y, 38«, 6y, 699-705, 2005 Econ. Environ. Geol., 38(6), 699-705, 2005 t sÿ y xk 1 Á s 2Á z 1 Á½ 1 Á e 3 1 w y w,» w, 2w y w, 3š w y w Chemical Speciation of Heavy Metals in Geologic Environments on the Abandoned Jangpoong Cu Mine Area In-Gyeong Lee 1, Pyeong-Koo Lee 2, Sang-Hoon Choi 1 *, Ji-Soo Kim 1 and Chil-Sup So 3 1 Dept. of Earth and Environmental Sciences, Institute for Basic Sciences, Chungbuk National Univ., Chungbuk 1 361-763, Korea 2 Div. of Geological & Environmental Harzards, Korea Institute of Geoscience and Mineral Resources, Daejeon 1 305-350, Korea 3 Dept. of Earth and Environmental Sciences, Korea Univ., Seoul 136-701, Korea In order to identify the speciation of As and trace elements which are contained weathered waste rocks on the abandoned Jangpoong Cu mine area, five fraction sequential extraction was carried out. Concentrations of the extraction solutions which were acquaired each fraction were mesured by ICP-AES. Mineral characters of weathered waste rocks were determinated by XRD. The weathered waste rocks could divide into two types (Type I and type II). Type Iand type II weathered waste rocks are mainly composed of a quartz and a calcite, respectively. The most dominant speciation of As, Co and Fe is residual phase. Most of the speciation of Cd, Mn and Zn is residual phase for type I and Fe-Mn oxide phase for type II. In case of Cu, residual phase is predominant in type I and sulfide is predominet in type II. The most dominant speciation of Pb for type I and type II is associated with the residual phase and Fe-Mn oxide phase, respectively. At ph 4-7 range, the order of relative mobility considers Zn>Cu>Cd>Pb>Co>AS in type I, and Cd>Cu>Zn>Pb>As>Co in type II. Key words: weathered waste rocks, Jangpoong Cu mine, sequential extraction, As and trace elements, speciation, mobility sÿ tÿ ty sÿ w xk ³ w» w 5 ww. ƒ ICP-AES w. XRD ty sÿ Ÿ q w, y ph w w w x(type I and type II) ù. Type I Ÿ w, type II Ÿ w., g p, xk w ƒ w. e,, type I xkƒ, type II y xkƒ w. type I xkƒ ƒ w š, type II yyÿ xkƒ w. û type I xkƒ ƒ w š, type II y xkƒ w. ph 4-7 type I > >e >û>g p>, type II e > > >û> >g p y. sÿ, tÿ,,, xk, *Corresponding author:g cshoon@chungbuk.ac.kr 699
700 Á s Á zá½ Á e 1. 2004 6 û š ew Ÿ sÿ l» e w ƒ.» jš, sÿ w š. e e ù, w Ÿ s» (sÿ, Ÿ, Ÿ ) w, t m y w wù. w y ù w (, 1999;, 2003;, 1996;, 2000). y e w s ƒw w w. w, y ù š š y ù, ü š. š, xk, wxk, xk w ( s, 2004b). w wš Ÿ sÿ yw y y, y, e, œe, y w x w w. y ù, y» w., xk w ³ w Áyw y y ( x) w dw w sƒ š w (, 2003; s, 2004a). w tÿ sÿ Tessier et al. (1979)ƒ w w (As), e (Cd), g p(co), (Cu), (Fe), (Mn), û(pb), (Zn) 8 w xk ³ w, p q wš w. 2. Ÿ tÿ ew, Ÿ,,,,. Ÿ n z» w y (Fig. 1). Ÿ y w w Ÿ w N15 o E, s 20~150cm q yƒ w. yyÿ y,, y,. Ÿ x. Ÿ tw w w Ÿ w, x s w œ ƒ k. ù Ÿ ˆ w, š w w œ ˆ y kÿw ˆ ƒ k ˆ l (ph 3.0~5.0)ƒ š. œ ˆ l 30 m ù, s Fig. 1. Geologic map of the Jangpoong mine area(after Lee and Kim, 1972).
t sÿ y xk 701 Table 1. The methodology of sequential chemical extraction (Tessier et al., 1979). Fractions Chemical Extractant Extraction Phase I 1M MgCl 2, ph 7 exchangeable II 1M CH 3 COONa, HOAc, ph 5 carbonates III 0.04M NH 2 OHHCl+25%HOAc, ph 2, 96 o C, 6hours amorphous Fe, Mn hydroxides IV 30%(v/v) H 2 O 2 +0.02M HNO 3, 85 o C, 5hours 3.2M NH 4 OAc+20% HNO 3, 85 o C, 3hours sulfides V HNO 3, HNO 3 +HClO 4, 6N HCl residuals 1m š yƒ w. w r, ƒ ty. ˆ w ƒ 50 m, 20 m, 5m ³ yyÿ s ww sÿ e, e š w w ù y sÿ w ù sÿ w w k ƒ. w, sÿ m w ù, sÿ e w š w š. ½ (2002) ˆ ù w Áyw p k mw sÿ e ü» w. 3. 3.1. tÿ Ÿy w p w» w sÿ (waste rock) ty w. w 30» k z, 2 mm w w 50 C o w. 1/4 w -100 mesh(<150 µm) w w. 3.2. m n w xk (chemical speciation) Ÿ t, Ÿ x k e, k Ÿ, yÿ yyÿ œ e(co-precipitation), n» w,»k ³ Ÿ k. m Ÿ w» yw y y w yw w œw» w» w. w, y/y y y w w œ w. n ü w yw k» w (Tessier et al., 1979; Kersten and Forstner, 1986; s, 2004a). tÿ sÿ l yw k ³ w» w 1g w Tessier et al. (1979) w w (Table 1). ƒ z w» k (deionized water) w ƒ yw, œ (blank sample) y w. w ICP-AES (Perkins-Elmer Optima 3000XL) w, RF Power 1300 watt, Plasma Flow 15 L/min, Coolant Flow 0.5 L/min, Nebulizer Flow 0.8 L/min. analytical grade (Prolabo Merck) š, ICP As, Cd, Co, Cu, Fe, Mn, Pb, Zn standard metal solution 1,000 ppm stock solution (Merck) w w. k» w Milli-Q Millipore system w. 4. m 4.1. yw p tÿ sÿ Ÿ ƒ xk w (Table 2). Type I Ÿ,,,,, rectorite š, p, ù p,. Type II w,, y w. Type I type II ƒ j y ph w w w. m (soil ph) Ÿ j
702 Á s Á zá½ Á e Table 2. The mineral composition and soil ph of the waste rocks from the abandoned Jangpoong Cu mine. Samples Type Primarry minerals Secondary minerals Soil ph JP2-3 I quartz, microcline, albite, rectorite, clinochlore, muscovite JP3-2 I quartz, microcline, albite, rectorite, clinochlore, muscovite JP12-1 I quartz, clinochlore, moscovite, microcline, albite jarosite, montmorillonite 3.5 jarosite 3.8 hematite montmorillonite JP12-2 I quartz, clinochlore, muscovite, microcline, albite 4.1 JP4-2-1 II calcite, clinochlore, quartz, muscovite 7.2 JP4-2-2 II calcite, clinochlore, quartz, muscovite, pyrite 7.7 3.4 Table 3. Realative percentages of As and trace element concentrations within fraction F to F for waste rocks from the abandoned Jangpoong Cu mine. F I F II F III F IV F V As type II 0.0 0.1 8.9 0.9 90.0 type II 0.1 0.3 14.9 4.6 80.2 Cd type II 0.5 1.9 24.2 3.3 70.1 type II 6.0 34.5 41.1 5.6 12.8 Co type II 0.0 0.2 27.5 0.5 71.7 type II 0.0 0.0 24.7 6.8 68.5 Cu type II 1.2 3.5 15.3 26.4 53.6 type II 0.1 27.4 16.5 48.9 7.2 Fe type II 0.1 0.3 28.4 0.8 70.3 type II 0.0 0.0 26.7 8.1 65.1 Mn type II 5.0 3.0 25.4 2.0 64.6 type II 3.2 32.4 59.9 1.0 3.5 Pb type II 1.8 0.0 2.5 9.1 86.6 type II 0.0 3.9 53.3 5.1 37.7 Zn type II 0.3 8.0 23.1 18.3 50.3 type II 0.0 23.2 65.7 7.9 3.2 š. Type I m 3.38-4.11 ùkü, type II 7.19-7.68» y (Table 2). 4.2. xk yw xk ƒ w ww z ƒ w ù w. x yw xk s³ w w (Table 3). (As): Type I xk w s³ 90% w (Table 3). Type II w xk w w w s³ 80% ƒ w, y - xk w s³ 15% y (Table 3). sÿ yy w xk y, k Ÿ yyÿ xk w w y (Fig. 2). e (Cd): Type I xk w e w e w s³ 70% ƒ w, y - xk w w 24% ùkû. yxk(0.5%), k Ÿ xk (1.9%) yyÿ xk(3.3%) w ùkû (Table 3). Type II e y xk 41%, k Ÿ xk 35%, š xk 13% w ùkû. w, y xk, yyÿ xk w e ƒ ƒ 6.0%, 5.6% y (Table 3). g p (Co): Type I g p ƒ w xk xk s³ 72%. y -
t sÿ y xk 703 Fig. 2. The chemical partitioning of trace and major elements within the different frations(f I-F V) in waste rocks from the abandoned Jangpoong Cu mine. xk w s³ 28%. y, k Ÿ yyÿ xk w 1% (Table 3). Type II g p xk, type I w y (Fig. 2). ƒ w xk xk, g p w 69%, y - x k w g p w 25%. Type II, yyÿ xk w g pƒ 6.8% type I. y xk, k Ÿ xk
704 Á s Á zá½ Á e w g p w w ù, (Table 3). (Cu): Type I 54%ƒ xk, 26%ƒ yyÿ xk, š 15%ƒ y - xk w y, y x k k Ÿ xk ƒƒ 1.2% 3.5% ùkû (Table 3). Type II yyÿ xkƒ w 49%, k Ÿ y - xkƒ ƒƒ 27%, 17%. Type II xk yxk ƒƒ 7.2%, 0.1% w (Table 3). (Fe): xk type I type II g p w ùkû (Fig. 2). Type I xk w 70%, y - xk w 28% y. y xk, k Ÿ xk š yyÿ w w 1% w (Table 3). Type II 65%ƒ xk, 27% y - xk w ùkû. yyÿ xk w 8.1% (Table 3). y xk k Ÿ xk w w ù w (Fig. 2). (Mn): Type I xk xkƒ ƒ w (65%), y - xk(25%) ƒ w ùkû (Fig. 2). yxk w w s³ 5%, type I yxk w ù ƒ w. k Ÿ xk yyÿ xk w ƒ ƒ 3.0%, 2.0% ùkû (Table 3). Type II y - xk w 60% ƒ š, k Ÿ xk w 32% ùkû. y xk w 3.2%, xk 3.5%, yyÿ xk 1.0% ùkû (Table 3). û (Pb): Type I û xk xkƒ 87% w ƒ w xk ùkû. yyÿ w û û w 9.1%, y xk 2.5%. yxk 1.8% w, k Ÿ xk w û w w ùkû (Table 3). Type II û xk FIII 53% y xk w w y. xk w û 38% y xk w. k Ÿ yyÿ xk w û ƒ ƒ 3.9%, 5.1%, yxk û w w w (Table 3). (Zn): Type I xk w w 50% ƒ w, y - x k w w 23%, yyÿ xk w w 18% ùkû. yxk 0.3%, k Ÿ xk 8.0% ùkû (Table 3). Type II ƒ w xk y - xk(66%), k Ÿ w 23% š, yyÿ xk 7.9% w ùkû. x k w 3.2%, yxk w w (Table 3). 4.3. tÿ sÿ ü w w sƒw. š w. tÿ w 1992 l 2001 ph 4.0~7.0 š š (y, 2002), w ˆ ph 3.0~5.0 w. ph wƒ ú xk y k Ÿ xk.» w tÿ type I > >e >û>g p>, type II e > > >>û> >g p (Table 4). Table 4. Mean percentages of heavy metal concentrations within fraction FI+FII for waste rocks from the abandoned Jangpoong Cu mine. As Cd Co Cu Pb Zn type II 0.1 2.4 0.3 4.7 1.8 8.3 type II 0.3 40.5 0.0 27.5 3.9 23.2
5. tÿ sÿ w,, g p xkƒ w, w k š y š ùkü.,, e k Ÿ sww type I xkƒ ƒ w, type II y xkƒ w ù kû., type I xkƒ type II yyÿ xkƒ w x š, û type I xk, type II y xkƒ ƒ w ùkû. y w k Ÿ xk w y ƒ e,,, w w w ù, ùkû. sÿ w xk m y/y y š w, x e tÿ w ù t w Ÿ w w q w. 2004 w w w. t sÿ y xk 705 š x ½, w x, z,,, s (2002) t sÿ Ÿ s w e w ywk w., 5«, p. 19-27., zk,, ½ (1999) Ÿ w y p. w œwz, 36«, p. 159-169a., ½,, (2003) tyÿ ü š Ÿ w Áyw p ƒ sƒ. y 36«, p. 27-38.,, ½ (2003) š sÿ m n m s. y, 36«, p. 89-101., y, y (1996) sÿ m, w w yw, Ÿ. y, 29«, p. 597-613. x, ½ y (1972) s(1:50,000). Geological survey of Korea., Klinck, B.A., Moore, Y, zk (2000) Ÿ y. y, 34«, p. 273-282. s,, z, (2004a) Ÿ m xk. y, 37«, p. 87-98. s, y, (2004b) sÿ p sƒ w yw. 37«, p. 35-48. y (2002)»y. 2001, 198p. Kersten, D and Forstner, U. (1986) Chemical fractionation of heavy metals in anoxic estuatrine and coastal sediment. Water Sci. Techno., v 18, p. 121-130. Tessier, A., Campell, P.G.C. and Bisson, M. (19) Sequential extraction procedure for the speciation of particulate trace metal. analytical chemistry, v. 51, p. 844-851. 2005 10 4 š, 2005 12 5.