25(3c)-03.fm

Similar documents
14.531~539(08-037).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

untitled

304.fm

16(1)-3(국문)(p.40-45).fm

10(3)-09.fm

17.393~400(11-033).fm

10(3)-12.fm

605.fm

12(3) 10.fm

27(5A)-07(5806).fm

10(3)-10.fm

15.101~109(174-하천방재).fm

fm

50(1)-09.fm

< DC1A4C3A5B5BFC7E22E666D>

69-1(p.1-27).fm

9(3)-4(p ).fm

07.051~058(345).fm

10(3)-02.fm

27(5A)-15(5868).fm

12(4) 10.fm

11(5)-12(09-10)p fm

26(3D)-17.fm

12.077~081(A12_이종국).fm

82-01.fm

untitled

untitled

50(5)-07.fm

<30332DB9E8B0E6BCAE2E666D>

DBPIA-NURIMEDIA

fm

untitled

23(4) 06.fm

23(2) 71.fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

8(3)-15(p ).fm

14(2) 02.fm

27(4C)-07.fm

31(3B)-07(7055).fm

<353920C0B1B1E2BFEB2DB0E6B0F1C0DCB1B320BBF3BACEB1B8C1B6C0C720C8DA2E687770>

32(4B)-04(7455).fm

416.fm

16(2)-7(p ).fm

Microsoft Word - KSR2013A320

201.fm

10(1)-08.fm

27(6A)-10(5570).fm

12(2)-04.fm

19(1) 02.fm

27(5A)-13(5735).fm

07.045~051(D04_신상욱).fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

Æ÷Àå½Ã¼³94š

15(2)-07.fm

<30312DC0CCC7E2B9FC2E666D>

14(4)-14(심고문2).fm

14(4) 09.fm

51(2)-09.fm

06.177~184(10-079).fm

04-다시_고속철도61~80p

4.fm

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

11(1)-15.fm

m, w, w w. xœ y t y w en, ùw,, ƒ y (, 1994; w, 2000). ƒ x œ (NGA; National Geospatial-intelligence Agency) t t wù x (VITD; Vector product Interim Terr

14.091~100(328-하천방재).fm

15.529~536(11-039).fm

10.063~070(B04_윤성식).fm

8(2)-4(p ).fm

Microsoft Word - KSR2012A103.doc

38(6)-01.fm

» (Life-Cycle Cost: w LCC) d» x w w š. ƒ z y w» w œ» w,» z» z LCC š w ƒ w. w, ¾ ³ w» yw» w eù e (Al-Shaleh, 1994; Farkas, 1996; zû., 1998). ¾ w LCC w

143.fm

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

untitled

27(3D)-07.fm

Microsoft Word - KSR2013A291

I

202.fm

82.fm

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

16(4)-05.fm

26(5A)-04(5311).fm

Microsoft Word - KSR2012A038.doc

<312D303128C1B6BAB4BFC1292E666D>

fm

11(4)-03(김태림).fm

01.01~08(유왕진).fm

PDF

41(6)-09(김창일).fm

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

3.fm

44-4대지.07이영희532~

fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

???? 1

fm

Microsoft Word - KSR2012A172.doc

49(6)-06.fm

< C0E5BFC1C0E72E666D>

Transcription:

25ƒ 3C Á 2005 5œ pp. 181~188 ª w MCS» w w MCS-based Reliability Analysis of Axially Loaded Single Pile Structure x Á Á» Huh, JungwonÁJeong, Sang-SeomÁKwak, Kiseok Abstract This paper deals with development of a reliability analysis algorithm to quantify the risk in axially loaded single pile structure in consideration of pile-soil interaction and uncertainties on various design variables, and its application to realistic problems. To develop the reliability analysis algorithm of axially loaded pile-soil system, (1) the finite difference method based on an equivalent soil spring model and a load transfer method (2) the Monte Carlo simulation method are integrated, and a computer program is then developed. Explicit consideration of uncertainties in vertical soil properties is accomplished by considering unit skin friction and unit end bearing resistances as random variables, leading introduction of variability in load transfer functions. Applicability of the proposed algorithm to safety assessment of axially loaded pile-soil system is verified using a realistic example. Soil resistance strength and vertical settlement of pile in the axially loaded pile-soil system appear to be more controlling failure modes than pile strength from the results of a reliability analysis. A sensitivity analysis is also conducted and sensitive random variables are identified for each performance function. Since the proposed algorithm can explicitly consider uncertainties in various design variables, and quantify failure probability of a pile foundation, it can be directly used to estimate risk, to obtain basic informations for life cycle cost analysis, and to develop code requirements for a reliability based design of pile foundation. Keywords : pile reliability analysis, MCS, risk assessment, pile-soil interaction, load transfer function - y w y š w w x yw w š w ü» w. w - w š x w (1) ƒ v w» w w w (2) le» ww» w ful v w. p w y ¾ y š w ƒ w w w y š w. ew mw w - sƒ w w. w l w w w ewƒ w - q q. w ww ƒ w w y w.» w» w w wš y y š w š q y ey w,»» w x sƒ» w w» œ ª» y w» w. w : w, MCS, x sƒ, - y, w w 1. z» x q ƒ w y, w w ƒ swwš w w y š w w. ƒ šd» w w š w w y j p y, w y š * z Á w w œw œ, œw (E-mail: jwonhuh@yosu.ac.kr) ** z Á w m œw, œw (E-mail: soj9081@yonsei.ac.kr) *** z Áw», œw (E-mail: kskwak@kict.re.kr) p y, ƒ» y ü wš. p w š w w p y x p w» w w w x (in-situ test) w ü x w w w yw œ l». x x s w œ (spatial variability) y 25ƒ 3C 2005 5œ 181

, (pore water pressure) w y, x yƒ p sƒ w y (Tandjiria et al., 2000). w w y š wš» w w» m w. w š w y š w š x q» w - w œw w q w sƒw. w» w x wš w w, p, p, - p - ƒ w txwš, swwš y yw š w w (x, 2003). w» w w p w ƒ š, - y š w yw x sƒ w w. - y š w» w ƒ v (equivalent base spring model) w w w, ƒ v xk v ƒ w 1867 Winklerƒ w» w. üá w w y» w w (Eloseily, 1998; Barakat et al., 1999; Tandjiria et al., 2000)» (½, 1991;, 1995; ¼, 1996; Beker, 1996; Yoon & O'Neill, 1997) ƒ y w ù, y š w w ù w» w yw w w w w w ù w w w. y - w w, w y y š w w š z x sƒ w, (1) - y š w ƒ v w» w w w (2) w w ƒ ü wš y y š w x sƒw le» ww w š v w. w e mw - ü y m y š w w x sƒ w» w. 2. sƒ w 2.1 MCS w sƒ œw x» w k ( )w w sƒw, w w kw w w y w xkù w w š 182 xk tx. q y (1) tx (x, 2003). P f = f gx ( ) < 0 x ( x 1, x 2,, xn )dx 1, dx 2,, dxn», f x ( x 1, x 2,, x n )» y X 1, X 2, Ã, X n w y w (joint probability density function). œw w kw sw» y w y w w ƒ w, w y ƒ (1) mw w q y w. w ƒ w w» MCS(Monte Carlo simulation) t q y w Level III» ƒ y s³ š sx k w (reliability index) w p š Level II». w Level II» MVFOSM(Mean Value First Order Second Moment method), Generalized Safety Index Method, FORM(First Order Reliability Method), š SORM(Second Order Reliability Method). w» w w w š xk ƒ (implicit)w w k w w Level II» š w w (Haldar & Mahadevan, 2000b). MCS w w ww. MCS w œw. MCS w q y (1) ƒ w. P f = EIx [ ( )] = I[ x]fx ( )dx (2) D», I[x] q w (indicator function) Binary. 1if g x [ ] Ig [ ( x) ] ( ) 0 failure = = 0if g( x) > 0 safe I x (2) q y P f w I[x]» e ùkü MCS w q y w w. N s P f PMC 1 = f = ----- Ix [ N i ] s i = 1», x i ù (random number) u i w w y w f(x) l w t e, MC MCS w e, š Ns t ùkü. m MCS» y w l t w q y w» q t y q y ew (Haldar & Mahadevan, 2000a). 2.2 w w Terzaghi m 1 ù x (1) (3) (4)

w» ew w» ful» t 3ƒ w -, k w w ƒ w y š. r z š w w -» w w» w. 1 w - ¼ w v wù v. x š w v p wù k w, x š w v p w (t z) š (q z) š xk w. x š w w (t z)š (q z)š (Mosher, 1984; Vijayvergiya, 1977; Kraft et al., 1981; API, 1993) d e w w kw w x x w» w. w xk x w tx. EA d2 z ------- dx 2 2πRt( x, z) = 0», E k, A, x ¾ w t, z, R z, š t(x,z) e w. 1. w w w ew w, Matlock et al.(1981) w w z» (recursive method) w w -» w. 2 v w w, w ùkü. ƒ w (EA/h) ùkü v,» h ¼. w P v S (5) 2. w y ew. (z) +x w w ƒ (T) w, T i (i) (i 1) w ü ùkü. w x (Reese & Welch, 1975; Matlock et al., 1981;, 2001) -»» (beam-column method) w œ y ew ùkù w w» w. 3. w w» š w y š w x y w» w x (ASD; allowable stress design) œw» w w w (LRFD; load and resistance factor design, AISC, 2002) (performancebased design) y š. w» w x w w yw w» mw w w w. w - w ww w. 3.1» w y y w w w y w y p p y sww - w w y j w. p y wk w w» w, k (E)» (σ ck ) š (A) y (y ) š w. w y w œ x w e» w, w y š w. w y, y w ƒ. p y v ü y (inherent uncertainty) x sá w p w» w w x t w ü x w w m y (statistical uncertainty)» w e y (modeling uncertainty) sww. w w y w 25ƒ 3C 2005 5œ 183

y w x sƒw v w. (Vanmarcke, 1977; Phoon & Kulhawy, 1999) w p œ w» w 2ƒ ƒ w. (1) d» w w mw x p dü p m ³ w. (2) p s œ w œ w û ƒ. w p w w d x x v w w š w. w dü ¾ p e 3 w ù x ƒ w š w. ƒ d p w w ƒ w (, ƒ d p e ). p w v p y š w w w w. (q z) š w w w w. w w w (t z) š (q z) š (Mosher, 1984; Vijayvergiya, 1977; Kraft et al., 1981; API, 1993), 4 1993 API(American Petroleum Institute) w w» w œ sƒ w w k (Driven Piles) w š w. w š ³ y w (f s ) (q p ) w w. 5 t w š xk w ƒ wš ƒ d y f s q p y š w d w w w w. 5. w t z š w y š 3. p w y š 3.2 v x x t-z š q-z š w y š x v p txw k y š w ƒ d y y š w. ù w - w x š w v w (t z) š 3.3» w w w w w w q k ³ w w k w w v w. ( )w q (1) / w ew, (2) ww w sww q, š (3) - w q w w. 3.3.1 ew w ew w w w. g z = z allow z», z allow ³ x (6) 4. API ³ w š (API, 1993) 184

w ew ( x ew ) z w w mw. 3.3.2 w w q w w. T c g σ = σ ck σ c = σ ck ---- A», T c w w w mw, σ ck A ƒ» gj p» y š w. 3.3.3 w w w - w w w kw w w ww q w tx. g Q = Q ult Q req = ( Aq p + LA s f s ) ( Q p + Q s )», A, L A s ƒƒ, ¼ ¼, q p f s (kn/cm ) 2 (kn/cm ) y 2 š, Q p Q s w w mw (kn) (kn). (7) (8) 4. w e 4.1 y m p e e 6 l 15m ¾ ¾ k w 30cm x gj p» š w. gj p s³» 2.746kN/cm 2 (280kgf/cm ) š s³ k 2 2462kN/cm 2. t l 5m¾ d w md 5m 15m¾ d w - p md, t 1 API³ w s³ w ƒ p tw 2 t z š q z š 7 8 w. w w - w w 1.74( w w q y w ) w 800kN w š w. w, w w y w w t 2 y s³ w y w ww t 3 w š, q v APILE ew (, 2001; x,, 2004). 3.4 w MCS w w š ƒ w k w - w y yw š w w x sƒw» w w w w MCS» ww š wš v w. w MCS w w kw w» w w w w xk w kw ƒ š w w ƒ w. w x(simulate)w» w y s ƒ ù w (a set of pseudo-random numbers) k z wù y w w y w ( w w ) w w kw w q k sƒw. w z j w x m q y ù m p e w. t 1. API ³ m w d - ƒ (N q ) 6. w w 4.2 w kw w w w ƒ w š w. (6) tx ew w w x ew x tonf/m 2 kn/cm 2 tonf/m 2 kn/cm 2 1 20(deg) 12 6.7 6.571 10-3 290 0.2844 2 - p 25(deg) 20 8.1 7.944 10-3 480 0.4707 25ƒ 3C 2005 5œ 185

7. API³ t-zš ww q w. w kw w w w š x(bogard & Matlock, 1980; Eloseily, 1998) e (in-situ-test) (Sparks & Rollins, 1997)» w y m p e( sxk) w, t 2 t w. w v w 100,000z 1,000,000z¾ w w ww, ƒ w k 1,000,000z w q y t 3 š q y 9 w. t 3 9 q y z ƒ 1,000,000z ƒw q y ew, w w w ƒƒ 1.86%, 0.0031% š 9.31% wš, w ƒ» 2.083, 4.005, š 1.322. MCS q y w 95% w (Shooman, 1968)w, t 3 ƒ w w q y 95% t w. error (%) 200 1 P f = ----------- N P f (10) š x yw m», 1cm ƒ w. w kw. g Z = z allow z = 1 cm z 8. API³ q-z š w w w gj p» w q ³ w (7) tx, w w (8) - w w (9) 186», N z P f q y. t 3 œ y w w t w w y w š ƒ. w w q y» ƒ š y y š w, ƒ w q w e œw. q w ew w q y w q y ùkü, w ewƒ w - q q. w ew w š w x ew w š yw» v w š q. 4.3 - q y w š w y w ƒ w q y q w» w, 0.05~0.5 y jš w ù 6 y t 2 s³, sx t 2. y m p e y s³ sxk E (k ) kn/cm gj p p 2 2462 0.06 Log-Normal σ ck (» ) kn/cm 2 2.746 0.1 Normal p A ( ) cm 2 706.9 0.05 Log-Normal d 1 f s ( )* kn/cm 2 6.571 10-3 0.2 Log-Normal f d s ( )* kn/cm 2 7.944 10-3 0.2 Log-Normal 2 q p ( )* kn/cm 2 0.4707 0.2 Log-Normal w P ( w ) kn 800 0.15 Type I(EVD) *API ³ m w (w œwz, 2002)

t 3.» w w kw ew w x (A) 1 (cm) 2.746 (kn/cm 2 ) 1391 (kn) y w (O) 0.415 (cm) 1.121 (kn/cm 2 ) 800 (kn) w (MCS) (S.F=A/O) SF ~ 2.41 SF ~ 2.50 SF ~ 1.74 q y P f = 0.018648 P f = 0.000031 P f = 0.093097 β ~ 2.083 β ~ 4.005 β ~ 1.322 No. of Simulation 1,000,000 1,000,000 1,000,000 95% 1.45 % 35.9 % 0.62 % q y 0.018648 Û0.000271 0.000031 Û0.000011 0.093097 Û0.000581 9. MCS w 11. 10. ew k w ww 10~12 ùkü. q y 500,000z w. 10 y y ew w q y ùküš, w y w P, d 2 f s2, A k E. w f ew w q y f, d w j» w y y w. y y q y w 11 ùküš, q y w e y gj p» σ ck A w P q š ù q y y x w e ùkû. 12 y y w w q y ùkü w d 2 f s2, w P d 1 f s1 - w y q. ù ù w w w q y y w w x w e. w yw d p e w Á y k ü x x x w w p esƒ w y š w»» (reliability-based design) œ w ƒ v w. 5. 12. w - w w, w y y š 25ƒ 3C 2005 5œ 187

w š z w» x w, (1) - y š w ƒ v w» w w w (2) y Á y š w x sƒw le» ww w - w v w, e mw w - sƒ w w. e ew, w w w q y sƒw. q w ewƒ w - q ùkû, ew w w x ew š yw» v w q. w y l w w d 2 t z š w tx š w w q ù, w w w w w mw w w.» w» w w wš y y š w š q y ey w,»» w x sƒ» (LCC; Life Cycle Cost) w w» œ ª» y w» ( w w ) w q. w 2002 w w. š x ½, y, (1991) SPLT w Meyerhof œ, w wz w t, 11«, 2y, pp. 473-476. ¼ (1996) CPT w sƒ, 1996 w œwz ƒ w tz, pp. 321-326., y, w(1995) w sƒ, w œwz, 11«, 1y, pp. 9-21.,, x (2001) -e š w» w, w œwz 2001 w tz, pp. 363-370. x (2003) w w w w š, wm wz, 23«6Ay, pp. 1321-1329. x, (2004) y w, 2004 wm wz»w z, pp.410-415. w œwz(2002) œw 4; ¾», American Institute of Steel Construction (2002) Manual of Steel Construction: Load and Resistance Factor Design, AISC, Chicago, Illinois, U.S.A. American Petroleum Institute (1993) API Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-working Stress Design, Report RP-2A. Barakat S. A., Malkawi A. I. H., & Tahat R. H. (1999) Reliabilitybased optimization of laterally loaded piles, Structural Safety, Vol. 21, pp. 45-64. Becker, D.E. (1996) Limit state design for foundations. Part I. An overview of the foundation design process. Canadian Geotechnical Journal, Vol. 33, No. 6, pp. 956-983. Bogard, D. & Matlock, H. (1980) Simplified Calculation of p-y Curve for Laterally Loaded Piles in Sand, In House Report, The Earth Technology Corporation. Eloseily, K. (1998) Reliability Assessment for Pile Groups under Lateral Loads, Thesis submitted for partial fulfillment of Ph.D. degree, University of Maryland College Park, Maryland, U.S.A. Haldar, A. & Mahadevan, S. (2000a) Probability, Reliability and Statistical Methods in Engineering Design, John Wiley & Sons, New York, N.Y. Haldar, A. & Mahadevan, S. (2000b) Reliability assessment using stochastic finite element analysis, John Wiley & Sons, New York, N.Y. (2000b). Kraft, L. M., Ray, R. P., & Kagawa, T. (1981) Theoretical t-z Curves, Proceedings paper 16653, Journal Geotechnical Engineering Division, ASCE, 107(GT11) Matlock, H., Borgard, D., & Lam, I. P. (1981) BMCOL76: A Computer Program for the Analysis of Beam-Columns under Static Axial and Lateral Loading, Ertec, Inc. Mosher, R. L. (1984) Load Transfer Criteria for Numerical Analysis of Axially Loaded Piles in Sand; Part 1: Load Transfer Criteria, Technical Report K-84-1, USACE, Vicksburg, Miss. Phoon, K. K. & Kulhawy, F. H. (1999) Characterization of geotechnical variability, Canadian Geotechnical Journal, Vol. 36, pp. 612-624. Reese, L. C. & Welch, R. C. (1975) Lateral Loading of Deep Foundation in Stiff Clay, J. of the Geot. Eng. Div., ASCE, Vol. 101, No. GT7, pp. 633-649. Shooman ML (1968) Probabilistic reliability: an engineering approach, McGraw-Hill Book Co., New York, NY. Sparks, A. E. & Rollins, K.M. (1997) Passive Resistance and Lateral Load Capacity of a Full-Scale Fixed-Head Pile Group in Clay, Civil Engineering Dept. Research Report CEG. 97-04, Brigham Young University, Provo, Utah. Tandjiria, V., Teh, C. I. & Low, B. K. (2000) Reliability analysis of laterally loaded piles using response surface methods, Structural Safety, Vol. 22, pp. 223-355. Vanmarcke, E. H. (1977) Probabilistic modeling of soil profiles, Journal of Geotechnical Engineering Division, ASCE, 103 (GT11), pp. 1227-1246. Vijayvergiya, V. N. (1977) Load-Movement Characteristics of Piles, 4th Symposium of Waterways, Port, Coastal and Ocean Division, ASCE, Long Beach, California, Vol. 2, pp. 561-584. Yoon, G.L. M O'Neill, M.W. (1997) Resistance factors for single driven piles from experiments, Research Record 1569, Transportation Research Board, Washington, pp. 47-54. ( : 2005.1.11/ : 2005.3.5/ : 2005.3.5) 188