+,PSFBO4PD&OWJSPO&OH _ Original Paper IUUQTEPJPSH,4&& *44/F*44/ s } xm { s Study on Prediction of Water Quality of Produced Water Considering Characteristics of Individual Process Design Factors for Ultrapure Water l * *, Kyung-Hyuk Lee Boung-Su Kwon* Am Jang*, s } * ~ s s K-water *Graduate School of Water Resources, Sungkyunkwan University (Received June 19, 2018; Revised July 12, 2018; Accepted July 20, 2018) Abstract : The purpose of this study is to estimate the target water quality through computer simulation for customized high purity industrial water production. In order to predict the water quality of the final product, a computer simulation program capable of predicting water quality through process selection is needed. Also, computational simulation should take water quality and quantity into consideration. Once the target water and its quality are chosen, appropriate process must be selected, thus logic for computer simulation was constructed for each and every process. Process for semi-conductor grade ultra-pure water was constructed through a computer simulation. As a result, final water quality could be predicted. The computational simulation for water quality and for ultrapure water demonstration plant (25 m 3 /day) are compared. Some categories such as resistivity and total organic carbon (TOC) showed similar results, however the results for dissolved oxygen (DO), silica, particle and boron had some variations. The results from the computer simulation were 0.5 ppb, 0.5 ppb and 0.05 ppb, for DO, silica and boron, respectively, whereas the results from the demonstration plant were 0 ppb, 0.25 ppb and 0.024 ppb, for DO, silica and boron, respectively. The maximum difference in water quality was in the range of 0.026 ppb - 0.5 ppb. In this study, experimental plant-scale plant was constructed for the industrial water sector, which is difficult to approach, in terms of process and water quality, due to the special nature of the industrial water sector. The results from this study is expected to contribute to the development of core technologies for industrial water, and to make it possible to build an optimized industrial water treatment facility. Key Words : Ultrapure Water (UPW), Water Quality, Computer Simulation, Demonstration Plant. ² l Ð j k j² j h º á j jº. k ² ô a³j i j jº( ¼j Ø jº). h Ø ô j j, } ¼j ¼j j º. k Ð j a³jº. i d(25 m 3 / ) j k, TOC î k j að Ø, DO,,, î º a j º. DO²0.5 ppb( ) / 0 ppb( j d) a, ² 0.5 ppb( ) / 0.25 ppb( j d) a º. 0.05 ppb( ) / 0.024 ppb( j d) º a º. ² ¼0.5 ppb (DO) ~ 0.03 ppb (TOC) º. ² d k î }a ¼k j d j d j j j j jk } mù k m a³ j jº..,,, j d 1. Ð ô j í m,,, ² gj Ùº. ² e j² d, dp ² ² î Õ í j ² j² jº. 1) ², (mm,,, ) Ñj, a î a Ñj j mj, v,, Ð, î º jí jº. 2) 20 } } j Ø º. ¼j k ²} d d } j jº. 3) k j d(25 m 3 / ) m j } ¼j d º j Õ l k ¼j m j jº. j, } ¼j i î, j j² i m º. a ºmØ i j j d ddp ² j Corresponding author E-mail: amjang@skku.edu Tel: 031-290-7526 Fax: 031-290-7549
+,PSFBO4PD&OWJSPO&OH jº d j 283 } ² º. kº j a kø jj a º. RO ¼k ² j º. 4) j jº, m î } ¼j ²º k Ø 5) ¼jfa kj ²Ñ ² º. ² j d ¼j aa³jð j k j jº. j d k d d j } ¼j î d j Ñ î á j º. j k j jº. ¼j Ð m Å Å vj ÐÅ jí º. 6), } ¼j ¼j a³j j º. ² } ¼ji º mj j j d j Ñ î j j } Ù Ð j h j º. 2. 2.1. l 2.1.1. j d lm j d² 25 m 3 /day h Ð h ² k18.2 µω cm j, (Total Organic Carbon, TOC) 5.0 ppb j, (Dissolved oxygen, DO) 1.0 ppb j h j º. Fig. 1 z,, Ø, Ñj j, î º., a Ñ j m, m, Ø º. 7) Ø ² j d² 2012 Ø, j, 2013 ~2016 (4 ) 24 e º j º. ² ¼ ¾ Ø Ñ mm- - - Ñ a Ùº. j k ² j a Ø j, Pilot Plant b lm Fig. 1 zº. m ² d (Na) m ² Ð Ð, m m l m ² k, nº ²TOC, ph, k j º. (VDG) nº ²DO, º ² j k, TOC, DO, (Particle),, î j e a³jð j º. ¼k ² Table 1 zº. j 3,640 m 3 / (150 m 3 /hr) j h j } j º. ² h Ø º...'.VMUJ.FEJB'JMUFS.'.FNCSBOF'JMUSBUJPO"$'"DUJWF$BSCPO'JMUFS%(%F(BTGGJFS4$4USPOH$BUJPO&YDIBOHFS4"4USPOH"OJPO &YDIBOHFS 67 TU 6MUSBWJPMFU TUFSJMJ[FS 67 PY 6MUSBWJPMFU PYJEBUJPO )&9 )FBU &9DIBOHFS 7%( 7BDVVN %F(BTGGJFS.%(.FNCSBOF %F(BTGGJFS.#.JYFE#FEJPO&YDIBOHFS&%*&MFDUSP%F*POJ[BUJPO"1"OJPO1PMJTIFS$1$BUJPO1PMJTIFS6'6MUSB'JMUSBUJPO Fig. 1. 4DIFNBUJD EJBHSBN BOE XBUFS RVBMJUZ NPOJUPSJOH PG VMUSBQVSF XBUFS QJMPU QMBOU ¼jm jm 40 7m 2018 7
284 +,PSFBO4PD&OWJSPO&OH l Table 1. 6MUSBQVSF XBUFS QSPEVDUJPO XBUFS RVBMJUZ NFBTVSFNFOU BOBMZ[FST 1SPDFTT 1PJOU "OBMZ[FST.BLFS.PEFM "SUJDMF 3BOHF 1SF USFBUNFOU 1VSFXBUFS 6MUSBQVSF XBUFS $BUJPO JPOFY "OJPO JPOFY /B.FUUMFS5PMFEP /B /B QQC Q).FUUMFS5PMFEP. Q) $POEVDUJWJUZ.FUUMFS5PMFEP. $POEVDUJWJUZ VTDN 50$ 4JWFST 50$ 50$ QQN 4JMJDB )BDI 4JMJDB QQC SFWFST 50$ 4JWFST 50$ 50$ QQN PTNPTJT $POEVDUJWJUZ.FUUMFS5PMFEP. $POEVDUJWJUZ VTDN 7%(.%( %0.FUUMFS5PMFEP. %0 QQC.#&%*.%* $POEVDUJWJUZ.FUUMFS5PMFEP. $POEVDUJWJUZ VTDN 4JMJDB )BDI 4JMJDB QQC #PSPO 4JWFST 618CPSPO CPSPO QQC "1 $POEVDUJWJUZ.FUUMFS5PMFEP. $POEVDUJWJUZ VTDN.1$1 $POEVDUJWJUZ.FUUMFS5PMFEP. $POEVDUJWJUZ VTDN.%( %0.FUUMFS5PMFEP. %0 QQC 6' $POEVDUJWJUZ.FUUMFS5PMFEP. $POEVDUJWJUZ VTDN 50$ (& $IFDLQPJOU 50$ QQC 1BSUJDMF 3JPO 91-" VN FBN- 1BSUJDMF 1.4.F VN FBN- 2.1.2. } i 20 a } Ø, Ñj j² d ô b} l Ùº. UF/MF gjj ² (SS) Ñj j, m Ñ jº. m Ñj j, ² m,, a Ñj j º. } aa³jð î j, i lm Table 2 zº. } ¼j ² ²a³j Table 2. $PNQVUFSJ[FENPEFMPGVOJUJO618 1SPDFTT.BOVGBDUVSF $PNQVUFSTJNVMBUJPO %PX 6'MPX 6' /JUUPEFOLP 6'4ZTUFN *PO FYDIBOHFS &%*.%( 5PSBZ 'PSNFSMZ8PPOH+JO$IFNJDBM $.41 'JMNUFD 4" 5PSBZ 5PSBZ )ZESBOBVUJDT EFTJHO /JUUPEFOLP *.4% 1VSPMJUF 1VSF%FTJHO %08 $BEJY -BOYFYY -FXBUJU 4BNZBOH 5SJ"OHMF &MFDUSPQVSF (&8BUFS -JRVJ$FMM %BJOJQQPOJOL &%*$"% &$FMM&$BMD -JRVJ$FMM9 4FQBSFM&'1 ¼j j aj ¼j i j jº. 2.2. 2.2.1. m j 3,640 m 3 / (150 m 3 /hr), h j m j 237.9 m 3 /hr º. m } k ² j j² Table 3. $PNQVUFSJ[FE TJNVMBUJPO DPOEJUJPOT PG JPO FYDIBOHF 1SPDFTT %FUBJMDPOEJUJPOT CBTJDEBUB XBUFSRVBMJUZ UPUBMDBUJPO NH-BT$B$0 GMPXSBUF UPUBM N IS VOJU N ISVOJU VOJU DZDMFUJNF VOJU ISDZDMF %FTJHO SFHFOMFWFM BT)$M H-SFTJOBT)$M GBDUPST SFTJODBQBDJUZ BT$B$0 H-SFTJOBT$B$0 $BUJPO %JNFOTJPO *%pijhiu *%NNp)NN FYDIBOHFS MJOFBSWFMPDJUZ BDUVBMEBUB NIS TQBDFWFMPDJUZ BDUVBMEBUB N ISN SFTJO SFTJOWPMVNF BDUVBMEBUB -SFTJO DBMDVMBUJPO JPOJDMPBE DBUJPO HBT$B$0 &R SFTJOWPMVNF DBUJPOSFTJO -SFTJO &R SFHFOFSBUJPO DIFNJDBM )$M -BT)$M QSPHSFTT UPUBMUJNF SFHFOFSBUJPO NJO XBTUFXBUFS RVBOUJUZ N DZDMF XBUFSRVBMJUZ QSPEVDUXBUFS Q) _ Journal of KSEE Vol.40, No.7 July, 2018
+,PSFBO4PD&OWJSPO&OH jº d j 285 i m j º mj j º. î m j, b m jº. (1 mg/l as CaCO 3), (79 m 3 /hr), e(24 hr/cycle) î j, (45 g/l-resin) m (48 g/l-resin) j m k j jº. m 5,900 liter, ²ID 2,011 mm H 3,050 mm º. m Õ ¼j ² Table 3 zº. m gjø ² в k a³jº. j k ² (1) ô, m e a³j, á ª Z Z œ (1) I l : Quatity of cation ion (g as CaCO 3) Q : Quality of feed water (m 3 /hr) T c : Quatity of cation per cubic meters (g as CaCO 3/m 3 ) C t : Cycle time (hr) m ÑØ j Ø m, m d ô (15%) j (2) ô m j jº. Table 4. $PNQVUFSJ[FE TJNVMBUJPO DPOEJUJPOT PG SFWFST PTNPTJT 1SPDFTT %FUBJMDPOEJUJPOT #BTJDEBUB XBUFSRVBMJUZ $POEVDUJWJUZ 4DN 50$ H-BT$ 4J0 NH-BT4J0 GMPXSBUF UPUBM N IS VOJU N ISVOJU VOJUOVNCFS VOJU %FTJHO TBMUSFNPWBMSBUF GBDUPST 50$SFNPWBMSBUF WFTTFM UPUBMFBWFTTFM WFTTFMUZQF NPEVMF7FTTFM NPEVMF NPEVMFVOJU 8BUFS SFDPWFSZSBUF CBMBODF GFFEXBUFS N I QSPEVDUXBUFS N IS DPODFOUSBUFXBUFS N I $BMDVMBUJPO NBYGFFEGMPX N I N INPEVMF NJODPODGMPX N I N INPEVMF 1SPEVDU XBUFSRVBMJUZ $POEVDUJWJUZ 4DN XBUFS 50$ H-BT$ 4J0 NH-BT4J0 Ñ î j a³j (3) ô º. á Z Ÿ «(2) ª á ª Z ÞÞÎ àþîà «ß Î à «ß «(3) V r : Quatity of cation ionexchange resin (L-resin as CaCO 3) I l : Quatity of cation ion (g as CaCO 3) R ca : capacity of cation ionexchange resin (g/l-resin as CaCO 3) F s : safety factor (-) WQ p : Water quality of product (µs/cm, µg/l) WQ f : Quality of feed water (µs/cm, µg/l) Re r : Recovery rate (%) R r : Removal rate (%) 2.2.2. (Reverse Osmosis, RO),, î ì Ñj j k ² ÐÐ, TOC, (SiO 2) Ð m j a³jº. m j } j, Ñ TOC Ñ î j jº. fi(pump) j m ô, jº. ÐÐa250 µs/cm Ñ m j Table 4 z ÐÐ 14.7 µs/ cm jº. m 2.2.3. UV m UV m ² j² k a³jº. j² ¼ á j 1º UV m 2ºUV m b º j² º. Table 5 z 1º UV m RO nº j TOC Ð 5 ppb j jº. 2ºUV m MBn º j TOC Ð 1 ppb j jº. UV m ² Ù z Ð j h j È j ² Ùº. TOC 5 ppb j 1 ppb j º. ¼jm jm 40 7m 2018 7
286 +,PSFBO4PD&OWJSPO&OH l Table $PNQVUFSJ[FE TJNVMBUJPO DPOEJUJPOT PG TU VMUSBWJPMFU PYJEBUJPO 67 PY 1SPDFTT %FUBJMDPOEJUJPOT #BTJDEBUB XBUFSRVBMJUZ 50$ H-BT$ $BQBDJUZ UPUBM N I 6OJUOVNCFS VOJU %FTJHO 50$JO1SPEVDU H-BT$ GBDUPST %JGGFSFOUJBM50$ H-BT$ 67 PY -BNQTQFDJGJDBUJPO 5ZQF 4JOHMFFOEFE 8BWFMFOHUION -FOHUIJODI 1PXFS 8 674QFDJGJDBUJPO 5ZQF )PSJ[POUBMDZMJOESJDBM.BUFSJBM -4UBJOMFTTTUFFM %JNFOTJPO NN GMPXSBUF N ) 2.3. È j k ²} Ñj j² k Ñ m Ø jº. Ñ k ¼ j Ðj Ñ d j²ä Å mj j d l Ñ m j, i j j l Table 6 Table 7 z j º. Table 6. %FUFSNJOBUJPO PG SBOHF BOE VOJU QBSBNFUFST 1SPDFTT 9 93BOHF : %( 'MPXSBUF N IS _ 3FKFDUJPOSBUF &%* 'MVY N N %BZ 3FTJTUJWJUZ Ω DN $POEVDUJWJUZ SFKFDUJPOSBUF 50$3FKFDUJPOSBUF $POEVDUJWJUZ SFKFDUJPOSBUF 7%( %0 QQC _ %03FKFDUJPOSBUF.%( %0 QQC _ %03FKFDUJPOSBUF 67 DY MBNQ &" _ 50$3FKFDUJPOSBUF Table 7. &RVBUJPOTBOESFNPWBMSBUFGPSVOJU &RVBUJPOTGPS 1SPDFTT %BUB 3 3FNPWBMSBUF VOJU %( ZY Y 3 $0 ZY Y 3 $POEVDUJWJUZ ZY 3 50$ &%* ZY 3 3FTJTUJWJUZ 7%( ZY 3 %0.%( ZY 3 %0 67PY ZY Y 3 50$ (DG) X (1.5 ~ 2.3 m 3 /hr) j Y CO 2 Ñ º. Õ ô È ²3} Õ 1.5 m 3 / hr, 1.9 m 3 /hr, 2.3 m 3 /hr º. ky = 82.75x 2-361.72x + 451 ² l Ø º. ¼ ² fi ¼ ² j ² j l º. } ¼j d j k Ñ ¼k j Table 6 zº. 70% ¼99.35% Ñ, º m a³j ² Ñ k a³jº. (3) Ñ ô j j a Ð Ø º. 3. 3.1. lè 3.1.1. j k ²} Ñj j² k Ñ m Ø jº. Ñ k ¼ j Ðj Ñ d j²ä Å mj j d l Ñ m j, i Ð j j jº. j k ² Table 8 z º. k 0.0038 µω cm, 1,000 ppb, 8,000 ppb, Table 8. 1SFEJDUJPOPGXBUFSRVBMJUZGPSJOEJWJEVBMFTJO 618 2VBMJUZ 6OJU 3BX XBUFS 4' "$ 4$ TU OE 3FTJTUJWJUZ Ω DN 50$ QQCBT$ 1BSUJDMF FBN- Φ N %0 QQC #BDUFSJB DGV- 4JMJDB QQCBT 4J0 2VBMJUZ 6OJU 67PY.%(.# 67PY $1 6' 3FTJTUJWJUZ Ω DN 50$ QQCBT$ 1BSUJDMF Φ N FBN- %0 QQC #BDUFSJB DGV- 4JMJDB QQCBT 4J0 Journal of KSEE Vol.40, No.7 July, 2018
+,PSFBO4PD&OWJSPO&OH jº d j 287 10,000 ppb º. (SF) m (AC), (SC) Ð, Ñ j ² Ù k/ Ñ (97%) Ñ (90%) m 1º80%, 2º 90% j k,, ¼j a³jº. UV ox ² TOCa º ÑØ, 1ºUV ox 42 ppb 5 ppb ÑaØ, 2ºUV ox 5 ppb 0.5 ppb ÑaÙº. TOCa ÑØ Table 7 z ks aú º. MDG DO 0.5 ppb Ñ j, CP k(18.22 µω cm) (0.5 ppb) h j jº. juf ² Ñj h jº. Fig. 2 Fig. 3² k ¼j º. k m m 15 MΩ cm aj, m Ñ m k11.71 MΩ cm q j m k18.22 MΩ cm aj 18.20 MΩ cm jº. Fig. 3 z ² 1000 mg/l gjø k42 mg/l º. 1º m k5 mg/l 2º m k0.5 mg/l h 1.0 mg/l j j² º. 3.1.2. ô º Ð j kj j j j d(25 m 3 / ) k j á j jº. i j kj ² h Þ jº. Table 9 z k Table 9. 3FTVMU PG XBUFS RVBMJUZ CZ DPNQVUFSJ[FE TJNVMBUJPO B px Tyt Qfˆˆf pƒ fwt Sfƒrp fwt Qfyrp Qp w HD G@ Qp t t t Ω hx % %!! % HD SH6 gf 6 % " HD Ifƒ thwp Φ " x pfxe " HD 7H g % " HD 5fh pƒtf hq E HD gf RtH RtH " HD Fig. 2. 1SFEJDUJPOPGSFTJTUJWJUZBTBSFTVMUCZDPNQVUFSJ[FETJNVMBUJPO Fig. 3. 1SFEJDUJPOPG50$BTBSFTVMUCZDPNQVUFSJ[FETJNVMBUJPO ¼jm jm 40 7m 2018 7
288 +,PSFBO4PD&OWJSPO&OH l 18.22 µω cm, 0.5 ea/ml (0.05 µm), DO/TOC/ 0.5 ppb º. 3.1.3. j d(25 m 3 / ) j d² Ù z MMF, AC Ø, 2B3T + 2ºRO + MDG (VDG) + MB (EDI), UV + AP + CP + MDG + UF Ø º.,, lm Table 10 zº. ô h 50%~100% Ð º. j d k º Ð ä º. j d k 18.29 µω cm, TOCa0.53 ppb, a0.21 ppb, DOa0 ppb, a0.2 ea b} lm Table 9 zº. j Table 11 j d Ù ô º., 25 m 3 / (1 m 3 /hr) Ø, m î eð Ù24 hr/cycle j º. j d j Table 10 z Þ h º. j ²-0.03 ppb (TOC) +0.5 ppb (DO) º. j da ºTOC j Å º. ² j d Ø Ùº. Table11. $PNQBSJTPO PG XBUFS RVBMJUZ CFUXFFO EFNP QMBOU BOE DPNQVUFS TJNVMBUJPO *UFN 6OJU 3BX XBUFS RVBMJUZ 1JMPU QMBOU B 4JNV MBUJPO C 5BSHFU RVBMJUZ SBOHF 3FTJTUJWJUZ Ω DN %JGGFS FODF CB BC 50$ QQCBT$ 1BSUJDMF FBNM Φ N _ %0 QQC 4J0 QQCBT 4J0 3.2. j Ð Þ j, j d j Ð k j d Å Ø ² Þ j² ä º. i j a³j, k ¼k ² º a º. ² j î í j ² º. i ² Ð ¼ k} j j º² Ø jä dºø, Table 10. 8BUFS RVBMJUZ PG EFNPOTUSBUJPO QMBOUT *UFN 13BXXBUFS 2..' 3"$' 44$ 5%( 64" 7%FNJ 8 5FNQ p$ Q) 3FTJT Ω DN $POEVD TDN 50$ QQC 4J0 QQC %0 QQC 1BSUJDMF FB- _ N _ N _ N _ N _ N _ N _ N _ N #PSPO QQC /" *UFN 9 10.%( 11.# 1267 13"1 14$1 15.%( 166' 5FNQ p$ Q) 3FTJT Ω DN $POEVD TDN 50$ QQC 4J0 QQC %0 QQC 1BSUJDMF FB- _ N _ N _ N _ N _ N _ N N N #PSPO QQC /" Journal of KSEE Vol.40, No.7 July, 2018
+,PSFBO4PD&OWJSPO&OH jº d j 289 j j º. k z Ð a³jº. ² k k º. ² } i d º mj j, b aa³ j a³jð j º. } j a³j m º j º. j ² hj j i d(25 m 3 / ) j, k, TOC î k j að Ø, DO,,, î º a j º. ² ¼+0.5 ppb (DO) ~ -0.03 ppb (TOC) º. a j ² j k Ñ Ø n aø Ù dºùº. vmø² º. Ð 0.1 µm dd 0.05 µm î aå vmø º. vm² á Ù j j j² º a³jº. ¼j Ñ î k j jº a³jº. 4. j Ð Þ j, j d j Ð k j d Å Ø ² Þ j² ä º. 1) i d(25 m 3 / ) j k, TOC î k j a Ð Ø º. 2) (DO),,, î º a j º. DO²0.5 ppb( ) / 0 ppb( j d) a, ²0.5 ppb( ) / 0.25 ppb( j d) a º. 0.05 ppb( ) / 0.024 ppb( j d) º a º. ² ¼ 0.5 ppb (DO) ~ 0.03 ppb (TOC) º. 3) vmø² Ð ² î ¼kÅ vmø º. j jº n ä º. 4) kj (3,640 m 3 / ) Ò j Ð ¼j m jº m aø a ³j ä º. j a³ j ºa jð jº l Ð ( ) jí a³j ä º. Acknowledgement ² j d } ( m 18IFIP-B088097-05) k kø º. References 1. Lee, K. H., Lee, Y. J. and Lim, J. L., Development of customized ultrapure water manufacturing technology for industrial use, Korea Water Resour. Assoc. (Water and Future), 47(5), 13~16(2014). 2. Choi, B. S., Ultrapure water industry and technology trends, korea agency for infrastructure Technology Advancement, Issue Report of KAIA, pp. 1~16(2013). 3. Lee, K. H., Kim, D. G., Kwon, B. S. and Jung, K. S., Study of the optimization process combination on the ultrapure water treatment system, J. Korean Soc. Environ. Eng., 38 (7), 364~370(2016). 4. Kim, D. K., Choi, J. S., Lee, C. K., Kim, J. H., Choi, J. H. and Lee, W. T., Removal characteristics of organic matters in pretreatment and reverse osmosis membrane processes for seawater desalination, J. Korean Soc. Environ. Eng., 36(7), 492~497(2014) 5. Kwon, B. S. and Lee, H. G., The research of Based on Technology for Pure and Ultrapure water treatment plant, 1st ed, K-water, Deajeon, pp. 50~62(2011). 6. Son, J. S., Strategies for R&D and status of ultrapurewater production plants, The Korean Society of Mechanical Engineers, Spring Conference of KSME, pp. 327~341(2014). 7. Park, S. C., Kwon, B. S., Lee, K. H. and Jung, K. S., The Design Parameter Evaluation of Ion Exchange Process for Ultra Pure Water Production, 29(1), 65~75(2015). 8. Lee, K. H., Kwon, B. S., Lee, Y. J. and Lim, J. L., The Design Parameter Evaluation of Ion Exchange Process For Ultra Pure Water Production, The Korean Society of Mechanical Engineers, Spring conference of KSME, pp. 115~ 116(2014). 9. An, C. W., Ju, J. I., Lim, S. K. and Kim, H. J., The contamination factor of TOC in the De-ionized Water for Semiconductor Manufacturing, Korean Society for Precision Engineering, Conference of KSPE, pp. 463~464(2012). 10. Lee, H. G. and Kwon, B. S., The research of Based on Technology for Pure and Ultrapure water treatment plant, 1sted, K-water, Deajeon, pp. 50~62(2011). ¼jm jm 40 7m 2018 7