(JBE Vol. 21, No. 4, July 2016) (Regular Paper) 21 4, (JBE Vol. 21, No. 4, July 2016) ISSN

Similar documents
(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

19_9_767.hwp

08김현휘_ok.hwp

À±½Â¿í Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

09권오설_ok.hwp

2 : HEVC (Young-Ho Seo et al.: H.265/HEVC Video Watermarking Method with High Image Quality) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

04이윤혁2_ok.hwp

1 : HEVC Rough Mode Decision (Ji Hun Jang et al.: Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder) (Special P

DBPIA-NURIMEDIA

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

19_9_767.hwp

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

°í¼®ÁÖ Ãâ·Â

5 : HEVC GOP R-lambda (Dae-Eun Kim et al.: R-lambda Model based Rate Control for GOP Parallel Coding in A Real-Time HEVC Software Encoder) (Special Pa

(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

03이승호_ok.hwp

07변성우_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

차분 이미지 히스토그램을 이용한 이중 레벨 블록단위 가역 데이터 은닉 기법 1. 서론 멀티미디어 기술과 인터넷 환경의 발달로 인해 현대 사회에서 디지털 콘텐츠의 이용이 지속적 으로 증가하고 있다. 이러한 경향과 더불어 디지털 콘텐츠에 대한 소유권 및 저작권을 보호하기

기관별 공동 Template

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

Slide 1

(JBE Vol. 20, No. 2, March 2015) (Special Paper) 20 2, (JBE Vol. 20, No. 2, March 2015) ISSN

012임수진

45-51 ¹Ú¼ø¸¸

Â÷¼øÁÖ

패션 전문가 293명 대상 앙케트+전문기자단 선정 Fashionbiz CEO Managing Director Creative Director Independent Designer

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

?

10 이지훈KICS hwp

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

09È«¼®¿µ 5~152s

DBPIA-NURIMEDIA

???? 1

02손예진_ok.hwp

02이주영_ok.hwp

14.531~539(08-037).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

04 김영규.hwp

3 : S-JND HEVC (JaeRyun Kim et al.: A Perceptual Rate Control Algorithm with S-JND Model for HEVC Encoder) (Regular Paper) 21 6, (JBE Vol. 21,

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

01이국세_ok.hwp

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

04-다시_고속철도61~80p

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

DBPIA-NURIMEDIA

1. 3DTV Fig. 1. Tentative terrestrial 3DTV broadcasting system. 3D 3DTV. 3DTV ATSC (Advanced Television Sys- tems Committee), 18Mbps [1]. 2D TV (High

(JBE Vol. 24, No. 2, March 2019) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

디지털포렌식학회 논문양식

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

04임재아_ok.hwp

09구자용(489~500)

03홍성욱.hwp

DBPIA-NURIMEDIA

그림 2. 최근 출시된 스마트폰의 최대 확장 가능한 내장 및 외장 메모리 용량 원한다. 예전의 피쳐폰에 비해 대용량 메모리를 채택하고 있지 만, 아직 데스크톱 컴퓨터 에 비하면 턱없이 부족한 용량이다. 또한, 대용량 외장 메모리는 그 비용이 비싼 편이다. 그러므로 기존

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

(JBE Vol. 23, No. 2, March 2018) (Regular Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

04_이근원_21~27.hwp

DBPIA-NURIMEDIA

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

#Ȳ¿ë¼®

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

(JBE Vol. 23, No. 1, January 2018). (VR),. IT (Facebook) (Oculus) VR Gear IT [1].,.,,,,..,,.. ( ) 3,,..,,. [2].,,,.,,. HMD,. HMD,,. TV.....,,,,, 3 3,,

08원재호( )

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

Left Center Right 3차원 L 비디오 C 부호화시스템 R LCR 가상시점영상 N- 시점영상출력 깊이정보맵생성 L C R 깊이정보맵 가상시점영상합성 1. 3 N- Fig. 1. N-view system with the 3-view configuration.

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 30(2),

05안용조.hwp

03-서연옥.hwp

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

1. 서 론

1 : MV-HEVC (Jae-Yung Lee et al.: Fast Disparity Motion Vector Searching Method for the MV-HEVC) High Efficiency Video Coding (HEVC) [1][2]. VCEG MPEG

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

07.045~051(D04_신상욱).fm

ȲÀμº Ãâ·Â

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun; 26(6),

인문사회과학기술융합학회

±è¼ºÃ¶ Ãâ·Â-1

13김상민_ok.hwp

14최해철_ok.hwp

2 : MMT QoS (Bokyun Jo et al. : Adaptive QoS Study for Video Streaming Service In MMT Protocol). MPEG-2 TS (Moving Picture Experts Group-2 Transport S

Transcription:

(Regular Paper) 21 4, 2016 7 (JBE Vol. 21, No. 4, July 2016) http://dx.doi.org/10.5909/jbe.2016.21.4.592 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) H.265/HEVC a), b), a) A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC Su-Jin Jang a), Young-Ho Seo b), and Dong-Wook Kim a) 3.. 2 H.265/HEVC,. H.265/HEVC.,,.. Abstract Recently, many researches on digital holograms, which retain almost perfect 3 dimensional image information, have been performed actively that it seems for them to be serviced soon. Accordingly, this paper proposes a data compression technique for a digital hologram video for this service. It uses H.265/HEVC, the most recent international 2 dimensional video compression standard, for which we consider various domain transform methods to increase the correlation among the pixels in a digital hologram. Also we consider the various parameters on H.265/HEVC. The purpose of this paper is to find empirically the optimal condition for the domain transform method, the size of transform unit, and the H.265/HEVC parameters. The proposed method satisfying the optimal parameter set found is compared to the existing methods to prove that ours shows better performance. Keyword : Digital hologram, Data compression, Domain transform, H.265/HEVC, Optimal compression condition a) (Dept. of Electronic Materials Engineering, Kwangwoon University) b) (Dept. of Culture, Kwangwoon University) Corresponding Author : (Dong-Wook Kim) E-mail: dwkim@kw.ac.kr Tel: +82-2-940-5167 ORCID: http://orcid.org/0000-0001-6106-9894 2016. Manuscript received April 28, 2016; Revised May 30, 2016; Accepted May 30, 2016.

2: H.265/HEVC (Su-Jin Jang et al.: A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC). 2009, 3D, [1]. (stereoscopic) (multiple viewpoints) [2],, 3D,. 1940 (hologram). (, object wave) (, reference wave) (fringe pattern), (digital hologram, DH). 2D 3D [3]..,, 3 3D, 2020 [4]. DH,. DH. Yoshikawa DH DH, [5][6]. DH 1 segment (discrete cosine transform, DCT) MPEG-1 MPEG-2 [7][8]. Javidi DH [9], [10]. [11]. DH. DH DH DCT (discrete wavelet transform, DWT) DH (sequence) MPEG2 MPEG4 H.264/AVC ZIP [12], DH DCT DWT DH [13]. DCT DH (integrated image) MPEG2 [14]. DH DH DCT, 1 motion-compensated temporal filtering (MCTF) [15], Mallat-tree DWT Bandelet [16]. Liebling DH (Fresnel transform, FT) (wavelet) (Fresenelet) (FLT) [17], [18]. [13]~[16], [17] DH 2. DCT([13][14] DCT DWT DCT ), FT, FLT, 2

H.265/HEVC(high efficient video coding) [19]. DCT, FT, FLT. DCT FT DH, FLT (level), HEVC.. 2 DH 3 DH. 4 5.. DH 2D H.265/HEVC. HEVC. DH. 2D DH DH., DCT, FT, FLT. 1. 2 DCT. 0 (, DC),. 2 DCT 2 DCT, 2 (2-dimensional discrete cosine transform, 2DDCT). (1) 2DDCT, 2DDCT, (),., (integral basis), 0, 1. 1 DH 2DDCT. (a) (b), 200 200. (c) (d) (a) (b) DH, [3] CGH(computer generated hologram), 1,024 1,024. 2DDCT - ((c d), (g h), (k l)) - ((e f), (i j), (m n)). DH 2DDCT(g j) DH 1/2 DH 2DDCT (k n)., 2DDCT. k n 2DDCT g j. cos cos

2: H.265/HEVC (Su-Jin Jang et al.: A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC) (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) 1. 2DDCT : ; (a), (b), ; (c), (d), (e), (f), 2DDCT ; (g), (h), (i), (j), 1/4 2DDCT ; (k). (l), (m), (n) Fig. 1. Examples of 2DDCT results from a digital hologram: original object information; (a) light intensity, (b) depth, digital hologram planes; (c) real, (d) imaginary, (e) magnitude, (f) phase, 2DDCT result planes from the whole hologram; (g) real, (h) imaginary, (i) magnitude, (j) phase, 2DDCT result planes from 1/4 partial holograms; (k) real, (l) imaginary, (m) magnitude, (n) phase 2. DH DH (diffraction), (spatial light modulator, SLM).,. (Fresnel diffraction) (FT), exp

FT (2)., ( ) DH FT, DH, FT, DH FT,.. 2 1 DH FT,,,. (a)~(d) DH, (e)~(h) 1/4 DH. (e)~(f) FT (a)~(d) DH. ( ), (3) (4), (, ) (5) (6). (7) (8) FLT ( ) ( ). 1 2. DH 2. 3. (FLT) FT DWT [17]. ( ) exp exp (a) (b) (c) (d) (e) (f) (g) (h) 2. 1 DH FT : FT ; (a), (b), (c), (d) ; 1/4 FT ; (e), (f), (g), (h) Fig. 2. FT results from a DH in Fig. 1: FT result planes from the whole hologram; (a) real, (b) imaginary), (c) magnitude, (d) phase, FT result planes from the 1/4 partial holograms; (e) real, (f) imaginary, (g) magnitude, (h) phase

2: H.265/HEVC (Su-Jin Jang et al.: A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC) exp exp FLT 2. 1/2 sub-sampling(decimation) [12][17]. DH 2, 1/2 decimation, LL, LH, HL, HH 4 (subband) ( 3(a)). LLLL LLHL LLLL LLHL HLLL HLHL LL HL HL LLLH LLHH LLLH LLHH HLLH HLHH LHLL LHHL HHLL HHHL LH HH LH HH LHLH LHHH LLLH HHHH (a) (b) (c) 3. FLT ; (a) 1- FLT, (b) 2- Mallat-tree FLT, (c) 2- quad-tree FLT Fig. 3. Two types of FLT: (a) 1-level FLT, (b) 2-level Mallat-tree FLT, (c) 2-level quad-tree FLT (a) (b) (c) (d) (e) (f) (g) (h) 4. 1 DH quad-tree FLT : 1- FLT ; (a), (b), (c), (d), 2- FLT ; (e), (f), (g), (f) Fig. 4. Quad-tree FLT results from DH in Fig. 1: 1-level FLT planes; (a) real, (b) imaginary, (c) magnitude, (d) phase, 2-level FLT planes; (e) real, (f) imaginary, (g) magnitude, (h) phase

XY(X Y L H),. FLT (level),. 3, (b) Mallat-tree FLT, LL 2 FLT, (c) quad-tree FLT FLT. 3(b) (c) WXYZ(W, X, Y, Z L H) 1 W, X, 2 X, Z. quad-tree FLT. - FLT. 4 1 DH quad-tree FLT.,,,, (a)~(d) 1- FLT, (e)~(h) quad-tree 2- FLT. DCT FT 1- FLT 2- FLT, DH. 1 1- FLT,,. 1 FLT, LL. 1. 1- FLT Table 1. Energy distribution for 1-lewel FLT subbands LL (%) LH (%) HL (%) HH (%) Real plane 23.4 25.7 24.9 26.1 Imaginary plane 23.6 24.1 24.9 27.6 Magnitude plane 63.0 15.2 15.1 7.0. 2D DH, 5.,. DH DH, DH. 2D H.265/HEVC. DH DH. Compression Digital hologram video Digital hologram segmentation 2D Discrete Cosine Transform Fresnelet Transform Compression by 2D video techniques De-compression De-Compression by 2D video techniques Inverse 2D Discrete Cosine Transform Evaluation Fresnel Transform Video sequence formation Inverse Fresnel Transform Digital hologram comparison Image reconstruction Inverse Fresnelet Transform Digital hologram re-combination Reconstructed image comparison Transform level, Sub-DH size Intra perod Size, GOP size, CTU size, 5. DH, Fig. 5. The proposed procedure to compress, decompress a DH video data and the quality evaluation

2: H.265/HEVC (Su-Jin Jang et al.: A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC) DH FT. 1. DH HEVC (intra prediction) (inter prediction). DH. 5 2DDCT, FT, FLT. 2DDCT 1DDCT [7,8,12~15]. FT FLT. 2DDCT FT. FLT 1/2 decimation, FLT. quad-tree FLT, - quad-tree FLT., FLT. 2DDCT FT DH DH DH. 2. HEVC 2D. 6(a) DH 2DDCT FT DH. DH DH 2DDCT FT DH. 6(b) DH 1/4, 4. [13] DH 3 (zig-zag),. FLT 1 1/4 4 Domain Transformed Domain Transformed Domain result Transformed Domain result Transformed Domain result Transformed result result Partial Partial Partial DH Partial DH Partial DH Partial DH Partial DH Partial DH Partial DHPartial Partial DHPartial DHPartial DHPartial Partial DH Partial DH Partial DH Partial DH Partial DH Partial DH DH DH LL HL LL HL LL HL LL LH HL HH LL LH HL HH LH HH LH HH LH HH (a) (b) (c) 6. : (a) DH 2DDCT FT, (b) DH 2DDCT FT, (c) FLT Fig. 6. Video sequencing: (a) when 2DDCT or FT is performed for the whole DH, (b) when 2DDCT or FT is performed for partial DHs, (c) when FLT is performed

. 6(c) (1- FLT). 3. 2D, HEVC. DH HEVC (intra period) DH FLT. (low delay) (random access), CTU(coding-tree unit). QP(quantization parameter) [19]. 4.., HEVC DH. DH. DH DH FT,.. DH,. 1. 5 PC, PC Intel Core(TM) i7-3770 CPU GPU NVIDIA GeForce GTX 970. 5 GPU, HEVC HM16.0, C/C++. DH +, CGH. CGH 2, DH (monochromatic) Y,. 2. CGH Table 2. CGH generation parameters Parameter Wavelength Value 633 [nm] Original data resolution 176 144 Hologram pixel pitch 10.4 10.4 [μm] Hologram resolution 1,024 1,024 Depth range 80 ~ 120 [cm] CGH (clip) 3. / [20] 4. (vertical rig), RGB 1, 176 144 RGB. Windmill [21] MPEG4 MVC(multiview video coding) 3. Table 3. Original video data used Origin Name Number of frames Selfcaptured [20] Sujin 1 200 Sujin 2 200 Huynjin 200 Yoonjin 200 [21] Windmill 200 MPEG4 MVC test seq. [22] Ballet 200 Breakdancers 200

2: H.265/HEVC (Su-Jin Jang et al.: A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC) Ballet Breakdancers. MPEG DH MPEG, DH MVC. 176 144, 200. 5 H.265/HEVC HM-16.0 main. DH DH. 4. 2DDCT 4. Table 4. Parameters related to compression Process Parameter Value Transform HEVC Size of partial DH for 2DDCT and FT 1024 1024 ~ 64 64 Level for FLT 1, 2, 3 level Size of CTU 64 64 ~ 16 16 Intra period 16 Mode Low-delay GOP 4, 8 Random access GOP 4, 8 Compression ratio QP, bit-rate FT DH(1,024 1,024) 64 64 DH( 256 DH), FLT 3( 64 ). HEVC CTU 64 64, 32 32, 16 16 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 7. : (a)(e)(i), (b)(f)(j) 200:1, (c)(g)(k) 500:1, (d)(h)(l) 1000:1 ; (a)(b)(c)(d), (e)(f)(g)(h) DH, (i)(j)(k)(l) DH )(j)(k)(l) imagi Fig. 7. Examples of compression results: (a)(e)(i) original data, (b)(f)(j) 200:1 compressed result, (c)(g)(k) 500:1 compressed result, (d)(h)(l) 1000:1 compressed result; (a)(b)(c)(d) reconstructed images, (e)(f)(g)(h) real part of DH, (inary part of DH

., GOP(group of prediction) 4 8, 16. QP. 2. DH 7. DH(1,024 1,024) 1- FLT, CTU 64 64, 16, GOP 4,. ((a)(e)(i)) 200:1((b)(f)(j)), 500:1((c)(g)(k)), 1000:1((d)(h)(l)), ((a)(b)(c)(d)), ((e)(f)(g)(h)) DH, ((i)(j)(k)(l)) DH. PSNR ( ) 6. DH PSNR, DH. 1000:1 PSNR 40[dB]. 5. 6 PSNR Table 5. PSNR values of the images in Fig. 6 (a) (b) (c) (d) - 46.74 43.75 40.47 (e) (f) (g) (h) - 30.17 25.36 23.13 (i) (j) (k) (l) - 29.39 26.32 23.58 DH (2DDCT FT) (FLT) 8. HEVC CTU 64 64, 16, GOP 4. (a)(b)(c) 2DDCT, (d)(e)(f) FT, (g)(h)(i) FLT, (a)(d)(g), (b)(e)(h) DH, (c)(f)(i) DH, PSNR. 2DDCT FT DH, FLT 1-4, 1/4 FLT 2DDCT FT DH 512 512. FLT 3-. PSNR DH, DH. 2DDCT FT DH, FLT 1-. DH 2DDCT, FT FLT. FT, FLT, 2DDCT. HEVC CTU, 9., DH. 8, 2DDCT FT, FLT 1-. DH 8. CTU 64 64 32 32, 64 64.

2: H.265/HEVC (Su-Jin Jang et al.: A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC) (a) (b) (c) (d) (e) (f) (g) (h) (i) 8. DH : ; (a)(b)(c) 2DDCT, (d)(e)(f) FT, (g)(h)(i) FLT, ; (a)(d)(g), (b)(e)(h) DH, (c)(f)(i) DH Fig. 8. Compressed results for the size of partial DH or transform level: for the kind of transform; (a)(b)(c) 2DDCT, (d)(e)(f) FT, (g)(h)(i) FLT, for the kind of data; (a)(d)(g) reconstructed image, (b)(e)(h) real part of DH, (c)(f)(i) imaginary part of DH (a) (b) (c) 9. HEVC CTU : (a) 2DDCT, (b) FT, (c) FLT Fig. 9. Compressed results of the reconstruction image for the CTU size in HEVC: (a) 2DDCT, (b) FT, (c) FLT HEVC GOP, 10. 9., GOP 4 GOP 8. GOP

(a) (b) (c) 10. HEVC GOP : (a) 2DDCT, (b) FT, (c), FLT Fig. 10. Compressed results of reconstructed image for the mode and GOP size in HEVC: for the kind of transform; (a) 2DDCT, (b) FT, (c) FLT (a) (b) (c) 11., (a), (b) DH, (c) DH Fig. 11. Comparison of compression efficiency in the optimal condition for each transform, (a) reconstructed image, (b) real part of DH, (c) imaginary part of DH, GOP 4. 6, PSNR 11. FT, FLT FT 2DDCT., 1000:1 DH, 2DDCT PSNR. FT 1000:1 39.17[dB], DH 24.17[dB], 23.97[dB] PSNR. 6. Table 6. The optimal compression condition for each transform Parameter 2DDCT FT FLT Size of partial DH&Level Unsplit Unsplit 1-level Size of CTU 64 64 64 64 64 64 Compression mode Randomaccess Randomaccess Randomaccess Size of GOP 4 4 4 3. 7. [9]~[15], [9]~[11] [14] [12][13][15][16].

2: H.265/HEVC (Su-Jin Jang et al.: A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC) 7. Table 7. Comparing the performance evaluation with pervious works Method Proposed 50:1 100:1 200:1 PSNR NC NRMS PSNR NC NRMS PSNR NC NRMS 53.01 (36.23) 0.997 (0.990) 0.079 (0.032) 51.29 (34.62) 0.995 (0.987) 0.096 (0.0378) 46.75 (30.75) 0.985 (0.966) [12] - 0.96 - - - - - - - [13] - 0.975 - - 0.946 - - - - [15] 18 (27.95) - - 16.2 (25.83) - - 15.2 (24.87) 0.170 (0.059) - - [16] - - 0.47 - - 0.575 - - -, PSNR NC(normal correlation) NRMS(normalized root mean square)[16]. -. 200:1 7 200:1. 50:1, 100:1, 200:1,. 7,. [15] DH,.. 2 H.265/HEVC [12][13][15] H.264/AVC. H.265/HEVC H.264/AVC 1.5. [15] PSNR 200:1 24.87[dB], 540:1 2.7. [13] 100:1 NC 0.946 ([12] 100:1, 50:1 [13] [12] ), NC 850:1 8.5. [16] 100:1 NRMS 0.575, 1000:1 0.438, [16] 10. 8 H.265/HEVC H.264/AVC H.265/HEVC. 100:1 200:1, H.265/HEVC 3[dB]. 100:1 [13] 0.946 NC H.264/AVC NC 0.9625. [15], 200:1 DH PSNR 24.87[dB], H.264/AVC PSNR 25.662[dB], 100:1 [15] 25.83[dB], 29.675[dB]. 2.

8. H.264/AVC H.265/HEVC Table 8. Comparing the results by applying our method to H.264/AVC and H.265/HEVC 100:1 200:1 PSNR[dB] NC PSNR[dB] NC H.264 H.265 H.264 H.265 H.264 H.265 H.264 H.265 48.207 53.825 0.9625 0.9953 43.015 50.157 0.9423 0.9876 DH 29.935 34.529 0.9255 0.9864 25.505 31.011 0.8831 0.9709 DH 29.415 33.829 0.9226 0.9839 25.819 31.310 0.8816 0.9684 2,. V.. 2 H.265/HEVC, 2,,. H.265/HEVC CTU,, GOP., CTU 64 64, GOP GOP 4. 1000:1 PSNR 39.17[dB]. 2., 2. (References) [1] (Jin-Woong Kim), (Chideuk An), (Jin-Soo Choi), (Kyung-Ae Moon), (Nam-Ho Heo), (Ki-Moon Eum), (Kyung-Wook Kang), 3D (Obviouslylooking 3D techniques), (Electronic Technology News), 2010. [2] Y. Gao, G. Cheung, T. Maugey, P.Frossard, and J. Liang, Encoderdriven inpainting strategy in multiview video compression, IEEE Trans. in Image Processing, Vol. 25, No. 1, pp. 134-149, Ja. 2016. [3] S. A. Benton and V. M. Bove Jr., Holographic imaging, John Wiley and Sons Inc., 2008. [4] (Ki-Pyung Han), (Giga Korea), TTL Journal, Vol. 146, pp. 16-21, 2013 3(March 2013). [5] H. Yoshikawa and K. Sasaki, "Information reduction by limited resolution for electro -holographic display," SPIE Proc. Vol. 1914 Practical Holography, pp. 1914-1930, Feb. 1993. [6] H. Yoshikawa and K. Sasaki, "Image Scaling for electro-holographic display," SPIE Proc. Vol. 2176, paper #2176-02, pp. 12-22, Feb, 1994. [7] H. Yoshikawa, "Digital holographic signal processing," Proc. TAO First International Symposium on Three Dimensional Image Communication Technologies, pp. S-4-2, Dec. 1993. [8] H. Yoshikawa and J. tamai, "Holographic image compression by motion picture coding," editor, SPIE Proc. vol 2652 Practical Holography, pp. 2652-01, Jan, 1996. [9] T. J. Naughton and B. Javidi, "Compression of encrypted three-dimensional objects using digital holography," Optical Engineering, 43(10), pp. 2233-2238, October 2004. [10] T. J. Naughton, Y. Frauel, E. Tajahuerce, and B. Javidi, "Compression of digital holograms for three-dimensional object reconstruction and recognition," Applied Optics, 41(20), pp. 4124-4132, July 10, 2002.

2: H.265/HEVC (Su-Jin Jang et al.: A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC) [11] O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux and B. Javidi, Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram," Appl. Opt. 41(29), pp. 6187-6192, Oct, 2002. [12] Young-Ho Seo, Hyun-Jun Choi, and Dong-Wook Kim, "Lossy coding technique for digital holographic signal", SPIE Optical Engineering, 45(6), 065802, Jun. 2006. [13] Young-Ho Seo, Hyun-Jun Choi, and Dong-Wook Kim, "3D scanning-based compression technique for digital hologram video", Elsevier Signal Processing - Image Communication, Vol.22, Issue 2, pp. 144-156. Feb. 2007. [14] Young-Ho Seo, Hyun-Jun Choi, Jin-Woo Bae, Hoon-Chong Kang, Seung-Hyun Lee, Ji-Sang Yoo and Dong-Wook Kim, "A new coding technique for digital holographic video using multi-view prediction", IEICE Transactions on Information and Systems, Vol. E90-D, No.1, pp. 118-125, Jan. 2007. [15] Young-Ho Seo, Hyun-Jun Choi, Ji-Sang Yoo, and Dong-Wook Kim, Digital hologram compression technique by eliminating spatial correlations based on MCTF, Opt. Commun. 283(21), pp. 42614270, 2010. [16] Le Thanh Bang, Zulfiqar Ali, Pham Duc Quang, Jae-Hyeung Park, and Nam Kim, "Compression of digital hologram for three-dimensional object using Wavelet-Bandelets transform," Optics Express, Vol. 19 Issue 9, pp. 8019-8031, 2011. [17] M. Liebling, T. Blu and M. Unser, "Fresnelets : new multiresolution wavelet bases for digital holography," IEEE Trans. Image Process. Vol. 12, No. 1, pp. 29-43, 2003. [18] (Young-Ho Seo), (Moon-Seok Kim), (Dong- Wook Kim), (Quad-tree Subband Quantizer Design for Digital Hologram Encoding based on Fresenelet), (Journal of the Korea Institute of Information and Communication Engineering), 19(Vol. 19), 5(No. 5), pp. 1180-1188, May 2015. [19] http://mpeg.chiariglione.org/standards/mpeg-h/high-efficiency-videocoding [20] Y-H. Seo, Y-H. Lee, J-M. Koo, W-Y. Kim, J-S. Yoo, and D-W. Kim, "Digital holographic video service system for natural color scene," Optical Engineering 52(11), 113106, Nov. 2013. [21] http://tf3dm.com/3d-model/windmill-56151.html [22] http://research.microsoft.com/en-us/downloads/5e4675af-03f4-4b16-b3bc-a85c5bafb21d/ - 2014 : () - 2014 ~ : () - ORCID : http://orcid.org/0000-0002-6874-0289 - :, HEVC - 1999 2 : () - 2001 2 : () - 2004 8 : () - 2005 9 ~ 2008 2 : - 2008 3 ~ : - ORCID : http://orcid.org/0000-0003-1046-395x - :, 2D/3D,, SoC

- 1983 2 : () - 1985 2 : - 1991 9 : Georgia () - 1992 3 ~ : - 2009 3 ~ : - ORCID : http://orcid.org/0000-0001-6106-9894 - : 3D,, VLSI Testability, VLSI CAD, DSP, Wireless Communication