증가한다고하여, 본실험결과와상반된결과를나타내는것으로확인되었으며, 이는용매에따라색도의차이가나타나는것으로판단된다. 추출온도에따른총폴리페놀함량은온도가증가함에따라유의적으로증가하였으며, 특히 40-80 o C 구간에서는증가폭이낮았으나, 100 o C 구간에서는매우크게증가하였다 (Fig. 3). 이와같은경향은 DPPH 와 ABTS 라디칼소거능도역시비슷하게 나타났는데, 특히 DPPH 라디칼소거능의경우 40-80 o C 구간에서는 278.4-321.2 µm TEAC/g 으로점차적으로증가하였으나, 100 o C 구간에서는 599.3 µm TEAC/g 으로크게증가하였다. ABTS 라디칼소거능은 40-60 o C 구간에서 200.4-202.2 µm TEAC/g 으로큰변화가없었으나, 80 o C 구간에서 226.7 µm TEAC/g, 100 o C 구간에서 290.2 µm TEAC/g 으로크게증가하였다. Kim 등 (14) 은 60 o 에서추출한오미자열수추출물과오미자 60% 에탄올추출물의항산화력을비교하였을때, 60% 에탄올추출물이가장높은 DPPH 및 ABTS 라디칼소거능을나타내었다고하였으며, 열수추출물은온도및시간에따른유의적인차이를나타내지않았고, 에탄올추출물보다낮은항산화력을나타낸다고하였다. 또한 Kwoen 등 (27) 은상황버섯을다양한방법으로추출하여 DPPH 라디칼소거능을측정한결과열수추출물보다에탄올추출물의항산화력이높게나타났다고하여본실험결과를뒷받침하였다. 오미자기능성분과항산화활성및이화학적특성간의상관성오미자의최적추출조건을설정하기위하여에탄올농도, 추출시간및추출온도에따른각실험결과간의상관성을분석하여
554 한국식품과학회지제 45 권제 5 호 (2013) Table 3. Effect of reflux extraction (RE) temperature on reducing sugar, titratable acidity and Hunter s color value of Schisandra chinensis 1) Extraction temp. ( o C) Reducing sugar (mg/100 g) Titratable acidity Hunter s color L* a* b* 40 500.49±1.69 2)c 1.00±0.00 c 49.73±0.28 a 54.88±0.29 a 10.68±0.04 c 60 505.38±4.58 c 0.96±0.00 d 49.88±0.36 a 44.75±0.28 b 13.14±0.08 b 80 535.94±1.53 b 1.03±0.00 b 27.84±0.06 b 32.99±0.05 c 13.86±0.02 a 100 934.96±1.69 a 1.83±0.00 a 12.36±0.02 c 24.36±0.06 d 8.17±0.01 d 1) Extraction was performed for 2 h on a mixture composed of 5 g of Schisandra chinensis powder and 50 ml of 50% ethanol. 2) Mean of standard deviation (n=5). a-d Values with different superscript within a same column are significantly different (p<0.05) by Duncan s test. Fig. 3. Effect of extraction temperature for the reflux extraction of freeze-dried Schisandra chinensis on total phenolics, DPPH radical scavenging capacity and ABTS radical scavenging capacity. Table 4 에나타내었다. 우선에탄올농도에서는총폴리페놀함량과 DPPH 항산화능과 ABTS 항산화능은매우높은상관성 (0.694<r<0.999, p<0.01, 0.001) 을나타내었다. DPPH 항산화능은 ABTS 항산화능과유의적인상관관계 (r=0.693, p<0.01) 가인정되었으며, 적색도와는높은음의상관관계를나타내었다 (r= 0.875, p<0.01). Macheix 등 (28) 과 Gil 등 (29) 은폴리페놀과같은친수성항산화물질은자연계식물체에널리존재하며, 이들은 DPPH 및 FRAP 라디칼소거능등항산화능과매우밀접한관계를지닌다고보고한바있다 (r>0.9, p<0.05). 적색도는환원당함량및적정산도와밀접한상관성 (0.634<r<0.702, p<0.05, 0.01) 을나타내었다. 추출시간및온도에따른총폴리페놀함량은 DPPH 항산화능 (0.948<r<0.975, p<0.001, 0.01), ABTS 항산화능 (0.947<r<0.997, p<0.001), 환원당함량 (0.926<r<0.964, p<0.001), 적색도 ( 0.920<r < 0.960, p<0.001) 및적정산도 (0.953<r<0.979, p<0.001) 등모든실험항목에서강한상관관계를나타내었다. 또한 DPPH 항산화능과 ABTS 항산화능역시높은상관성 (0.969<r<0.970, p<0.001) 을나타내었는데, Awika 등 (30) 은수수와수수가공품의항산화능을측정한결과 ORAC, ABTS 및 DPPH 항산화능사이에높은상관성을나타내었다고하였다. 적색도는추출시간및온도에따 라 DPPH 항산화능 (r= 0.815--0.822, p<0.01), ABTS 항산화능 (r= 0.864--0.912, p<0.01), 환원당 (r= 0.782--0.787, p<0.01) 및적정산도 (r= 0.759--0.914, p<0.01, 0.001) 와높은부의상관관계를나타내었다. 이상의결과로미루어볼때, 오미자의총페놀함량및오미자의색상은추출시간및온도에매우높은의존성을나타낸다고판단되며, 총페놀함량과적색도는오미자추출물의이화학적품질및항산화능을나타내는직간접적인마커물질로이용가능하리라사료된다. 요 오미자유효성분의식품소재화를위한기초자료를얻기위해물과에탄올을이용하여에탄올농도 (%), 추출온도 ( o C), 추출시간 (h) 을달리한추출물의이화학적특성과항산화작용을확인하였다. 환원당함량은추출온도가증가할수록증가하였고에탄올농도는 50%, 추출시간은 4 시간추출하였을때높은함량을나타내었다. 산도는에탄올농도 50%, 추출시간 8 시간, 추출온도 100 o C 일때가장높은적정산도를나타내었다. 색도는명도 (L*) 는추출온도, 추출시간이증가할수록감소하는것을알수있었 약
동결건조오미자의열수추출및항산화특성 555 Table 4. Correlation coefficients among total phenolics contents, antioxidant ability, reducing sugar, Hunter's value and titratable acidity Extraction condition Ethanol (%) Time (h) Temp. ( o C) Trait Total polyphenol DPPH ABTS Reducing sugar Hunter s a* value Titratable acidity Total polyphenol -1.000 - - - - - DPPH -0.694** -1.000 - - - - ABTS -0.999*** -0.693** -1.000 - - - Reducing sugar -0.533 ns -0.231 ns -0.530 ns -1.000 - - Hunter s a* value -0.271 ns -0.875** -0.267 ns -0.634* -1.000 - Titratable acidity -0.484 ns -0.294 ns -0.484 ns -0.990*** -0.702** 1.000 Total polyphenol -1.000 - - - - - DPPH -0.948*** -1.000 - - - - ABTS -0.947*** -0.969*** -1.000 - - - Reducing sugar -0.926*** -0.994*** -0.936*** -1.000 - - Hunter s a* value -0.960*** -0.822** -0.864** -0.782** -1.000 - Titratable acidity -0.979*** -0.970*** -0.992*** -0.940*** -0.914*** 1.000 Total polyphenol -1.000 - - - - - DPPH -0.975** -1.000 - - - - ABTS -0.997*** -0.970*** -1.000 - - - Reducing sugar -0.964*** -0.999** -0.958*** -1.000 - - Hunter s a* value -0.920*** -0.815** -0.912** -0.787** -1.000 - Titratable acidity -0.953*** -0.996** -0.950*** -0.998*** -0.759** 1.000 ns ; Not significant. *, **, ***; Significant at p<0.05, 0.01, or 0.001, respectively. 고, 오미자의주색상인적색도 (a*) 는에탄올농도, 추출온도, 추출시간이증가할수록감소하는경향을보였다. 총폴리페놀함량은 50% 에탄올추출물에서가장높은함량을나타내었고추출시간과온도가증가할수록유의적으로증가하였다. 이와같은경향은 DPPH 및 ABTS 라디칼소거능에서도유사한경향을나타내었다. 각추출조건별실험인자들의상관성을분석한결과, 에탄올농도는총페놀및 ABTS 항산화능과매우높은상관성을나타내었다. 추출시간과온도에따른총페놀함량은 DPPH 및 ABTS 항산화능, 환원당함량, 적색도, 적정산도에서강한상관관계를나타내었고, 각실험항목사이에서도모두높은상관성을나타내었다. 이상의결과로볼때오미자의최적추출조건은용매는 50% 에탄올, 추출시간 4-6 시간, 추출온도는 60-80 o C 의조건이가장바람직하다고사료된다. 감사의글 본연구논문은교육과학기술부의재원으로지원을받아수행된산학협력선도대학 (LINC) 육성사업의연구결과입니다 ( 과제번호 : 2012-D-0033-010112). References 1. Jeong HS, Joo NM. Optimization of rheological properties for processing of omija-pyun(omija jelly) by response surface methodology. Korean J. Soc. Food Cookery Sci. 19: 429-438 (2003) 2. Nomura M, Nakachiyama M, Ohtaki Y, Sudo K, Aizawa T, Aburada M, Miyamoto KI. Gomisin A, a lignan component of Schizandrora fruits, inhibits development of preneoplastic lesions in rat liver by 3'-methyl-4-dimethylamino-azobenzene. Cancer Lett. 76: 11-18 (1994) 3. Ohtaki Y, Hida T, Hiramatsu K, Kanitani M, Ohshima T, Nomura M, Wakita H, Aburada M, Miyamoto KI. Deoxycholic acid as an endogenous risk factor for hepatocarcinogenesis and effects of gomisin A, a lignan component of Schizandra fruits. Anticancer Res. 16: 751-755 (1996) 4. Nishiyama N, Chu PJ, Saito H. An herbal prescription, S-113m, consisting of biota, ginseng and Schizandra, improves learning performance in senescence accelerated mouse. Biol. Pharm. Bull. 19: 388-393 (1996) 5. Long ZZ, Xie SS. Experimental study on the enhancement of the immunosuppresive effect of cortisone by wurenchun, an extract of Schizandra chinensis Baill isolation and structure determination of five new lignans gomisin A, B, C, F and G and the absolute structure of schizandrin. Chem. Pharmacol. Bull. 27: 1383-1394 (1979) 6. Li XJ, Zhao BL, Liu GT, Xin WJ. Scavenging effects on active oxygen radicals by schizandrins with different structures and configurations. Free Radical Bio. Med. 9: 99-104 (1990) 7. Lee JS, Lee SW. Effect of water extracts in fruit of omija (Schizandra chinensis Baillon) on alcohol metabolism. Korean J. Dietary Culture 5: 259-262 (1990) 8. Haglind C, Tengblad J. Effects of caffeine containing energy drinks. Scand. J. Nutr. 43: 169-175 (1994) 9. Ikrya Y, Kanatani H, Hakojaki M, Takuchi J, Mitsuhashi H. The constituents of Schizandra chinensis Baillon. Chem. Pharm. Bull. 36: 3974 (1988) 10. Yang HC, Lee JM, Song KB. Anthocyanins in cultured omija (Schizandra chinensis Baillon) and its stability. J. Korean Agr. Chem. Soc. 25: 35-43 (1982) 11. Lee JS, Lee SW. A study on the compositions of free sugar, lipids, and nonbolatile organic acids in parts of omija (Schizandra chinensis Baillon). Korean J. Dietary Culture 4: 177-179 (1989) 12. Lee WY, Choi SY, Lee BS, Park JS, Kim MJ, Oh SL. Optimization of extraction conditions from omija (Schizandra chinensis Baillon) by response surface methodology. Korean J. Food Preserv. 13: 252-258 (2006) 13. Cho YJ, Ju ls, Kim BC, Lee WS, Kim MJ, Lee BG, An BJ, Kim JH, Kwon OJ. Biological activity of omija (Schizandra chinensis Baillon) extracts. J. Korean Soc. Appl. Biol. Chem. 50: 198-203 (2007) 14. Kim SI, Sim KH, Ju SY, Han YS. A study of antioxidative and hypoglycemic activities of omija (Schizandra chinensis Baillon) extract under variable extract conditions. Korean J. Food Nutr. 22: 41-47 (2009)
556 한국식품과학회지제 45 권제 5 호 (2013) 15. Marais JP, De Wit JL, Quicke GV. A critical examination of the Nelson-Somogyi method for the determination of reducing sugars. Anal. Biochem. 15: 373-381 (1966) 16. Singleton VL, Rossi Jr. JA. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144-158 (1965) 17. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) 18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice- Evans C. Antioxidant activity applying an improved ABTS radical cation decolorzation assay. Free Radical Biol. Med. 26: 1231-1237 (1999) 19. SAS Institute, Inc. SAS Users Guide, Statistical Analysis Systems Institute, Cary, NC, USA (1986) 20. Duncan DB. Multiple range and multiple F tests. Biometrics 11: 1 42 (1955) 21. Origin. Origin tutorial manual. version 6.0. Microcal Software. Inc. Northampton, MA, USA. pp. 20-45 (1999) 22. Na GM, Han HS, Ye SH, Kim HK. Extraction characteristics and antioxidative activity of Cassia tora L. extracts. Korean J. Food Culture 19: 499-505 (2004) 23. Kim HK, Na GM, Ye SH, Han HS. Extraction characteristics and antioxidative activity of Schizandra chinensis extracts. Korean J. Food Culture 19: 484-490 (2004) 24. Vanini LS, Hirara TA, Kwiatkowski A, Clemente E. Extraction and stability of anthocyanins from the Benitaka grape cultivar (Vitis vinifera L.). Braz. J. Food Technol. 12: 213-219 (2009) 25. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19: 669-675 (2006) 26. Kim CJ, Suh HJ. Antioxidant activities of Rhubarb extracts containing phenolic compounds. Korean J. Food Culture 20: 77-85 (2005) 27. Kwoen DJ, Youn SJ, Cho JG, Choi UK, Kang SC. Antioxidant activities and biological properties of Phellinus linteus extracts according to different extraction methods. J. Korean Soc. Appl. Biol. Chem. 49: 91-96 (2006) 28. Macheix JJ, Fleuriet A, Billot J. Fruit Phenolics. CRC Press, Boca Raton, FL, USA. pp. 1-24 (1990) 29. Gil MI, Tomas-Barberan FA, Hess-Pierce B, Kader AA. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agr. Food Chem. 50: 4976-4982 (2002) 30. Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agr. Food Chem. 51: 6657-6662 (2003)