農業科學技術硏究, 第 49 輯, 2014 年 12 月 Agricultural Science & Technology Research, Vol. 49 갈색거저리 (Tenebrio molitor L.) 첨가급여가육계의혈액성상과육질성분에미치는영향 김선곤 1 김정은 1 강성주 1 구희연 1 김현진 1 최향철 1 선상수 2 1 전남농업기술원곤충잠업연구소, 2 전남대학교동물자원학부 Feed Supplementation of Yellow Mealworms (Tenebrio molitor L.) Improves Blood Characteristics and Meat Quality in Broiler S.G. Kim 1, J.E. Kim 1, H.K. Oh 1, S.J. Kang 1, H.Y. Koo 1, H.J. Kim 1, H.C. Choi 1 and S.S. Sun 2 1 Insects and Sericultural Research Institute, Jeollanamdo Agricultural Research and Extention Services, 2 Department of Animal Science, Chonnam National University ABSTRACT This experiment was conducted to test yellow mealworm (YM) and slough of mealworm (SM) supplementation as protein sources in broiler. Two-hundred broilers (Arbor acres, day old) were randomly assigned in five treatments (control, 0.5% YM, 1.0% YM, 2.0% YM, and 1.0% SM) with 2 replicates and then fed 6 weeks. Blood and meat samples were collected after feeding trial. Body weight gain was the highest in 1.0% YM treatment. Feed requirement was lowest in 1.0% YM treatment. There were no negative effect on palatability and texture of mealworm. Live weight and carcass weight were significantly (P<0.05) higher than in control. Carcass quality was highest in 1.0% YM treatment. WBC, which were related to infection, was not affected by mealworm supplementation. RBC, which were related to anemia, was significantly (P<0.05) increased in all supplementation groups. Serum components were higher in supplementation group than in control group. However, there were no pathological and metabolic disease. Crude protein, crude fat, and crude ash were high in supplementation group, and meat color a* and b* were significantly (P<0.05) high in 1.0% YM treatment. Heating loss and shear force were reduced a little. By mealworm supplementation, saturated fatty acid was reduced and unsaturated fatty acid was increased. Therefore, fatty acid composition was improved by supplementation in broiler meat. In conclusion, yellow mealworm would be a good protein source for broiler without any detrimental effect. Additional key words: Broiler, Mealworm, Blood characteristics, Meat quality - 9 -
서언현시대의가금산업을포함한축산업에서가장큰문제중의하나는동물성단백질의부족이대두되고있다. 사료용단백질공급원으로는대두박, 어분, 동물성부산물등이사료에이용되고있다. 전통적인단백질공급원인대두박과옥수수단백은사람을위한식용과가축을위한사료용사이에경쟁상태에놓여있다 (Das et al., 2004). 그리하여동물성단백질의공급원에대한요구도가높아지며재래수준의원료보다는다른경제적인요인을찾게되었다. 곤충은여러종류의동물에서중요한자연식품으로인식되어왔다 (Anand et al., 2008). 예를들면, 곤충들은사람과동물들을위한영양소일뿐만아니라, 의약품과유기물을재활용하는용도로이용되고있다. 곤충을사육하면다른동물성단백질공급원에비하여적은면적에낮은비용으로사육할수있어서미래에유망한산업이다. 더욱이대부분의곤충종들은식물성단백질원을동물성단백질로바꾸는데대단히효과적이다 (Premalatha et al., 2011). 곡류위주의음식을섭취하는개발도상국에서대부분의식용곤충들은저렴하고좋은단백질과무기물공급원이다 (Ifie and Emeruwa, 2011). 갈색거저리 (Mealworms, Tenebrio molitor L.) 는작은포유류와파충류를포함한애완동물의먹이로이용되고있으며, 곤충체내에 44-70% 의단백질을함유하고있어서좋은사료원이기도하다 (Ramos-Elorduy et al., 2002; Oonincx and de Boer, 2012). 농업적으로도갈색거저리와같은가식용곤충들은단백질, 지질, 탄수화물, 비타민함량이높아서가금류의사료원으로우수하게평가되고있다 (Ramos-Elorduy and Pino, 1990). 또한갈색거저리는필수아미노산함량이높으며 (Ramos- Morales, 1997), 딱정벌레목에속하는곤충들은특히유충시기에지방함량이높다 (Cerritos, 2009). 이러한높은영양소함량때문에, 갈색거저리는년중이용이가능한미래유망한사료원으로가능성이높다. 다른보고에의하면갈색거저리는암모니아를배출하지않으며 (Oonincx et al., 2010), 환경오염이낮다 (Pimental et al., 1975) 고한다. 건조한갈색거저리유충은사료섭취량, 증체량, 사료효율에부정적인영향없이육계스타터사료에 10% (DM) 까지첨가할수있다. 또한갈색거저리첨가사료에대한조직감이나기호성에따른영향은없었다 (Ramos-Elorduy et al., 2002). 산란계에대한연구는제한적이지만갈색거저리유충이산란계첨가사료로적합하며 (Giannone, 2003), 건조한갈색거저리는산란계에서어분을대체할수있는좋은사료원이다 (Wang et al., 1996). 또한갈색거저리의생활사에서허물 (exuviation) 을벗고성장하는데, 탈피된키틴질의물질은영양소가풍부하게들어있다. 갈색거저리는상대적으로회분함량이낮고 (<5 % DM), 다른곤충처럼낮은칼슘함량과매우낮은 Ca : P 비율이다. 단지갈색거저리만을급여하면칼슘결핍증상으로대사성뼈질환 (Klasing et al., 2000) 의원인이될수있다. 이구성은매우다양하고다이어트에영향을주목해야한다. 특히, 칼슘함량은칼슘이강화된사료를사용하여극복할수있다. 갈색거저리칼슘강화사료 (8% CaCO 추가 ) 는 P:Ca 비율을증가시키며, 육추병아리에뼈골화작용에적합하다 (Klasing et al., 2000). 또다른실험은단기간 (72 시간 ) 갈색거저리칼슘강화사료를급여한닭에서 Ca에대한다른영향은나타나지않았다 (Anderson, 2000). 아프리카메기 (Clarias gariepinus) 연구에서도갈색거저리는우수한단백질대체원이입증되었다. 메기사료의어분을 40% 에서 80% 까지갈색거저리로대처하여도성장률과사료이용율은대조구와유사하였다. 메기에갈색거저리만급여하면성장률이줄어들었으나, 일반메기사료에갈색거저리를첨가급여하면메기사료만급여했을때와비교하여비슷하거나오히려우수한결과를보였으며, 기호성도좋았으나메기도체의지질함량은유의적 (p<0.05) 으로증가하였다 (Ng et al., 2001). 현재까지여러연구들이수행되었지만곤충의육계사료화에따른혈액성상과닭고기의육질에관련된연구는미미한실정이다. 본연구의목표는사료첨가제로서갈색거저리의첨가급여가육계의혈액성분변화와육질이미치는영향등을측정하기위하여수행하였다. - 10 -
재료및방법 1. 시험동물및사양관리가축의사료에동물성단백질공급원으로서갈색거저리 (Mealworm, YM) 와탈피각 (slough of mealworm, SM) 의이용성을알아보기위하여연구를수행하였다. 시험동물은 1일령의아바에이커 (Arbor Acres) 종육계 200 수를공시하였고, 첫 7일간은적응을위하여입붙이사료를급여후, 8일령부터 5주간사양시험을실시하였다. 시험동물은 5개처리구 ( 대조구, YM (mealworm, 갈색거저리 ) 0.5, 1.0, 2.0%, SM (slough of mealworm, 탈피각 ) 1%) 에처리당 2반복, 반복당 20수씩선발하여완전임의배치하였다. 사양관리는전남술대학교부속동물사육장의관행에준하여 42일간평사를분획하여, 한펜 ( 펜규격 230cm 200cm 60cm) 당 2 반복으로하였다. 점등은전사양기간동안 24시간종일전등을실시하였고, 계사온도는일령별로 32 에서 22 까지사육실온도관리프로그램에따라조절하였다. 동물실험은동물보호법제13조및제 14조에의거하여 전남대학교동물실험윤리위원회 에의해사전승인되었다. 본실험에사용한기초사료는육계전기 (3 21 일령 ) 와후기 (22 35일령) 로시판되는육계사료 ( 광주축협사료 ) 구입하여급여하였다. 시험사료는매일일정량무게를측정하여동물이충분히먹을수있도록자유급여하고, 물은자동급수기로서급여하였다. 분석용시료를채취하기위하여시험종료 42일령후, 각시험구당평균체중에가까운 5수씩을선정하였다. 도계전에체중을측정한후익하정맥을통하여채혈하였다. 이어서복강을절개하고뒷다리와가슴근육을채취하였다. 채취한모든샘플은액체질소에냉동후, 분석시까지 70 에서보관하였다. 2. 측정항목 1) 증체량, 사료섭취량및사료요구율증체량은시험개시부터종료시까지같은요일, 같은시간에주2회측정하였다. 사료섭취량은전 일급여량에서잔량을빼고매일측정하였으며, 사료요구율은사료섭취량을증체량으로나누어산출하였다. 2) 도체특성및육질분석시험종료시 (42일) 처리구당 5수씩임의로선별하여경추탈골 (cervical dislocation) 방법으로도살한다음, 간, 비장, 근위, F낭, 가슴육및복강지방의무게를측정하여생체중에대한비율로도계율을계산하였다. 일반성분으로수분, 단백질, 지방및회분 (%) 은 AOAC방법 (1995) 에준하여분석하였다. 육색은색차계 (Model CR-210. Minolta Co., Japan) 를이용하여각가슴육샘플 1개당 2회반복하여측정하였다. ph는 ph meter(77p, Istek, Korea) 를사용하여측정하였다. 가열감량은 3cm 두께의계육슬라이스를원형 ( 중량 150±5 g) 으로정형한후, polypropylene bag에넣고진공포장하여 80 water-bath에넣고 40분간가열한후 30분간방냉시킨후, 가열후감량된무게를초기시료의무게비율 (%) 로측정하였다. 보수력 (water holding capacity) 은전체면적과육의면적의비율을기록하여측정하였으며, 각샘플당 2개의시료를만들어 drip loss 를측정하였다. 전단력은시료를 80 water-bath에넣고 40분간가열한후, 30분간방냉시킨후시료를 1 2 1cm가되도록절단하여 Rheo meter (Compac- 100, SUN Scientific Co., LTD.) 의 Shearing, Cutting Test로 Max weight를측정하였다. 3) 지방산조성분석가슴육의지방산조성분석을위하여 1.5 g의시료에서지방을추출하였다. 이후추출된지방을메탄올에녹인 0.5 N potassium hydroxide(koh) 를이용하여 saponification과 esterification을하였으며, 최종적으로는헥산에녹인 fatty acid methyl ester(fame) 를 scintillation vial로옮겨 gas chromatography (GC, Varian Chrompack, CP-3800, Walnut Creek, CA) 를사용하여분석하였다. 4) 혈액성상분석혈액채취는사양실험이종료된후각처리당 5수 - 11 -
씩임의선발하여익하정맥에서 K3EDTA Vacuum tube (Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ) 를이용하여혈액 5 ml를채취후자동혈액분석기 (NX500i, Fuji Dri-Chem, Japan) 로 red blood cell (RBC), white blood cell (WBC), GOT, GPT, Albumin, T-cholesterol 등혈액성분을측정하였다. 3. 통계분석모든얻어진결과에대한통계분석은 Statistical Analysis System(SAS, 2005) 의 General Linear Model (GLM) procedure를이용하여실시하였고, 처리구간의유의성검정은 Duncan의다중검정 (Duncan, 1955) 을통해유의수준 P<0.05에서검정하였다. 결과및고찰 1. 증체량, 사료섭취량및사료요구율육용계아바에이커종의개시, 중간, 종료체충을측정하여증체량을산출하였다. 사육전기간동안증체량은 YM 1% 처리구에서가장높게나타났으나유의적인차이는없었고, 사료섭취량은갈색거저리를첨가급여할수록높게나타났으며사료요구율은낮게측정되었다 (table 1). 이는육계사료에갈색거저리첨가급여시사료의기호도를증진시키고육계의증체량향상에다소효과적인결과를보이고있었다. Ballitoc and Sun (2013) 결과에의하면갈색거저리를육계에급여하면사 료요구율감소한다는보고와일치한다. 증체량이향상된것은단백질공급원 (Ghaly and Alkoaik, 2009) 으로서의갈색거저리첨가효과로볼수있다. 그러나 1~2% 갈색거저리첨가로단백질수준은단지 0.08% 의증가함으로서이는단백질첨가효과라기보다는갈색거저리의전체적인첨가효과로볼수있다. Ramos-Elorduy et al. (2002) 보고에의하면 2주동안갈색거저리대조구의사료요구율 (1.37) 에비하여 10% 갈색거저리급여구에서사료요구율이약간감소 (1.34) 하는경향을보였다. 또한지렁이첨가급여는증체량과사료효율을감소시켰으나 (Fisher, 1988), 육계전기사료에갈색거저리첨가는아무런나쁜영향도보이지않았다. 더구나갈색거저리첨가급여는조직감이나기호성에아무런문제도나타나지않았다. 다른여러곤충급여연구들에서증체량, 사료섭취량, 도체품질, 기호성에아무런영향이나타나지않았다 (Despins, 1994; Sonaiya, 1995). 또한곤충의껍질에서유래한키틴 (chitin) 물질을육계에급여한결과증체량과사료효율에유의적인변화는나타나지않았다. (Hossain and Blair, 2007). 2. 육계의도체성적사양시험종료후육계의생체중과도체중을측정하여도계율을조사하였다. 생체중과도체중은 YM 1% 처리구에서유의적 (P<0.05) 으로높게측정되었고도계율도 74.1로가장높게나타나, 갈색거저리 1% 첨가급여할때육계의도체성적이가장우수함을확인하였다 (table 2). Ballitoc and Sun (2013) 결과에의하면갈색거저리를육계에 Table 1. Growth performance and feed efficiency in broiler by yellow mealworm addition(g) Items Control YM 0.5% YM 1% YM 2% SM 1% Start Wt 73.1±6.5 73.0±7.5 72.0±6.9 74.1±7.0 73.1±6.8 Final Wt 2,458±245 b 2,639±299 ab 2,676±333 a 2,633±345 ab 2,639±370 ab Gain Wt 2,409±100 2,552±61 2,563±206 2,540±96 2,498±335 Feed Intake 4,082±75 4,349±457 4,223±505 4,205±573 4,232±697 Feed Require 1.70±0.04 1.70±0.14 1.65±0.07 1.65±0.16 1.69±0.05 a,b Values with different superscripts in the same row differ significantly (P<0.05). - 12 -
Table 2. Body weight and dressing percentage of broiler by yellow mealworm addition. Items Live Wt (g) Carcass Wt (g) Dressing (%) Control 3,640±124 ab 2,634±85 ab 72.4±0.4 YM 0.5% 3,406±123 b 2,509± 79 b 73.7±0.5 YM 1% 4,003± 77 a 2,965±112 a 74.1±1.6 YM 2% 3,646±279 ab 2,680±199 ab 73.5±0.3 SM 1% 3,859±182 ab 2,807± 98 ab 72.8±4.3 a,b Values with different superscripts in the same column differ significantly (P<0.05). 급여하면도체중, 도계율 (dressing percentage), 내장무게등도체성적이향상된다는보고와일치한다. 결과적으로육계에갈색거저리를첨가급여하면사료효율과도체성적이향상된다고볼수있다. 곤충들은아무런문제없이메기, 무지개송어, 이유자돈, 등에서사료원으로효과적으로이용될수있다 (Ramos Elorduy and Pino, 1990). 또한육계에파리구더기를급여하였더니체중은증가하였으나, 사료효율은증가하지않았으며, 도체품질과성장률이증가하였다 (Hwangbo et al., 2009). 그러나파리구더기첨가급여는복강지방은유의성이나타나지않았다 (Teguia et al., 2002). Awoniyi et al (2003) 은파리구더기첨가급여는도체율과가슴근육에는유의차는보이지않았다. 이러한다 른결과는각각처리당다른반복수를실험하였기때문으로보인다. 또한곤충의껍질에서유래한키틴 (chitin) 물질을육계에급여한결과도체율에는유의적인변화가나타나지않았다 (Hossain and Blair, 2007). 3. 혈액성분및혈청화학검사갈색거저리급여에의한육계의백혈구와적혈구수치는 table 3에나타내었다. Leukocytes와관련하여초기염증시증가하는백혈구 (WBC), 식균작용의지표인호중구 (NE), 급성감염중회복기에증가하는림프구 (LY) 에서대조구보다갈색거저리첨가급여시다소높게나타났고, 염증 조직괴사시증가하는단핵구 (MO), 기생충감염이나면역성 Table 3. Blood characteristics of broiler by yellow mealworm addition. Items Control YM 0.5% YM 1% YM 2% SM 1% WBC(K/ μl ) 0.67±0.45 0.65±0.21 0.74±0.35 0.65±0.31 4.75±11.86 S-Neutrophil(%) 13.70±7.86 14.78±6.24 17.80±11.83 14.00±6.32 12.22±5.95 WBC Lymphocyte(%) 77.20±9.81 79.11±6.25 73.00±13.86 79.40±8.75 81.56±5.17 Monocyte(%) 4.30±4.06 ab 1.11±2.03 b 3.80±3.82 ab 2.80±3.29 ab 1.78±1.56 ab Eosinophil(%) 3.20±2.35 4.78±4.41 4.40±3.37 2.80±2.15 3.11±2.26 Basophil(%) 1.60±1.84 0.22±0.67 1.00±1.41 1.20±1.69 1.33±1.73 RBC(K/ μl ) 2.33±0.15 b 2.41±0.13 ab 2.50±0.20 ab 2.45±0.27 ab 2.37±0.17 ab RBC Hb(g/ dl ) 9.50±0.73 c 10.43±0.54 ab 10.66±0.93 ab 9.94±0.54 bc 10.03±0.69 bc HCT(%) 21.35±1.54 b 22.32±1.03 ab 23.34±1.97 ab 23.32±3.09 ab 21.34±1.83 b Platelet(10 3 / μl ) 20.40±32.00 16.00±5.32 51.70±62.66 49.70±57.15 25.78±34.53 * NE(S-Neutrophil), NY(Lymphocyte), MO(Monocyte), EO(Eosinophil), BA(Basophil), HCT(haematocrit), a,b Values with different superscripts in the same row differ significantly (P<0.05). - 13 -
Table 4. Serum chemical characteristics of broiler by yellow mealworm addition. Items Control YM 0.5% YM 1% YM 2% SM 1% ALB 1.43±0.13 1.45±0.13 1.58±0.10 1.47±0.09 1.43±0.18 TCHO 89.63±16.16 b 109.75±11.81 a 105.38±7.29 ab 104.44±9.81 ab 110.00±35.58 a TP 2.99±0.33 3.03±0.31 3.29±0.29 3.10±0.21 3.08±0.27 GOT 249.75±84.98 b 329.88±80.08 ab 421.38±137.29 a 382.44±111.31 a 336.00±112.53 ab TG 118.75±43.26 157.75±42.31 132.25±36.89 141.22±26.26 145.00±43.38 Ca 11.20±0.49 11.21±0.41 11.33±0.38 11.02±0.63 11.25±0.50 P 9.74±1.0 ab 10.44±0.50 a 9.44±0.74 b 10.41±0.99 a 9.53±1.12 ab * ALB(albumin), TCHO(total cholesterol), TP(total protein), TG(triglyceride), a,b Values with different superscripts in the same row differ significantly (P<0.05). 과민반응시증가하는호산구 (EO), 호산구와공조하며유사한반응을보이는호염구 (BA) 등은낮게나타났으나모든 Leukocytes parameter 들은갈색거저리첨가구가대조구에비해유의적 (P<0.05) 인차이는없었다. 빈혈증질환과관련한 Erythrocytes 는모든항목에서대조구보다처리구에서유의적 (P<0.05) 으로높게나타났으나모두정상범위내에포함되었다. Table 4는익하정맥으로부터채취한혈액의혈청화학성상을나타내었다. 알부민 (ALB, albumin), 총콜레스테롤 (TCHO, total cholesterol), 총단백질 (TP, total protein), GOT 및중성지질 (TG, triglycerides) 은대조구보다처리구에서높게나타났으며특히 TCHO, GOT 및 P는유의적 (P<0.05) 으로높았다. 혈중 GOT 활성은대사장해등에의한조직의손상을반영하며, 새로운사료원료나첨가제의이용시안전성을위한지표가되는데, 육계에게갈색거저리급여시혈중 GOT가높게나타난것은체중증가에대한영향일것으로판단되며, TCHO 의증가역시고단백사료를섭취한데에대한영향일것이라판단되나사양관리시폐사나질병발생등의이상소견이발견되지않은것으로보아갈색거저리의첨가급여가육계의대사생리에이상을초래하지는않는것으로판단되었다. 또한곤충의껍질에서유래한키틴 (chitin) 물질은육계에급여한결과혈청콜레스테롤과중성지방농도는유의적 (P<0.05) 으로감소하였다 (Hossain and Blair, 2007). 4. 계육의이화학적성분및물리적특성갈색거저리를첨가급여한계육의일반성분및육질특성을 table 5에나타내었다. 조단백과조지방및조회분이대조구에비해처리구에서다소높게측정되었고특히육색에서는 a( 적색도 ), b( 황색도 ) 가대조구에비해 YM 1% 처리구에서유의적 (P<0.05) 으로높게측정되었다. 또한가열감량과전단력이처리구에서감소되었다. 이는귀뚜라미첨가급여시전단력이감소하였다는보고와도일치하였다. 그러나, 육계에 bacteriophage를급여한연구에서가슴육의보수력이증가하였다 (Baek, et al., 2013). Hwangbo et al. (2009) 의연구에의하면육계에파리구더기첨가급여에의하여육색 (CIElab L*, a*, b*) 에유의적인변화를보이지는않았다. 일반적으로 ph는육색과보수력에영향을미친다. 암적색계육은정상계육에비하여보통높은 ph 값을보인다 (Allen et al. 1998). 또한곤충의껍질에서유래한키틴 (chitin) 물질은육계에급여한결과간장과가슴육의중성지방함량은유의적으로감소하였다 (Hossain and Blair, 2007). 5. 계육의지방산조성지방산은인체의세포막이나각종호르몬을만드는데필수적인영양소이고체온과생식기능을정상적으로유지시켜주며또한음식의맛을내는데도결정적인역할을한다. 본연구에서는갈색거저리를첨가급여함으로써포화지방산인 Palmitic - 14 -
Table 5. Chemical composition and Physical characteristics of broiler meat by yellow mealworm addition. Items Control YM 0.5% YM 1% YM 2% SM 1% Chemical composition Moisture (%) 76.57±1.17 75.20±0.76 75.44±0.36 74.65±0.01 75.61±0.45 C. Protein (%) 21.01±1.41 22.05±0.97 21.71±0.05 22.86±0.40 21.18±1.14 C. Fat (%) 0.88±0.41 1.06±0.42 1.20±0.23 0.80±0.16 1.32±0.55 C. Ash (%) 0.97±0.03 1.04±0.06 1.03±0.04 1.02±0.07 0.95±0.05 Physical characteristics ph 6.09±0.04 6.08±0.05 6.06±0.06 6.04±0.00 5.99±0.06 L 53.13±0.12 52.50±0.23 55.21±1.89 54.59±1.80 54.29±0.66 Meat Color a 1.61±0.55 ab 1.10±0.49 ab 2.70±1.54 ab 1.85±0.21 ab 0.94±0.41 b b 7.32±0.97 ab 5.94±1.59 ab 8.67±1.62 a 6.42±0.74 ab 5.84±1.46 ab Heating Loss (%) 15.24±0.83 13.21±0.24 14.70±2.15 14.54±2.33 13.65±0.97 Drip Loss (%) 59.90±2.51 58.94±1.92 60.84±0.16 58.96±0.73 58.50±0.28 Shear Force(kg/0.5inch 2 ) 2.67±0.26 2.29±0.25 2.28±0.30 2.18±0.01 2.29±0.26 Table 6. Fatty acid composition of broiler meat by yellow mealworm addition. Items Control YM 0.5% YM 1% YM 2% SM 1% Myristic acid 1.22±0.10 1.18±0.09 1.20±0.11 1.27±0.00 1.13±0.06 Palmitic acid 23.56±0.66 a 22.64±0.28 ab 21.25±0.23 c 21.96±0.02 bc 22.51±0.66 ab Palmitoleic acid 5.06±0.11 ab 6.16±1.10 a 5.49±0.33 ab 4.66±0.52 ab 5.61±0.83 ab Stearic acid 6.99±0.30 6.08±1.34 5.69±0.34 6.67±0.74 6.39±0.02 Oleic acid 44.12±0.33 b 46.68±1.36 a 47.00±0.90 a 45.42±0.71 ab 45.96±0.54 ab Linoleic acid 16.60±0.11 ab 14.86±0.50 b 16.98±0.35 a 17.58±0.19 a 16.05±1.08 ab Ƴ-Linoleic acid 0.13±0.03 0.14±0.00 0.16±0.01 0.15±0.00 0.15±0.01 Linolenic acid 1.05±0.07 0.96±0.06 1.12±0.04 1.11±0.12 1.07±0.11 Eicosenoic acid 0.47±0.01 0.50±0.04 0.46±0.04 0.48±0.02 0.48±0.04 Arachidonic acid 0.82±0.02 0.84±0.28 0.68±0.11 0.73±0.18 0.69±0.30 Fatty acid types SFA 1) 31.77±0.26 a 29.89±1.71 ab 28.14±0.69 b 29.89±0.76 ab 30.02±0.62 ab USFA 2) 68.24±0.26 b 70.11±1.71 ab 71.87±0.69 a 70.12±0.76 ab 69.99±0.62 ab - Mono 49.64±0.21 b 53.33±2.43 a 52.93±1.19 a 50.55±1.26 ab 52.04±0.25 ab - Poly 18.60±0.06 ab 16.79±0.71 b 18.94±0.50 a 19.56±0.50 a 17.95±0.87 ab 1) Saturated fatty acid, 2) Unsaturated fatty acid acid이대조구에비해처리구에서유의적으로낮게나타났고, 콜레스테롤감소에효과적인 Palmitoleic acid는 YM 0.5% 처리구에서가장높게나타났다 (table 6). 또한불포화지방산인 Oleic acid, Linoleic acid가처리구에서유의적으로높게나타났다. 이는갈색거저리의첨가급여사료가계육의포화지방산은낮춰주고불포화지방산은유의적으로높여주어계육내지방산조성이개선됨을알수있었 - 15 -
다. 특히어유를급이한계육에서높은비율의 eicosapentanoic acid와 docosahexaenoic acid를나타내었다고보고하였다 (Narciso-Gaytan, 2011; Shin et al., 2011). 또한육계에해조류부산물은급여한결과지방산의조성에변화가있었으며 linolenic acid 함량이유의적으로증가하였다 (Kim et al., 2013). 또한이러한결과는 (Chae et al., 2012) 와유사하였으며불포화지방산의함량은변화가없었다. 결론적으로육계사료에갈색거저리첨가급여는가금사료에대두박을대처할수있는단백질대체원으로이용할수있는가능성이충분하다. 또한육계의생산성에아무런나쁜영향도보이지않았다. 이러한결과는시판되는동물사료에단백질원으로서이용할수있기때문에대단히중요하다. 갈색거저리껍질은가금사료자원으로최적은아닌듯하다. 한편폐기유기자원을이용하여갈색거저리를사육할수있으므로이러한분야에도더욱연구가요구된다. 적요가축의사료에동물성단백질공급원으로서갈색거저리 (Mealworm, YM) 와탈피각 (slough of mealworm, SM) 의이용성을알아보기위하여연구를수행하였다. 시험동물은 1일령의아바에이커육용계 200수를선발하여 5개처리구 ( 대조구, YM0.5, YM1.0, YM2.0%, SM1%) 에처리당 2 반복, 반복당 20수씩선발하여완전임의배치하여 6주간사양시험을실시하였다. 시험종료후, 각시험구당 5수씩을선정하여채혈하고근육을채취하였다. 증체량과사료섭취량을측정하였으며, 도계후일반성분, 육질분석, 혈액성분등을분석하였다. 증체량은 YM 1% 처리구에서가장높게나타났으며, 사료요구율은낮게측정되었다. 갈색거저리첨가에의하여기호성이나조직감에는영향이없었다. 생체중과도체중은 YM 1% 처리구에서유의적 (P<0.05) 으로높게측정되었고도계율도 74.1로가장높게나타나, 갈색거저리 1% 첨가급여할때육계의도체성적이가장우수함을확 인하였다. 염증발생과관련된모든백혈구 (WBC) 관련지표들은갈색거저리첨가구가대조구에비해유의적인차이는없었다. 빈혈증질환과관련한적혈구 (RBC) 는모든항목에서대조구보다처리구에서유의적 (P<0.05) 으로높게나타났으나모두정상범위내에포함되었다. 혈청성분은전반적으로대조구보다처리구에서높게나타났으며, TCHO, GOT 및 P는유의적 (P<0.05) 으로높았다. 사양관리시폐사나질병발생등이발견되지않은것으로보아갈색거저리의첨가급여가육계의대사생리에이상을초래하지는않는것으로판단되었다. 조단백과조지방및조회분이대조구에비해처리구에서다소높게측정되었고특히육색에서는 a( 적색도 ), b( 황색도 ) 가대조구에비해 YM 1% 처리구에서유의적 (P<0.05) 으로높게측정되었다. 또한가열감량과전단력이처리구에서감소되었다. 갈색거저리의첨가급여사료가계육의포화지방산은낮춰주고불포화지방산은유의적으로높여주어계육내지방산조성이개선됨을알수있었다. 결론적으로육계사료에갈색거저리첨가급여는가금사료에대두박을대처할수있는단백질대체원으로이용할수있는가능성이충분하며, 육계의생산성에아무런나쁜영향도보이지않았다. 검색어 : 육계, 갈색거저리, 혈액성상, 육질참고문헌 1. Anand H, Ganguly A, Haldar P 2008 Potential value of acridids as high protein supplement for poultry feed. International Journal of Poultry Science 7(7): 722-725. 2. Anderson SJ 2000 Increasing calcium levels in cultured insects. Zoo Biology 19 (1): 1-9. 3. AOAC 1990 Association of Analytical Chemists. Official Methods of Analysis (15th ed.) Association of Analytical Chemists, Washington D.C. 4. Awoniyi TAM, Aletor VA, Aina JM 2003 Performance of broiler-chickens fed on maggot - 16 -
meal in place of fish meal. International Journal of Poultry Science. 2: 271-274. 5. Baek HY, Kim JW, Kim JU, Kim IH 2013 Effects of dietary supplementation of bacteriophage CP on growth performance, nutrient digestibility, blood profiles, carcass characteristics and fecal microflora in broilers. Korean J Poult Sci 40(4): 283-290. 6. Ballitoc DA, Sun SS 2013 Ground yellow mealworm (Tenebrio molitor L.) feed supplementation improves growth performance and carcass yield characteristics in broilers. Open Science Repository Agriculture. doi: 10.7392/ openaccess. 23050425. 7. Cerritos R 2009 Insects as food: an ecological, social and economical approach. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 8. Chae HS, Choi HC, Na JC, Kim MJ, Kang HK, Kim DW, Kim JH, Jo SH, Kang GH, Seo OS 2012 Effect of raising periods on amino acids and fatty acids properties of chicken meat. Korean J Poult Sci 39(2): 77-85. 9. Das A, Das S, Haldar P 2004 Role of Oxyfuscovittata (Orthroptera: Insecta). Proc Ind Acad Sci (Anim Sci) 94: 443-461. 10. Despins JL 1994 Feeeding behavior and growth of turkey poults fed larvae of the dakling beetle (Alphitobius diaperinus). Poult Sci 74: 1526-1533. 11. Duncan DB 1955 Multiple range and multiple F test. Biometrics 11:1-42. 12. Fisher C 1988 The nutritional value of earthworm, pp.181-192. In C. A. Edwards and E. F. Neuhauser, (eds.), Academic, The Hague. 13. Ghaly AE, Alkoaik FN 2009 The yellow mealworms as a novel source of protein. American Journal of Agricultural and Biological Sciences 4(4): 319-331. 14. Giannone M 2003 A natural supplement made of insect larvae. Rivista di Avicoltura, 72(4): 38, 40-41. 15. Hossain SM, Blair R 2007 Chitin utilization by broilers and its effect on body composition and blood metabolites. Br Poult Sci 48(1): 33-8. 16. Hwangbo J, Hong EC, Jang A, Kang HK, Oh JS, Kim BW, Park BS. 2009 Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J Environ Biol 30(4): 609-14. 17. Ifie I, Emeruwa CH 2011 Nutritional and anti-nutritional characteristics of the larvae of Oryctes monoceros. Agric Biol J N Am 2(1): 42-46. 18. Kim KS, Lee SK, Choi YS, Ha CH, Kim WH 2013 Effects of dietary of by products for seaweed (Eucheuma spinosum) ethanol production process on growth performance, carcass characteristics and immune activity of broiler chicken. Korean J Poult Sci 40(2): 105-113. 19. Klasing KC, Thacker P, Lopez MA, Calvert CC 2000 Increasing the calcium content of mealworms (Tenebrio molitor) to improve their nutritional value for bone mineralization of growing chicks. J Zoo Wildlife Med 31(4): 512-517. 20. Narciso-Gaytan C, Shin D, Sams AR, Keeton JT, Miller RK, Smith SB, Sanchez-Plata MX 2011 Lipid oxidation stability of omega-3 and conjugated linoleic acid-enriched sous vide chicken meat. Poultry Sci 90: 473-480. 21. Ng WK, Liew FL, Ang LP, Wong KW 2001 Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquacult. Res., 32 (Supplement 1): 273-280. 22. Oonincx DGAB, de Boer IJM 2012 Environmental impact of the production of mealworms as a protein source for humans A Life Cycle Assessment. PLOS ONE www.plosone.org 7(12): e51145. - 17 -
23. Oonincx DGAB, van Itterbeeck J, Heetkamp MJW, van den Brand H, van Loon JJA 2010 An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 5(12): e14445. doi:10.1371/ journal.pone.0014445. 24. Pimental D, Dritschilo W, Krummel J, Kutzman J 1975 Energy and land constraints in food protein production. Science 190: 754-761. 25. Premalatha M, Abbasi T, Abbasi SA 2011 Energy-efficient food production to reduce global warming and eco-degradation: The use of edible insects. Renewable and Sustainable Energy Reviews 15: 4357-4360. 26. Pretorius Q 2011 The evaluation of larvae of musca domestica (common house fly) as protein source for broiler production. (MS Thesis), Stellenbosch University. 27. Ramos Elorduy J 1997 Insects: A sustainable source of food? Ecol Food Nutr 36 (2-4): 247-276. 28. Ramos-Elorduy J, Avila Gonzalez E, Rocha Hernandez A, Pino JM 2002 Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J Econ Entomol 95(1): 214-220. 29. Ramos Elorduy J, Pino JM 1990 Variation of the nutritive value of Tenebrio molitor L. raised on different substrates. Proc Int Working Conf Stored Prod Protect 1: 210-210. 30. SAS Institute Inc 2005 SAS/STAT User s Guide: Version 8.2. SAS Institute, Inc., Cary, North Carolina. 31. Shin D, Narciso-Gaytan C, Park JH, Smith SB, Sanchez-Plata MX, Ruiz-Feria CA 2011 Dietary combination of the effects of conjugated linoleic acid and flaxseed or fish oil on the deposition of linoleic and arachidonic acid in poultry meat. Poult Sci 90: 1340-1347. 32. Sonaiya 1995 Feed Resources for small holder poultry in Nigeria. World Anim Rev 82: 25-33. 33. Téguia A, Mpoame M, Mba JAO 2002 The production performance of broiler birds as affected by the replacement of fish meal by maggot meal in the starter and finisher diets. Tropicultura. 20(4): 187-192. 34. Wang YC, Chen YT, Li XR, Xia JM, Du QS, Zhi C 1996 Study on rearing the larvae of Tenebrio molitor Linne and the effects of its processing and utilization. Acta Agriculturae Universitatis Henanensis 30(3): 288-292. - 18 -