w y wz 9«( 4y) 261~267, 2006 J. of the Korean Society for Environmental Analysis SDB-RPS j š w 3-Chloro-4- (dichloromethyl)-5-hydroxy-2(5h)-furanone y Á Á l w œ Development of Disk-type Extraction of 3-Chloro-4-(dichloromethyl)- 5-hydroxy-2(5H)-furanone using SDB-RPS Jaewon Choi, Bushik Moon, and Kyunghee Baek Water Analysis & Research Center, Kwater, San 6-2, Yeonchuk-dong, Daedeok-gu, Daejeon 306-711, Korea Analytical method of 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) for water sample was optimized using SDB-RPS (or C18) disk type SPE system. High resolution mass spectrometer was applied to improve detection limits. Basic conditions for derivatization of target compounds such as derivatization agent, temperature, time were optimized. Calibration curves was performed from 0.5~200 ng/ml (500 ng/ml for internal standard) with R 2 value 0.9997. In sample extractions, SDB-RPS disk showed better results than C18 disk for signal to noise ratio, detection limits and peak shape, respectively (hereafter, recoveries were improved). Results of the method validation indicated that the limits of quantification (LOQ) of tested samples ranged 0.14~0.64 ng/l. Key words: halogenated mutagen, RPS disk, solid phase extraction, HRMS, water 1. w» y w p w k(thm) w w (HAAs), w p (HANs) t ü x mw 600 zw 1). 3-Chloro-4- (dichloromethyl)-5-hydroxy-2(5h)-furanone e MX 1984 ƒ z v,,, šƒ 2~6). y w sw {, r, ü x mw y 7). wr, ü ù š w 4 26.3~ 39.4 ng/l, 19.7~39.4 ng/lƒ, w x 8). x ¾ MX w ³ e ù, Ames x wš, x y,, s, š š 9,10). ü w k mw yw, s, ƒ v w. wr ƒ, t t y ƒ w š, ng/l m y-gc/ms. w y w ƒ XAD w z, w w. ù XAD, š j ƒ.» XAD w 20 L To whom correspondence should be addressed. E-mail: choijw@kwater.or.kr
262 Á Á w yw t C18 RPS jx š w. š z y mw w, 1 L w w. w š, š w š w» (high resolution mass spectrometer, HRMS) yw w. 2. 2.1. t, ü t, j t MX Wako (Tokyo, Japan), ü t Mucobromic acid (MBA) Sigma-Aldrich (MO, USA) w. š l(solidphase extraction, SPE) Horizon(CA, USA) SPE-DEX (47 mmid ) e w š, š j 3M (MN, USA) C18 SDB- RPS w. Ethyl acetate, MTBE, MeOH» J.T.Baker (NJ, USA) HPLC grade w. 2.2. y,, y MX ü t MBA ethyl acetate t 1 w 4 o C w þ w. MX»» w, w Õ ñ x š w ƒ y-gc/ms ƒ. y ƒ py (methylation) mw. py 2% H 2 /MeOH MeOH isopropanol, sec-butanol, n-butanol ù, w š w MeOH isopropanol w w. y 60 o C, 70 o C, 80 o C 90 C o, y 30, 1, 2 ù w. 2.3. j j w s» yw l w MX mw. š j y 3M C18 SDB-RPS kw w. m» w 1L w j m w z, y-gc/hrms d mw ü y z, w. j MX 100 ng MBA 500 ng ƒƒ 1 L ƒw ww š 3z xw. ƒ j C18, EPA method 508.1 11), SDB-RPS EPA method 8141B» 12) z, w w, Table 1 ù kü. 2.4. 2.2 2.3 yw w x š ng/l w mw» w 8 4.6~83 ng/lƒ MX ü t ƒ, yw w 1L j - y-gc/hrmsd m w w w mw š,» XAD - y-gc/ MS d w. Table 1. Extraction conditions for automated SPE system Extraction Procedure EPA method 508.1 EPA method 8141B Conditioning step 1 Ethyl Acetate Acetone Conditioning step 2 Methanol Methanol Conditioning step 3 Reagent Water Reagent Water Filtration (flow rate : 60~80 ml/min) Air dry filtered disk Extraction step 1 Ethyl Acetate Acetone Extraction step 2 Methylene Chloride MTBE Extraction step 3 Methylene Chloride MTBE Extraction step 4 Methylene Chloride MTBE
SDB-RPS j š w 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone y 263 2.5.»» ƒ j m v/š w» (GC/HRMS) w ww w» TraceGC-Finnigan MAT95XP (Thermo). GC w yw» w û 220~230 C o w š, û w MX MBA ù z 30 o C/min 300 C¾ g f ü o w w, 1z 20 d w. k MX y ù ƒ j»ƒ m/z 199, m/z 201 w kw š, MBA w m/z 239, 241 w. PFK (perfluorokerosene), (lock mass) (calibration mass) m/z 192.9883 242.9851 w w 10,000 (10% valley) d w (Table 2).»» z, k,, t k y w. d w w y (S/N)ƒ 3» w, ü t w. 3. š 3.1. y y y 2% H 2 /isopropanol 2% H 2 /MeOH Fig. 1 ùkü. isopropanol w y z MeOH 10.6 ùkû. w r, sec-butanol, n-butanol y w, vj x vj w š 13~15), y (EI) w GC/MS-SIM isopropanol ƒ ww q. 2% H 2 /isopropanol w 60~90 o C Fig. 1. Derivatization efficiency between reagent. Table 2. HRGC-HRMS conditions Condition for HRGC (Trace GC2000, Thermo, Germany) GC capillary column DB-1, 3 m 0.25 mm I.d., 0.2 mm film thickness Ramp of oven temp. Injection port temp.: (220 o C) 40 o C(2 min)-20 o C/min-120 o C-6 o C/min-175 o C-30 o C/min-300 o C(0.7 min) Injection mode : Splitless mode Carrier gas : high-purity helium, above 99.9999% Gas flow mode: constant flow (0.7 ml/min) Condition for HRMS (Finnigan MAT95XP, Thermo, Germany) Ionizing current: 0.5 ma Ionizing energy: 42 ev Ion source temp.: 230 o C Accelerating voltage: 5.0 kv Ion multiplier voltage: 2.3 kv Resolution: R>10,000 (10% valley) Measurement of mass: selected ion monitor(sim) using perfluorokerosene(pfk) Selected ion : MX m/z 198.9883, 200.9091 MBA m/z 238.8343, 240.8323 Lock mass : m/z 192.9883 Calibration mass : m/z 242.9851
264 Á Á (Fig. 2) y (30, 1, 2 ) mw, w, z t y 90 o C 2% H 2 /isopropanol 1 w w. wr, 0.5~200 ng/ml (ü t ƒ 500 ng/ml) wš ƒ» yw y, y, k w 1mL w. R 2 =0.9997 ùkü (Fig. 3), t, HRMS w MX, MBAƒ ƒƒ 0.2, 0.07 pg. 1L, ng/l~pg/ Fig. 2. Temperature dependent derivatization. L ƒ w. 3.2. j š SDB-RPS j p» w, e yw w w yw» C18 w 16).» ph š w, ƒ p furanone MX w» C18 w p ƒ w p ƒ SDB- RPS C18 MX w w. 1 L ƒ 3 w, MX 100 ng MBA 500 ng ƒƒ ƒwš ph 2 w y w Table 1 y š e w, z, 3.1 yw y- ww GC/HRMS w., SDB-RPS C18 w MX MBA w y (S/N)ƒ 2~3 w š, j m x w ùkù, MX ww q w (Fig. 4~5). ù,» x s³ z SDB-RPS 50% ( 3.3%), C18 66% ( 6.4%) ùkù, z ƒ 16% ùkû, ü t vj» w w ù C18 MX MBA w Fig. 3. Calibration curves (0.5~200 ng/ml). Fig. 4. Signal to noise ratio between SDB-RPS and C18 disk.
SDB-RPS j š w 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone y 265 Fig. 5. Peak shape between SDB-RPS and C18 disk» w. z, SDB-RPS acetone-ethyl acetate w z 75~86% w. 1 L ph 2 w yw z, SDB-RPS j 60~80 ml/min š, 3, ü t wì 2% H 2 /isopropanol w y, w w z, GC/ HRMS, w yw, Fig. 6 w.» MX 20 L XAD» w w 150 ƒ 6,8). yw, w 3 ü ƒ w,, HRMS d w y w ƒ q w. Fig. 6. Schematic diagram for the sample preparation procedure
266 Á Á Table 3. LOQ of the samples by SPE-GC/HRMS Sample ID Spiking vol. (ng) Extraction Derivatization Instrumental analysis LOQ of the sample Test-1 4.6 0.14 Test-2 15 2% H 2 / 0.31 Test-3 57 isopropanol 0.62 SDB-RPS Test-4 16 GC/HRMS with 0.63 Extraction Test-5 36 LLE 10,000 resolving power 0.30 (30min) Test-6 83 0.64 Test-7 20 N2 conc. 0.38 Test-8 13 0.16 3.3. ƒ, z x w mw w k š ng/l w mw» w 8 4.6~83 ng/lƒ MX ü t ƒ z, SDB- RPS - y-gc/hrms d mw w w Table 3 ùkü. w 3 w ƒ w 0.14~0.64 ng/l, y t r 6%. w r,» š w 8) ƒ 5.0 ng/l w, w w ƒ w q. 4. œ, j 3-Chloro- 4-(dichloromethyl)-5-hydroxy-2(5H)-furanone(MX) w š w y š w»(hrms) w m,. 1. š w y w GC/ MS-SIM d MX y isopropanol q, t w y 90æ 2% H 2 /isopropanol 1 w w. 2. 0.5~200 ng/ml (MBA ƒ 500 ng/ ml) w, R 2 =0.9997 yw, HRMS w MX, MBAƒ ƒƒ 0.2, 0.07 pg 1L, ng/l~pg/l ƒ w. 3. j t, SDB-RPS C18 w MX MBA w y (S/N)ƒ 2~3 r š, j m x w ùk ù, MX ww q w. w z 75~86% w w. 4.» MX 20L XAD z,», w 150 ƒ ù, yw w, 3 ü ƒ w, y, HRMS d w y w, š ƒ q w. 5. ü š ng/l w mw» w 8 t ü t ƒw w, w 0.14~0.64 ng/l, y t r 6%.» XAD-GC/MS w w 8~36 w. š x 1. Y.T. Woo, D. Lai, J.L. McLain, M.K. Manibusan and V. Dellarco, Environ. Health Perspect. 2002, 110 (Suppl.1), 75-87. 2. B. Holmbom, R.H. Voss, R.D. Mortimer and A. Wong, Environ. Sci. Technol. 1984, 18, 333-337. 3. L. Kronberg and T. Vartiainen, Mutat. Res. 1988, 206, 177-182. 4. J.M. Wright, J. Schwartz, T. Vartiainen, J. Maki- Paakkanen, L. Altshul, J.J. Harrington and D.W.
SDB-RPS j š w 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone y 267 Dockery, Environ. Health Perspect. 2002, 110, 157-164. 5. X. Zou, X. Xu, J. Zhang and Z. Zhu, Chemosphere 1995, 30, 2219-2225. 6. N. Suzuki and J. Nakanishi, Chemosphere 1990, 21(3), 387-392. 7. N. Kinae, J. Tanaka, N., Kamio, C. Sugiyama, M. Furugori, K. Shimoi and K. Tanji, Water Sci. Technol. 2000, 42, 117-123. 8.,, Anal. Sci. & Tech. 2006, 19(4), 290-300. 9. R.T. LaLonde, L. Bu, A. Henwood, J. Fiumano and L. Xhang, Chem. Res. Toxicol. 1997, 10, 1427-1436. 10. J.R. Meier, R.B. Knohl, W.E. Coleman, H.P. Ringhand, J.W. Munch, W.H. Kaylor, R.P. Streicher and F.C. Kopfler, Mutat. Res. 1987, 189, 363-373. 11. U.S. EPA Method 508.1, Determination of chlorinated pesticides, herbicides, and organohalides by liquidsolid extraction and electron capture gas chromatography, 1995, 508.1 1-36 12. U.S. EPA Method 8141B(12), Organophosphorus compounds by gas chromatography, 1998, 8141B 1-41. 13., w, w, 2001. 14. J. Nawrocki, P. Andrzejewski, H. Jele and E. Wasowicz, J. Chromatogr. A 1997, 790, 242-247. 15. J. Nawrocki, P. Andrzejewski, H. Jele and E. Wasowicz, Water. Chromatogr. A 1997, 790, 242-247. 16. http://solutions.3m.com/