Korean J. Plant Res. 27(2):202-208(2014) http://dx.doi.org/10.7732/kjpr.2014.27.2.202 Print ISSN 1226-3591 Online ISSN 2287-8203 Original Research Article 이태성 1 *, 이영화 1, 김광수 1, 이후관 1, 장영석 1, 최인후 1, 김관수 2 1 농촌진흥청국립식량과학원바이오에너지작물센터, 2 목포대학교한약자원학과 Effect of Sowing Time on Oil Content and Fatty Acid Composition Characteristics in Rapeseed Cultivars Tae Sung Lee 1 *, Yong Hwa Lee 1, Kwang Soo Kim 1, Hoo Kwan Lee 1, Young Seok Jang 1, In Hu Choi 1 and Kwan Su Kim 2 1 Bioenergy Crop Research Center, National Institute of Crop Science, RDA, Muan 533-831, Korea 2 Department of Medicinal Plant Resources, Mokpo National University, Muan 534-729, Korea Abstract - This study was carried out to find the effect of sowing time on oil content and fatty acid composition of 6 domestic rapeseed cultivars, Sunmang, Tammiyuchae, Tamlayuchae, Naehanyuchae, Yongsanyuchae and Hallayuchae. The delaying sowing date was negatively correlated with oil content (-0.471**), indicating that oil content was higher with earlier sowing date. Fatty acid composition was similar in all cultivars. The delaying sowing date was positively correlated with the increment of stearic acid (0.268*) and linoleic acid (0.263*), while was inversely correlated with palmitic acid (-0.278*) across all 6 cultivars. Key words - Rapeseed, Sowing date, Cultivar, Fatty acid composition, Oil content 서언 유채 (Brassica napus L.) 는십자화과배추속 (Brassica) 에속하는 1년생또는 2년생초본이며종실에는 35 45% 의지질이함유되어있다. 우리나라의재배내력은 1643 년에발간된산림경제에 운대 ( 蕓薹 ) 로기록되어있으며기름생산을위해 1960 년대에전남북, 경남및제주도에일본도입종이보급되면서시작되었다. 유채기름에함유된지방산중에루진산 (erucic acid; C 22:1 ) 과유채박의글루코시놀레이트 (glucosinolate) 의함량이낮은양질유는식용, 바이오디젤원료로이용되며, 에루진산의함량이높은저급유는공업용으로이용하고있다. 유채기름은불포화지방산 (Unsaturated fatty acid) 중에서도산화안정성 (Oxidation stability) 과저온유동성 (Cold filter plugging point) 이우수한단일불포화지방산인올레인산 (Oleic acid; C 18:1 ) 의함량이높아관심이높아지고있다 (Petukhov et al., * 교신저자 (E-mail) : j570510@korea.kr 1999; Demirbas, 2007). 반면리놀레익산 (Linoleic acid; C 18:2) 과리놀레닉산 (Linolenic acid; C 18:3 ) 등의다가및고도불포화지방산의경우는빨리산패가진행되어바이오에너지원료로서는불리하다 (Jang et al., 2010). 이러한특성을지닌두지방산은유채기름의품질과이용분야를결정짓는중요한요소가될수있다. 일반적으로팔미틱산 (Palmitic acid; C 16:0 ) 와스테아르산 (Stearic acid; C 18:0) 의함량이 7.5% 이하일때저포화지방산으로분류할수있다 (Fehr, 2007). 포화지방산함량이적고올레인산함량이높아겨울철에기름이굳지않은장점이있어독일, 프랑스등에서는유채를원료로하여바이오디젤을중점적으로개발, 실용화하고있으며 (Wright, 2006), 종실을착유하고남은부산물인유채박은단백질과필수아미노산인라이신 (lysine) 이함유되어있어가축사료나비료로이용가능하다. 또한유채의생산과소비의확대를위해서는재배를확대하는노력과재배법개선, 작부체계확립등이요구되고있는실정이다 (Sticklen, 2006; Walsh et al., 2003). 아울러유채의생육과수 c 본학회지의저작권은 ( 사 ) 한국자원식물학회지에있으며, 이의무단전재나복제를금합니다. This is an Open-Access article distributed under the terms of the Creative Commons -202- Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
량성, 지방성분에영향을미치는파종시기는개화시기, 생육일수, 성숙기와품종간의다양성에영향을주므로적절한파종시기와품종의선택이매우중요하다고할수있다. 따라서본연구에서는유채의파종시기를조절하여파종시기에따른기름함량및지방산조성등품질변화를알아보기위해수행하였다. 재료및방법시험재료및재배방법농촌진흥청국립식량과학원바이오에너지작물센터 ( 전농촌진흥청작물과학원목포시험장 ) 에서육성된품종인 1대잡종 선망 과고정종인 탐미유채, 탐라유채, 내한유채, 영산유채, 한라유채 를시험품종으로사용하였다. 시험포장은 2010 년 9월부터 2011년 6월까지전라남도무안군청계면청천리에위치한농촌진흥청국립식량과학원바이오에너지작물센터실험포장에서수행되었다. 선망, 탐미유채, 탐라유채, 내한유채, 영산유채, 한라유채 등 6품종은 9월 25일, 10월 5일, 10월 15일, 10 월 25일및 11월 5일로 10일간격으로 5회파종하였다. 파종은 3.3 m2의실험구에휴폭 40 cm 파폭 10 cm로 2립씩점파하고, 본잎이 5~6 매출현후 1주당 1본씩만남기고솎아주었다. 파종전관행시비법에따라 N-P 2 O 5 -K 2 O를 4.6-8.0-7.8/ 10a 를시용하였고, 완숙퇴비 1,000 kg /10a 와붕소 2 kg /10a 를주었다. 생육기간중중경제초를실시하였으며추대기인 2월하순경에웃거름으로 N 10.1 kg /10a 를시용하였다. 지방산조성전처리및분석조건시료조제는종자 0.2g을막자사발에서분쇄후, pear-shape flask (50 ml) 에넣고, methyl alcohol (Daejung Co., Korea) 15 ml, sodium methoxide 30 wt% solution in methanol (Samchun Chemicals) 1 ml 넣은후, 100 water bath에서 2 시간동안 methylation 시켰다. 반응물을상온에서 1시간정도냉각시킨후, n-hexane (Burdick & Jackson) 15 ml 을첨가하여혼합한후추출하고상층액을여과하여 GC용 vial에옮겨넣고 gas chromatography (Agilent 7890A, USA) 를이용하여지방산조성을분석하였다. 분석조건은 Silica capillary column 으로 HP-INNOWAX (Agilent Co., 19091N-113, 30 m 0.32 mm, 0.25 μm ) 를사용하였으며, 검출기는 flame ionization detector (FID, Agilent, USA) 를 250 조건에서사용하였다. 주입부 (Inlet) 는 200 로사용하였으며, spilit mode injector 는 10:1 의 spilit mode 로하였다. Oven 온도는 140 에서 1분간유지한 후, 분당 6 씩 250 까지상승시키고 250 에서 5분간유지하였으며각지방산의머무름시간을확인하여각 peak의면적을상대적인백분율로나타내었다. 조지방추출마쇄한종자 10g 을원통여지 (28 100 mm, Advantec Co., Japan) 에넣은후 Dry oven (105 ) 에서 2시간건조시킨후무게의변화가없을때까지건조, 방냉한후 80 waterbath 에서 soxhlet 장치를이용하여조지방을추출하였다. 조지방함량 ( % ) = (W 2 - W 1 / S) 100 W 1 : 빈수기의용량 (g) W 2 : 조지방추출후건조된수기의중량 S : 시료의채취량 (g) 통계처리모든시험을 3반복으로하였으며자료의정리및통계처리는 Spss (Version 18) 와 Excel 2007 을이용하였다. 처리평균간비교는 Duncan 검정을하였으며, 유의확률 p값이 5% 미만 (p< 0.05) 인경우통계적으로유의하다고인정하였다. 결과및고찰유채품종별파종기, 기름함량및지방산조성의분산분석본실험기간의최저기온 ( ), 최고기온 ( ), 평균기온 ( ), 일조시간 (hr), 강수량 ( mm ) 등기상조건은 Fig. 1과같다. ( 기상청 : http://www.kma.go.kr/index.jsp) 파종기부터개화기까지의생육기간의평균기온은평년에비하여평균 1.6 가낮았으며최고기온도평균 2.1 가낮았다. 최저평균기온은 -5.3 로평년최저기온인 -1.5 보다 3.8 가낮았으며특히 1월 10일부터 18일까지일최저기온이 -5 이하로 9일간지속되었다. 이러한이상기후는파종시기가늦어진파종구의경우월동전기본영양생장이이루어지지않아겨울을나는데있어서동해를받았을것으로생각된다. 또한본시험파종기간의강수량은평년의 46.9 mm에비하여 39.2 mm로 7.7 mm적었고, 개화기엔 85.3 mm로평년의 69.3 mm에비하여 16 mm더많았다. 일조량은평년과비슷하였다. 유채품종별파종시기및기름함량, 지방산조성의분산분석결과파종시기는지방함량과 stearic acid (C 18:0 ), oleic acid (C 18:1 ), linoleic acid (C 18:2 ) 와 -203-
韓資植誌 Korean J. Plant Res. 27(2) : 202~208(2014) Fig. 1. Climatic data during the experimental period in mokpo area. Table 1. ANOVA for oil content and fatty acid composition of 6 rapeseed cultivars with different sowing dates d.f. Mean squares Oil Palmitic Stearic Oleic Linoleic Linolenic UFA Sowing date (A) 4 9.01** 1.38* 0.60** 3.59** 6.97** 0.12 1.37 0.24 Cultivars (B) 5 8.25** 0.20 0.75** 38.95** 23.6** 12.18** 0.94 1.99 A B 20 1.86** 0.36 0.29** 4.08** 3.24** 0.76** 0.91 1.50 Error 60 0.29 0.46 0.10 0.89 0.64 0.23 0.56 0.94 (Saturated fatty acid), UFA (Unsaturated fatty acid). *, **Significant at the 0.05 and 0.01 probability levels, respectively. Table 2. Changes of oil content and fatty acid composition in F 1 hybrid cultivar ( Sunmang ) with different sowing dates UFA MUFA PUFA 25-Sep 43.0ab 5.0a 2.0a 62.7ab 18.9a 6.7a 1.9b 1.5cd 13.1a 7.1a 91.7a 66.1b 25.6a 5-Oct 42.6ab 4.9a 1.7a 61.3a 19.6bc 7.0a 2.3b 1.8d 13.9a 6.6a 91.9a 65.3ab 26.6b 15-Oct 43.1b 5.0a 2.1a 62.4ab 19.2ab 6.5a 2.2b 1.2c 12.9a 7.1a 91.4a 65.8ab 25.7a 25-Oct 42.7ab 4.7a 1.7a 62.2ab 20.1c 6.9a 2.2b 0.8b 14.3a 6.4a 92.2a 65.1ab 27.0b 5-Nov 41.6a 4.6a 2.3a 63.1b 20.9d 6.5a 1.2a 0.3a 13.6a 6.9a 92.0a 64.6a 27.4b Mean (%) 42.6 4.8 2.0 62.3 19.7 6.7 2.0 1.1 13.6 6.8 91.8 65.4 26.5 C22:1 (Erucic acid), (Unsaturated fatty acid/saturated fatty acid), (Saturated fatty acid), UFA (Unsaturated fatty acid), 고도로유의한상호작용을보였고, 품종간에는 palmitic acid (C 16:0) 를제외한모든지방산이고도로유의한상호작용을보였다. 파종시기와품종간의상호작용역시 palmitic acid 를제외한다른지방요인들과고도의유의성을나타내었다 (Table 1). 파종기에따른품종별기름함량및지방산조성품종별기름함량및지방산조성은 Table 2, 3, 4, 5, 6, 7에나타내었다. 전체적으로기름함량및지방산조성의변화를살펴보면파종기에따른기름함량은파종시기가빠를수록높은 -204-
Table 3. Changes of oil content and fatty acid composition in Tammi with different sowing dates UFA MUFA PUFA 25-Sep 44.9b 4.7ab 1.7a 64.6a 19.6a 6.1a 1.0a 0.3ab 14.4b 6.4a 91.6a 65.9ab 25.7a 5-Oct 42.9ab 5.3b 2.6b 64.3a 18.8a 6.0a 1.2a 0.4b 11.7a 7.9b 90.7a 65.9ab 24.8a 15-Oct 42.9ab 4.5ab 2.3ab 65.0a 19.4a 6.4ab 1.1a 0.3ab 13.7ab 6.8ab 92.2a 66.4b 25.8a 25-Oct 40.8a 4.8ab 2.0ab 64.3a 19.7a 6.7ab 1.0a 0.2ab 13.6ab 6.8ab 91.9a 65.5a 26.4a 5-Nov 41.9a 3.9a 2.1ab 64.2a 19.2a 7.0b 1.5a 0.2a 15.4b 6.0a 92.1a 65.9ab 26.2a Mean (%) 42.7 4.6 2.1 64.5 19.3 6.4 1.2 0.3 13.8 6.8 91.7 65.9 25.8 C22:1 (Erucic acid), (Unsaturated fatty acid/saturated fatty acid), (Saturated fatty acid), UFA (Unsaturated fatty acid), Table 4. Changes of oil content and fatty acid composition in Tamla with different sowing dates UFA MUFA PUFA 25-Sep 44.7b 4.6a 0.8a 68.6b 16.4ab 7.4b 1.2a 0.2a 17.7b 5.3a 93.8b 70.0b 23.8ab 5-Oct 44.0ab 4.6a 1.4b 68.8b 15.1ab 7.3b 1.1a 0.2a 15.7ab 5.9ab 92.6ab 70.1b 22.4ab 15-Oct 42.6ab 5.5a 1.8c 68.3b 14.5a 6.8ab 1.3a 0.2a 13.1a 7.3b 91.1a 69.8b 21.3a 25-Oct 43.9ab 4.1a 2.0c 66.6b 17.9bc 6.3a 1.2a 0.3a 15.3ab 6.1ab 92.3ab 68.1b 24.2b 5-Nov 41.6a 4.1a 2.0c 63.4a 20.3c 6.4a 1.3a 0.1a 15.1ab 6.1ab 91.6a 64.8a 26.7c Mean (%) 44.1 4.6 1.6 67.1 16.8 6.8 1.2 0.2 15.4 6.1 92.3 68.6 23.7 C22:1 (Erucic acid), (Unsaturated fatty acid/saturated fatty acid), (Saturated fatty acid), UFA (Unsaturated fatty acid), Table 5. Changes of oil content and fatty acid composition in Naehan with different sowing dates UFA MUFA PUFA 25-Sep 44.2a 4.6a 2.0ab 62.3a 18.8b 9.1b 1.2a 0.2a 13.7a 6.6a 91.5a 63.7a 27.9b 5-Oct 43.1a 4.7a 2.0ab 63.9ab 18.3b 8.9b 1.0a 0.3a 14.0a 6.6a 92.4a 65.2ab 27.2b 15-Oct 44.6a 4.7a 2.3ab 63.3a 18.5b 8.5ab 1.3a 0.1a 13.0a 7.1a 91.7a 64.7ab 27.0b 25-Oct 44.3a 4.7a 1.8a 63.2a 19.1b 8.9b 1.2a 0.2a 14.4a 6.5a 92.6a 64.7ab 28.0b 5-Nov 43.2a 4.4a 2.6b 65.0b 17.2a 7.3a 1.3a 0.2a 13.2a 7.0a 91.0a 66.5b 24.5a Mean (%) 43.8 4.6 2.1 63.5 18.4 8.5 1.2 0.2 13.7 6.7 91.8 65.0 26.9 C22:1 (Erucic acid), (Unsaturated fatty acid/saturated fatty acid), (Saturated fatty acid), UFA (Unsaturated fatty acid), -205-
韓資植誌 Korean J. Plant Res. 27(2) : 202~208(2014) Table 6. Changes of oil content and fatty acid composition in rapeseed cultivar Yongsan with different sowing dates UFA MUFA PUFA 25-Sep 45.7c 4.7a 2.1a 64.9ab 18.5ab 6.3a 1.3a 0.2a 13.5a 6.9a 91.1ab 66.4ab 24.8ab 5-Oct 45.0bc 4.9a 2.3a 64.6ab 17.2a 7.2b 1.5a 0.1a 12.5a 7.3a 90.6a 66.2ab 24.4a 15-Oct 44.2b 4.3a 1.8a 65.5b 17.9ab 7.0b 1.3a 0.1a 15.2a 6.1a 91.9b 66.9b 25.0abc 25-Oct 43.0a 5.1a 1.8a 63.4a 19.2b 6.9b 1.2a 0.3a 13.6a 6.9a 91.0ab 64.9a 26.1bc 5-Nov 42.5a 4.0a 2.2a 64.2ab 19.2b 7.1b 1.1a 0.1a 14.8a 6.2a 91.8ab 65.4ab 26.3c Mean (%) 44.1 4.6 2.0 64.5 18.4 6.9 1.3 0.2 13.9 6.7 91.3 66.0 25.3 C22:1 (Erucic acid), (Unsaturated fatty acid/saturated fatty acid), (Saturated fatty acid), UFA (Unsaturated fatty acid), Table 7. Changes of oil content and fatty acid composition in Halla with different sowing dates UFA MUFA PUFA 25-Sep 44.0b 4.6ab 1.8a 64.1b 19.7a 5.4ab 1.6b 0.2a 14.4b 6.3a 91.0a 65.9a 25.1a 5-Oct 41.5a 5.1b 2.7b 64.4b 20.0a 5.2a 1.3ab 0.1a 11.9a 7.8b 91.0a 65.8a 25.2a 15-Oct 42.1ab 4.6ab 1.8a 63.8ab 20.7ab 6.3b 1.1a 0.2a 14.5b 6.4a 92.1a 65.1a 27.0a 25-Oct 43.1ab 4.1a 2.0a 63.7ab 20.1ab 5.7ab 1.1a 0.3ab 15.1b 6.0a 90.9a 65.1a 25.9a 5-Nov 42.1ab 4.2a 2.1ab 62.3a 21.3b 6.0ab 1.5ab 0.5b 14.5b 6.3a 91.6a 64.2a 27.3a Mean (%) 42.5 4.5 2.1 63.7 20.4 5.7 1.3 0.3 14.1 6.6 91.3 65.2 26.1 C22:1 (Erucic acid), (Unsaturated fatty acid/saturated fatty acid), (Saturated fatty acid), UFA (Unsaturated fatty acid), 경향을나타내어 Baghdadi et al. (2012), Sattar et al. (2013) 의연구결과와비슷한경향이었으며, 기름의함량은 40.8~45.7% 로높은편이였다. 유채를구성하고있는주요지방산은 palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid 로이루어져있으며, 지방산조성의함량은 oleic acid 61.3~ 68.8% 로가장많은함량을보였고, linoleic acid 14.5~21.3%, linolenic acid 5.2~9.1%, palmitic acid 3.9~5.5%, stearic acid 0.7~2.7% 순으로구성되어있었다. 이러한지방산조성결과는 Shirani Rad and Zandi (2012) 의보고와비슷하였다. 유채파종기별지방산분포는 oleic acid 는탐라유채 10월 5일파종구가 68.8% 로가장높았고, 선망유채 10월 5일파종구가 61.3% 로가장낮았으며, linoleic acid 의경우한라유채 11월 5일 파종구가 21.3% 로가장높았고, 탐라유채 10월 15일파종구가 14.5% 로가장낮았다. 한편고도불포화지방산중 linolenic acid 의경우내한유채 9월 25일파종구가 9.1% 로가장높았으며, 한라유채 10월 5일파종구가 5.2% 로가장낮았다. Shirani Rad and Zandi (2012) 의결과를볼때 linolenic acid는변이계수 7.06 으로 oleic acid, linoleic acd의 0.31, 0.43에비하여크기때문에안정성이낮은것을알수있었다. 일반적으로변이계수가작을수록환경에따른변이가작다고알려져있다. 포화지방산중 palmitic acid 는탐라유채 10월 15일파종구가 5.5% 로가장높았고, 탐미유채 11월 5일파종구가 3.9% 로가장낮았다. 같은포화지방산인 stearic acid 는한라유채 10월 5일파종구가 2.7% 로가장높았으며, 탐라유채 9월 25일파종구가 0.7% 로가 -206-
장낮은함량을보였다. 특히포화지방산인 palmitic, stearic acid 경우는환경의영향을적게받는다고알려져있다 (Wolf et al. 1982; Dornbos and Mullen, 1992). 본실험에서는포화지방산이나불포화지방산의변화는확연하게나타나지는않았으나특히탐라유채의 oleic acid 의함량은 10월 15일파종이후확연하게감소하는경향이확인되어 11월이전에파종을하는것이좋을것으로생각되었으며, 내한유채의경우 11월이후파종에서 65% 의올레인산함량을보여탐라유채와반대되는결과를나타내었다. 품종간및파종기에따라최대 7.5% 의차이를보여식용유나연료로의이용에유리한방향으로활용할가능성이있을것으로판단된다. 파종기및기름함량과지방산조성의상관분석파종기와기름함량, 지방산조성의상관분석결과는 Table 8 과같다. 파종기의변화는기름함량 (-0.471) 및포화지방산중 palmitic acid (-0.278) 와유의한부의상관을보였으며, stearic acid (0.268), linolenic acid (0.263) 와는유의한정의상관을보였다. 이는파종기지연에따라유채기름함량의감소와저장중산패의주요원인인 linolenic acid가증가하는경향을보이는것으로생각된다. 기름함량의경우 oleic acid (0.262) 와 linolenic acid (0.341) 과유의한정의상관을보였고, linoleic acid (-0.446) 와는유의한부의상관을나타내었다. 따라서품종의기름함량증진을위 해 oleic acid나 linolenic acid 중어느한지방산의함량을높이면다른지방산의함량도높아지기때문에지방산조성개량을위한육종연구측면에서유리하리라판단된다. Stearic acid의경우는불포화지방산인 oleic acid (-0.378) 와유의한부의상관을보였고, linoleic acid (0.229) 와는정의상관을보였다. 단일불포화지방산인 oleic acid 는 linoleic acid (-0.756) 와고도로유의한부의상관계수를나타내었는데 linoleic acid 가낮아지면 oleic acid 가높아짐을알수있었다. 반면 Turhan et al. (2011) 은파종기변화에따라 oleic acid 와 linoleic acid, linolenic acid와부의상관을보고하였으며, Liwenbin et al. (2008) 은콩의상관관계를분석한결과 oleic acid 는 linoleic acid 및 linolenic acid 와고도의부의상관이라하여본실험의결과와상이한경향을보여주었다. Bang et al. (1991) 은유채에서기름함량과 palmitic acid, stearic acid, oleic acid 와는정의상관을보였으며 oleic acid 는 linoleic acid 와정의상관, linoleic acid 는 linolenic acid 와정의상관을보였다고보고한바있으나파종기및품종의영향에서기인한것으로사료되고향후연차의변화나다양한품종을조사및연구를수행할필요성이있는것으로판단된다. 한편총포화지방산, 총불포화지방산, 총포화지방산에대한총불포화지방산의비와총단일불포화지방산과총고도불포화지방산의경우유의한상관을나타내고있지만이러한계수는포화지방산과불포화지방산으로부터함량을계산하였기때문에큰의미는없는것으로생각되었다. Table 8. Correlation coefficients among sowing date, oil content and fatty acid compositions in 6 rapeseed cultivar Characteristics Oil Palmitic Stearic Oleic Linoleic Linolenic Eicose noic Erucic UFA MUFA PUFA Sowing date -0.471** -0.278** 0.268* -0.167 0.263* -0.034-0.066-0.180 0.086-0.099 0.002-0.246* 0.251* Oil -0.071-0.145 0.262* -0.446** 0.341** 0.007-0.137 0.169-0.156 0.031 0.249-0.233 Palmitic 0.054-0.035-0.122-0.009 0.155 0.185-0.761** 0.843** -0.139 0.035-0.120 Stearic -0.378** 0.229* -0.117-0.017-0.053-0.638** 0.557** -0.454** -0.446** 0.177 Oleic -0.756** -0.014-0.409** -0.435** 0.334** -0.220* 0.316** 0.924** -0.757** Linoleic -0.307** 0.122 0.162-0.098 0.019-0.014-0.782** 0.797** Linolenic -0.117-0.069 0.121-0.107 0.416** -0.057 0.319** Eicosenoic 0.688** -0.153 0.126-0.058-0.078 0.042 Erucic -0.162 0.127 0.023-0.100 0.114-0.977** 0.473** 0.304** -0.020-0.394** -0.191-0.048 UFA 0.351** 0.256* MUFA -0.815** *, ** Significant at the 0.05 and 0.01 probability levels, respectively. -207-
韓資植誌 Korean J. Plant Res. 27(2) : 202~208(2014) 적요유채의파종기가늦어질수록지방함량 (-0.471**) 은감소하는경향을보이고파종기가빠를수록전반적으로높은경향을보였다. 지방산조성의경우파종기가늦을수록 palmitic acid (-0.278*) 는감소하는반면, stearic acid (0.268*) 및 linoleic acid (0.263*) 는증가하는관계를보였다. 본실험에서는유채품종간에차이는보이나큰변화는보이지않아파종기지연의영향이적은것으로보였으나연차간의추가적인실험이필요하다고생각되며무안지역에서의제한적인자료이기때문에보다다양한환경과지역에서광범위한실험을통해지방함량과지방산조성함량변화를검정하여평가하는것이필요할것으로판단된다. 사사본연구는농촌진흥청기관고유연구사업 (PJ008684) 에의해수행함. References Baghdadi, H., S. Taspinar, M. Yousefi and A. Hosseinpour. 2012. Influence of different sowing dates on grain yield of canola (Brassica napus L.) cultivars in Qazvin area. International Journal of Agriculture: Research and Review. 2:1092-1096. Bang, J.K., J.I. Lee, K.J. Kim and R.K. Park. 1991. Oil content and fatty acid composition of rapeseed. Korean J. of Crop Sci. 3:62-78 (in Korean). Demirbas, A. 2007. Progress and recent trends in biofuels. Progress Energy Combus Sci. 33:1-18. Dornbos, D.L and R.E. Mullen. 1992. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J. Am. Oil Chem. Soc. 69:228-231. Jang, Y.S., K.S. Kim, Y.H. Lee, H.J. Cho and S.J. Suh. 2010. Review of property and utilization of crop for biodiesel. J. Plant Biotechnol. 37:25-46 (in Korean). Li, W.B., Y.H. Zheng and Y.P. Han. 2008. Analysis of fatty acid composition and other quality traits in soybean varieties developed in Heilongjiang Province. Soybean Sci. 27:740-745. Park, H.W., J.I. Lee, J.K. Bang, B.H. Lee and K.H. Kang. 1991. Variations of oil ontent and fatty acid composition in groundnut germplasm. Korean J. of Crop Sci. 36:33-47 (in Korean). Petukhov, I., L.J. Malcolmson, R. Przybylski and L. Armstrong. 1999. Frying performance of genetically modified canola oils. J. Am. Oil Chem. Soc. 76:627-632. Sattar, A., M.A. Cheema, M.A. Wahid, M.F. Saleem, M.A. Ghaffari, S. Hussain and M.S. Arshad. 2013. Effect of sowing time on seed yield and oil contents of canola varities. J. Glob. Innov. Agric. Soc. Sci. 1(1):1-4. Shirani Rad, A.H and P. Zandi. 2012. A comparison of fatty acid compounds in winter and spring rapeseed varieties. Annals of Biological Research 3(3):1408-1414. Sticklen, M. 2006. Plant genetic engineering to improve biomass characteristics for biofuels. Curr. Opin. Biotechnol. 17:315-319. Turhan, H., M. K. Gul, C.O. Egesel and F. Kahriman. 2011. Effect of sowing time on grain yield, oil content, and fatty acids in rapeseed (Brassica napus subsp. oleifera). Turkish Journal of Agriculture and Forestry 26:289-294. Walsh, M.E., D.G. De La Torre Ugarte, H. Shapouri and S.P. Slinsky. 2003. Bioenergy crop production in the united states: Potential quantities, land use changes, and economic impacts on the agricultural sector. J. Environmental & Resource Economics. 24:313-333. Wolf, R.B., J.F. Cavins, R. Kleiman and L.T. Black. 1982. Effect of temperature on soybean seed constituents: Oil, protein, moisture, fatty acids, amino acids and sugars. J. Am. Oil Chem. Soc. 59:230-232. Wright, L. 2006. Worldwide commercial development of bioenergy with focus on energy crop-based projects. J. Biomass & Bioenergy 30:706-714. (Received 4 February 2014 ; Revised 8 April 2014 ; Accepted 9 April 2014) -208-