review

Similar documents
김범수

Can032.hwp

Jkbcs016(92-97).hwp

7.ƯÁýb71ÎÀ¯È« š

( )Jkstro011.hwp

연하곤란

Jkbcs032.hwp

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

°ø±â¾Ð±â±â

Endofest-Korea(초록집-8월).hwp

< C6AFC1FD20B1E8BFB5C8A32E687770>

A 617


Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

Lumbar spine

hwp

레이아웃 1

지원연구분야 ( 코드 ) LC0202 과제번호 창의과제프로그램공개가능여부과제성격 ( 기초, 응용, 개발 ) 응용실용화대상여부실용화공개 ( 공개, 비공개 ) ( 국문 ) 연구과제명 과제책임자 세부과제 ( 영문 ) 구분 소속위암연구과직위책임연구원


기관고유연구사업결과보고

황지웅

<30352EB0A3BAB4B8AE2E687770>

139~144 ¿À°ø¾àħ


Kaes017.hwp

120304강신용

35 1 Journal of the Korean Society of Health Information and Health Statistics Volume 35, Number 1, 2010, pp ) 1) 2) 1) 1) Cadherin-1 (CDH1) po

Microsoft Word doc

2016 학년도약학대학면접문제해설 문제 2 아래의질문에 3-4분이내로답하시오. 표피성장인자수용체 (epidermal growth factor receptor, EGFR) 는수용체티로신인산화효소군 (receptor tyrosine kinases, RTKs) 의일종으로서세

DBPIA-NURIMEDIA

44-4대지.07이영희532~

???? 1


Treatment and Role of Hormaonal Replaement Therapy

석사논문.PDF


Very low-risk Low-risk Intermediate-risk High-risk Appendiceal mucinous tumours Mucinous adenoma Mucinou

44-3대지.08류주현c

<4D F736F F F696E74202D20B1E8BCB120B1B3BCF6B4D420B0ADBFACC0DAB7E1>

03이경미(237~248)ok

歯1.PDF


433대지05박창용

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr

1..

서론 34 2

Crt114( ).hwp


노영남

한국성인에서초기황반변성질환과 연관된위험요인연구

14.531~539(08-037).fm

페링야간뇨소책자-내지-16

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

(49-54)Kjhps004.hwp

09-감마선(dh)

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

노인정신의학회보14-1호


untitled

충북의대학술지 Chungbuk Med. J. Vol. 27. No. 1. 1~ Charcot-Marie-Tooth Disease 환자의마취 : 증례보고 신일동 1, 이진희 1, 박상희 1,2 * 책임저자 : 박상희, 충북청주시서원구충대로 1 번지, 충북대학교

Connexin 26 의유전자변이 서론 재료및방법 대상 방법 Korean J Audiol Volume 5 December, 2001

( )Jksc057.hwp

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

04_이근원_21~27.hwp

012임수진

Microsoft PowerPoint - 김미영

Kaes025.hwp

untitled

03-ÀÌÁ¦Çö

Minimally invasive parathyroidectomy

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II)

(JH)

Sheu HM, et al., British J Dermatol 1997; 136: Kao JS, et al., J Invest Dermatol 2003; 120:

( )Kju269.hwp

Jksvs019(8-15).hwp

Kbcs002.hwp



16(1)-3(국문)(p.40-45).fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

The Korean Journal of Pathology 2007; 41: 난소상피암에서현미부수체불안정성분석 설미영 1,2 최경운 1 김지연 1 강현정 1 신동훈 1 김익두 1 최효선 3 서순정 3 부산대학교의학전문대학원 1 병리학교실 2 의학연구소, 3 이

09구자용(489~500)

ÀÇÇа�ÁÂc00Ì»óÀÏ˘

untitled

untitled

2.대상 및 범위(계속) 하천 하천 등급 하천명 연장 (km) 연장 (km) 시점 금회수립현황 종점 지방 하천 함안천 경남 함안군 여항면 내곡리 경남 함안군 함안면 함안천(국가)기점 검단천 경남 함안군 칠북면 검단리 칠원천 6.70

Journal of Breast Cancer ISSN J Breast Cancer 2007; March 10 (1): ORIGINAL ARTICLE 유방의침윤성관암에서의현미부수체불안정성 정덕현ㆍ정진철ㆍ박찬흔ㆍ권미정 1 ㆍ조성진 1 ㆍ남은숙

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

ºÎÁ¤¸ÆV10N³»Áö

내시경 conference

인문사회과학기술융합학회

Kjhps016( ).hwp

untitled

975_983 특집-한규철, 정원호


도비라

550호(01-09)

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

조사연구 aim of this study is to find main cause of the forecasting error and bias of telephone survey. We use the telephone survey paradata released by N


Transcription:

J Korean Soc Coloproctol: Vol. 25, No. 2, 129-38, 2009 DOI: 10.3393/jksc.2009.25.2.129 REVIEW 대장암에서유전자불안정성의임상적의의 이강영 연세대학교의과대학외과학교실 Genomic Instability in Colorectal Cancer; from Bench to Bed Kang Young Lee, M.D. Departments of Surgery, Yonsei University College of Medicine, Seoul, Korea Colorectal cancer is a disease developed by the accumulation of genomic alteration. Two genomic instability pathways, chromosomal instability pathway and microsatellite instability pathway, are known as the main pathways of the development of colorectal cancer. These are almost always mutually exclusive and tumors developed through each pathways show distinct clinicopathologic features. For the reason, molecular markers which represent each genomic instability pathways have been a candidate for translational research to find out prognostic or predictive factors. Loss of heterozygosity and aneuploidy are the hallmark of chromosomal instability and regarded as poor prognostic markers, whereas tumors with high frequency of microsatellite instability show better prognosis than microsatellite stable tumor. As a predictive factor of response from chemotherapy, loss of heterozygosity seems to be associated with a survival benefit from 5-FU adjuvant therapy. MSI-H has been reported as a predictive factor for poor response to 5-FU adjuvant chemotherapy. However, these molecular markers are not accepted to use in the clinic yet, since some of this kind of studies reported contradictory results. Further study will be needed to make more concrete evidences for these markers and to identify new molecular markers for routine use in the clinic. Keywords: Colorectal cancer; Microsatellite instability; Chromosomal instability; Molecular marker 중심단어 : 대장암, 미소위성체불안정성, 염색체불안정성, 분자생물학적표지자 서 대장암은우리나라에서 2005년기준으로인구 10만명당 36.2명의새로운환자가발생하여발생빈도가가장빠르게증가하고있는암가운데하나이며발생빈도와암사망율모두 4번째로높은암이다. 1 대장암은대장의정상점막에서선종 (early adenoma) 이발생하고이형성증이동반된선종 (late adenoma) 에서선암 (adenocarcinoma) 으로진행하는단계적인형태학적변화의과정을거치며발생하는것으로알려져있다. 대장암의발생및진행과정에대한연구는단지대 Received : January 20, 2009 Accepted : April 10, 2009 Correspondence to : Kang Young Lee, M.D. Department of Surgery, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-752, Korea Tel : +82.2-2228-2123, Fax : +82.2-313-8289 E-mail : kylee117@yuhs.ac 론 The Korean Society of Coloproctology 장암의발생과정의이해뿐아니라대장암의예방, 치료표적및예후인자의발굴등대장암치료를위해서도중요하다. 지난수십년간의분자생물학연구결과의축적으로이와같은대장암의발생, 성장및전이의과정은다양한유전자변이의축적에의한것임이잘알려져있다. 2 지금까지알려진대표적인대장암발생기전은염색체불안정성 (chromosomal instability), 미소위성체불안정성 (microsatellite instability), CpG island 메틸화표현형 (CpG island methylator phenotype; CIMP) 등이알려져있다. 이처럼분자생물학적발암과정이서로다른암들은유전자변이의형태및임상병리학적인특성에도서로차이를보인다. 이러한이유로발암과정이서로다른암에서보이는분자생물학적인특성을기초로이를대장암의예후, 치료반응의예측등여러분야에서임상에적용하고자하는연구가계속되고있다. 이에본고찰에서는대장암의발암과정을살펴보고이의임상의적용을위한 129

130 Kang Young Lee: Genomic Instability in Colorectal Cancer; from Bench to Bed 연구결과들을고찰해보고자한다. 본론대장암의형성과정 (Colorectal tumorigenesis) 사람의정상체세포분열과정에서돌연변이의발생가능성은매우낮지만암세포에서는수천의유전자변이가발견되며이와같은유전자변이의축적에의하여암이발생하는것으로알려져있다. 암세포에서체세포돌연변이의빈도는암종에따라차이가있고대장암의경우 1.21/Mb의빈도로체세포돌연변이가관찰된다고한다. 3,4 대장암의발생은대장점막에서선종이발생하고이후선암이발생하는형태학적변화를거치며이는이와같은유전자변이의축적에의한다. 2 대장암의발생은염색체불안정성 (chromosomal instability), 미소위성체불안정성 (microsatellite instability) 에의한것으로알려져있고최근촉진유전자의과메틸화 (promoter hypermethylation) 를특징으로하는 CIMP도중요한부분으로알려져있다. 5 염색체불안정성 (chromosomal instability pathway) 산발성대장암의약 85% 는염색체불안정 (chromosomal instability) 으로인하여발생하는것으로알려져있다. 4 염색체불안정성에의한발암과정은유전자변이의축적으로 K- ras와같은종양유전자 (proto-oncogene) 의활성화와 APC (chromosome 5q), p53 (chromosome 17p), DCC, SMAD2, SMAD 4 (chromosome 18q) 등종양억제유전자 (tumor suppressor gene) 의불활성화에의하여정상점막에서선암으로진행되는과정이다. 2,6,7 이과정에의해발생한암은염색체의부분결실이나증폭으로홀배수체 (aneuploidy) 를보이며, 이형접합성소실 (loss of heterozygosity) 이흔히발견되고결과적으로유전자변이를유발한다. 8 이러한염색체이상은정상대장점막에서는발견되지않지만선종, 선암으로진행하며빈도가증가하고암의진행에따라더욱증가된다. 9 염색체불안정성이발생하는기전은아직명확히밝혀져있지는않지만다양한연구가진행되고있다. mitotic checkpoint protein (BUB1, BUB1b) 을 encoding하는유전자의변이와 centrosome-associataed serine thronine kinase (Aurora kinase A) 의과발현이염색체불안정성의기전이될수있다고보고된다. 7,10,11 또한 telomere dysfunctions, microtubule dynamic instability, kinetochore structure and function, chromosome condensation and sister chromatid cohesion 등이염색체불안정성의원인을설명하는기전으로제시되고있다. 12-14 이외에도 APC, TP53, FBXW7, CHFR 등이이과정에관여할가능성이제시되는등많은연구가진행되고있는분야이다. 15-18 염색체불안정성을확인하기위하여는미소위성체 (microsatellite) 를이용한 LOH검사 (Fig. 1), array based comparative genomic hybridization 등 19 다양한실험방법을쓸수있다. 연구방법의많은발전으로동시에많은검체의결과를얻을수있고정확도도증가되었지만아직검사방법의한계, 비용문제등의제한이있다. 예를들면 array CGH 방법은복제수의변화 (copy number variation) 를확인하는데매우예민한검사이지만다수의상호전좌 (reciprocal translocation) 가있는경우에는 allele copy number 또는 DNA 양에거의변화가없어서염색체불안정성이없는것으로보일수있다. 20 또한미소위성체 (microsatellite) 를이용한 LOH 진단의경우에도위음성, 또는 non-informative의경우에도검사결과에오류를가져올수있다. 종양의이질성과함께이러한연구방법의제한은연구결과를얻는데제한이되고있으나연구방법의발전과함께극복될수있으리라기대한다. 미소위성체불안정성 (microsatellite instability pathway) 미소위성체 (microsatellite) 는 1-6개정도의짧은염기서열이반복되는 DNA의일부를지칭하는말이다. 미소위성체불안정성 (microsatellite instability) 은이러한반복되는염기의삽입또는상실로인하여정상세포와비교하여암세포에서반복되는염기의길이변화가초래된상태를말한다. 21 DNA 복제과정에서미소위성체에서돌연변이의발생은여러가지요인에의하여결정되지만가장중요한것은 DNA 복제과정의이상을교정하는시스템의효율성에있으며염색체불일치복구유전자 (mismatch repair gene) 가정상적으로기능을하는경우미소위성체에서의돌연변이를 100-1,000배감소시킬수있다. 22 미소위성체불안전성은유전성비용종성대장암 (hereditary non-polyposis colorectal cancer) 의표지자로써발견되었으며이는특정유전자에만국한된현상이아니라종양세포의유전자에전체적으로발견되는이상이다. 23,24 유전성비용종성대장암은전체대장암가운데약 2-3% 의빈도로보고되며 hmlh1, hmsh2, hmsh6, hpms2, hpms1 등염색체불일치복구유전자의배선돌연변이 (germline mutation) 에의한염색체불일치복구유전자의기능상실로인하여미

이강영 : 대장암에서유전자불안정성의임상적의의 131 소위성체불안정성이발생하고이는상염색체우성 (autosomal dominant) 으로유전된다. 25,26 미소위성체불안정성은산발성대장암에서는약 10-15% 빈도로보고되며이는주로 hmlh1 유전자의후천적인촉진유전자의과메텔화 (acquired promoter hypermethylation) 에의한전사억제 (transcriptional silencing) 에의한것으로알려져있다. 27-29 MSI는전유전자에걸쳐여러부분에서동시에발생하지만특정유전자 (TGF-bRII, Bax, IGF II receptor, PTEN) 를암호화하는영역 (coding sequences) 에서발생하여이유전자의기능발현을억제하여암의진행에관여하기도한다. 30 미소위성체불안정성검사는암과정상조직에서얻어진 genomic DNA를중합효소연쇄반응 (polymerase chain reaction) 으로증폭한후전기영동 (electrophoresis) 을하여정상조직과암조직의미소위성체 (microsatellite) 길이를비교하여차이가있으면미소위성체불안정성으로판정한다 (Fig. 1). 검사를하는표지자의종류, 수는연구자에따라차이가있으나 Bethesda guideline에따르면 2개의 mononucleotide marker (BAT25, BAT26) 와 3개의 dinucleotide marker (D5S346, D2S123, D17S250) 을기준이되는표지자로제시하였고검사를시행한표지자가운데 40% 이상에서불안정성 (instability) 이있으면 MSI-H, 40% 미만인경우 MSI-L, 불안정성이없는경우 MSS로분류한다고하였다. 31 CIMP (CpG island methylator phenotype) 염색체불안정성, 미소위성체불안정성과함께 DNA 메틸화, 히스톤변형등유전자의후생학적변화 (epigenetic change) 가대장암의발암기전의하나로알려져있다. 5 정상조직과비교하여암조직에서는 DNA에전반적인저메틸화 (global hypomethylation) 와특정유전자와관련된부분에서과메텔화 (regional hypermethylation) 를보인다. 32 이가운데 DNA 과메틸화 (hypermethylation) 는 retinoblastoma 유전자촉진자 (promoter) 의과메틸화가보고된이래암생성과관련된많은유전자가과메틸화로인하여비활성화되어있음이증명되었다. 33 CpG island 는 DNA의 5 촉진자영역에존재하는 CpG 염기서열을다수포함하는 0.3-4 kb 길이의유전자를지칭하며약 50% 의유전자에서발견된다. 34 CpG islands는정상적으로메틸화가안된상태로존재하며메틸화가안된상태를유지하는기전은아직확실히알려져있지는않다. CpG islands의과메틸화는유전자의기능억제를유발하며 5 대장암에서 p16 (CDKN2A), p14/arf, hmlh1, MGMT 등많은유전자에서과메틸화와이로인한유전자의기능억제가확인되어있다. 35 이와같은 CpG islands의과메틸화의많은부분은노화과정에서나타나는현상으로정상대장조직에서도관찰되지만노화와관련된부분을제외하고나면대장암조직 A B Fig. 1. Microsatellite instability and loss of heterozygosity analysis with capillary electrophoresis. (A) microsatellite instability; change of allele length or aberrant peak compared to corresponding normal (B) loss of heterozygosity; complete loss of one allele or more than 50% loss of one allele compared to corresponding normal.

132 Kang Young Lee: Genomic Instability in Colorectal Cancer; from Bench to Bed 에서만과메틸화가관찰되는유전자군이있고 36 이들은임상병리학적으로뿐만아니라분자생물학적으로도독특한특성을대장암환자군을대표하게되며이를 CpG island methylator phenotype (CIMP) 양성으로분류한다. 37,38 유전자변이의임상적응용현재까지대장암의근치적수술후예후예측및치료방침의결정에가장널리쓰이고있는방법은 TNM 병기분류방법이다. 이는절제된암조직의조직병리검사에의하여암침윤깊이, 영역림프절전이, 원격전이여부등을종합하여병기를구분하는방법으로지금까지예후를비교할수있는가장좋은방법으로알려져있다. 하지만이방법에의해서도같은병기를가진환자에서서로상이한예후를보이는경우가있고치료반응은특히예측하기가어렵다. 위에서언급된두유전자불안정성 (genomic instability) 에의한대장암은한암종에서동시에두가지기전의특성을보이는경우는거의없으며서로다른임상병리학적인특징을갖는다 (Table 1). 39-42 이처럼종양발생기전이다른암종은생물학적인특성이달라서각각의과정에관여하는유전자들이나특징적인유전자변화를이용하여예후또는치료반응의예측을위한표지자로써사용하기위한연구들이진행되어왔다. 염색체불안정성 (chromosomal instability) 의임상적용 염색체불안정성 (Chromosomal instability) 에의한대장암은염색체의결실 (deletion), 삽입 (insertion), 또는재배열 (rearrangement) 등을특징으로하며이과정에서암억제유전자 (tumor suppressor gene) 의기능소실또는약화, 혹은암유전자 (oncogene) 의활성화 (amplification) 에의하여암 Table 1. Characteristics of CIN and MSI MSI-H MSS P value References Gender (M:F) 1:2.1 1:0.66 0.004 30 Proximal location 70-89% 18-37% <0.001 30, 31, 32 Lymph nodes 35.3% 57.5% <0.001 31 metastasis Poorly differentiated 26-43.8% 8-18% <0.001 30, 31, 32 Mucinous histology 31-67% 15-18% <0.05 30, 32 Crohn s like lymphoid 69.2% 44.4% <0.0007 32 reaction Absence of dirty 82.7% 23.4% <0.001 32 necrosis B-raf mutation 43.5% 5% 33 K-ras mutation 11.4% 34.7% 33 P53 mutation 12.3% 48.9% 33 발생에관여한다. 13 홀배수체 (anuploidy) 는염색체불안정성에의한대장암의특징중하나이며홀배수체 (anuploidy), 이형접합성소실 (loss of heterozygosity) 을동반한암은예후가불량하다. 43 대장암에서 18q 염색체의이형접합성소실 (loss of heterozygosity) 의빈도는 70% 까지보고되며이는대장암의발암과정에서뿐아니라예후인자로써도중요하다. 44 18q chromosome에는 DCC (18q21.3), SMAD2 (18q21.1), SMAD4 (18q21.1), Cables (18q11-12) 등의유전자가존재하며 45,46 이유전자들의발현결핍이있거나 18q LOH가있는대장암은예후가불량하다고보고된다 (Table 2). 47-52 또한 II기대장암환자에서 18q LOH가있는환자의예후가유의하게나쁨을보고하여 18q LOH가 II 기대장암환자에서수술후항암보조요법의적응이되는고위험환자를찾는지표가될수있다고하였다. 53 17p 염색체의이형접합성소실은대장암에서빈번히관찰되며 TP53 유전자변이는약 50% 의빈도로보고된다. 54 TP53 유전자는 17p13에위치하며세포주기 (cell cycle) 의조절, 세포자멸사 (apoptosis), 발암과정 (carcinogenesis) 등에관여한다. 55,56 예후인자로써 TP53 유전자변이는불량한예후를시사하며 52,57-59 이는다른예후인자들에독립적인예후인자로보고된다 (Table 3). 60 대장암에서이형접합성소실 (loss of heterozygosity) 은 5- FU 항암제에대한치료반응의예측인자로써가능성도제 Table 2. 18q LOH (DCC) as a prognostic factor in colorectal cancer Number of patients TNM stage Impact on prognosis Reference 42 IV (palliative) Poor prognosis Aschele et al. 38 170 II Poor prognosis Reymond et al. 39 132 II/III Poor prognosis Shibata et al. 40 460 II/III Poor prognosis Watanabe et al. 41 151 I-IV Shorter survival Ogunbiyi et al. 42 220 I-IV Shorter survival Diep et al. 43 145 II/III Shorter survival Jen et al. 44 Table 3. LOH of 17p (TP53) as a prognostic factor in colorectal cancer Number of patients TNM stage Impact on prognosis Reference 91 IV Poor prognosis Mollevi et al. 48 213 I-IV Poor prognosis Chang et al. 49 220 I-IV Shorter survival Diep et al. 43 73 II Shorter survival Choi et al. 50

이강영 : 대장암에서유전자불안정성의임상적의의 133 시되었다. UK AXIS trial에포함되었던 393명의 stage II, III 환자를대상으로한연구결과에서는 17p 또는 18q LOH 가 5-FU 치료에대하여좋은치료효과를예측할수있는예측인자로보고하였다. 61 미소위성체불안정성 (microsatellite instability) 의임상적용 미소위성체불안정성 (MSI-H) 을보이는종양은 MSI-L/ MSS 종양과비교하여독특한임상병리학적인특성을보이며 62 환자의예후도좋은것으로보고된다 (Table 4). 40,63-65 진단당시의병기분포, 국소림프절전이의빈도등대장암의진행정도를시사하는지표들을비교해보면 MSI-H 종양이 MSS 종양보다진행된암의빈도가낮으며, 예후인자로써 MSI-H는다른임상적인지표들에독립적인예후인자임을보인다. 40 MSI-H 종양의예후가좋은이유는아직확실하지는않지만면역학적인특성이이를설명하는기전이될수있다. MSI- H 종양을 H&E 염색을하여관찰할때특징중하나는 peritumoral lymphocyte infiltration (Crohn s like inflammation) 소견이다. 66-68 이러한염증반응이 MSI-H 종양의예후가좋은이유의하나로설명되며특히 granzyme B, perforin 등을발현하는 CD8-positive lymphocytes의세포독성이중요한역할을하는것으로생각된다. 67-69 염색체불일치복구유전자 (MMR) 는항암제의세포내작용에대하여도중요한역할을하는것으로알려져있다. Base analogue (6-TG), alkylating agent (MNNG), adduct-forming drug (cisplatin) 등과같은 DNA-damaging agent는염색체불일치복구유전자에결손이있는세포에서약물반응이저하되는것으로보고된다. 70-72 이러한항암제에의하여유발된 DNA의변화 (adduct formation, incorporation) 는그자체로세포사멸을유도하지는못하지만염색체불일치복구체계가이러한 DNA의변화를인식하여이를교정하고자한다. 하지만항암제에의한 DNA의변화는염색체불일치복구체계에의하여교정되어지지않기때문에결국세포에서는 cell cycle arrest가일어나고세포자멸사 (apoptosis) 가 Table 4. Microsatellite instability as a prognostic factor in colorectal cancer 유도되는것으로설명된다. 73 하지만염색체불일치복구유전자에변이가일어난세포에서는이러한과정이일어나지않기때문에항암제에저항성을가지는것으로이해된다. 대장암에서가장많이쓰여지는항암제인 5-FU의경우 5-FU 대사물이바로 DNA에결합하거나또는 dttp 생성억제에의한 dntp의불균형을초래하고이러한 DNA의이상이염색체불일치복구유전자에의하여확인되면 DNA 나선구조의손상, G2 arrest 등을유발하고궁극적으로세포사멸 (cell death) 을유발하는것으로생각된다 (Fig. 2). 염색체불일치복구기전에문제가있는경우이러한세포사멸로유도하는과정에장애가생겨 5-FU 항암제에저항성을갖게된다. 74 염색체불일치복구유전자와항암제내성과의연관성은 hmlh1 유전자가포함된정상 chromosome 3를삽입하거나, 5-Aza- 2 -deoxycytidine으로탈메틸화 (demethylation) 시켜서염색체불일치복구유전자의기능을복원함으로써항암제내성이없어지고효과를회복하는것으로도증명되어있다. 70,75 염색체복제유전자변이에의한항암제에대한내성은세포주실험에서뿐아니라대장암환자의검체를이용한실험에서도확인되고있다. Ribic 등은 5개의 randomized study 에서얻어진 570명의 stage II, III 환자를대상으로 MSI 상태가 5-FU 치료반응을예측할수있는지확인하였다. 76 이들의결과를보면 MSS/MSI-L 종양에서는 5-FU adjuvant therapy를한경우유의한생존율의증가를확인할수있었으나 MSI-H 종양에서는생존율의증가가없었고오히려 5- FU 치료를하지않은환자군의생존율이더좋았다. 이는 MSI-H 종양을가진환자의경우항암제치료에의한효과는없고항암제의부작용으로인하여예후가나쁠수있을것으로추정하였다. MSI-H 종양의 5-FU 치료에대한내성은다른연구들에의하여도세포주실험에서와같은결과가보고되었다. 50,77,78 하지만 5-FU 반응을예측하는인자로써 MSI- H에대한연구결과는보고에따라차이가있어 Kim 등은 NSABP에서진행되었던 4개의 randomized trial에서추출 Covalent complex with FdUMP 5-FU TS inhibition Accumulation of dump dutp incorporation MMR DNA Breaks Death Number of patients TNM stage Impact on prognosis Reference 607 I-IV Favorable Gryfe et al. 31 154 I-IV Favorable Samowitz et al. 54 255 III Favorable Wright et al. 55 dntp pool Imbalance by depletion of dttp Polymerase errors G2 arrest 216 I-IV Favorable Gafa et al. 56 Fig. 2. A model of the proposed role of MMR in 5-FU mediated cell death and cell cycle responses.

134 Kang Young Lee: Genomic Instability in Colorectal Cancer; from Bench to Bed 된 542명환자의검체를가지고동일한내용의연구를진행하였고이들의결과는 MSI 상태가 5-FU 반응을예측하지못한다고보고하였다. 79 지금까지미소위성체불안정성 (microsatellite instability) 에대한대부분의연구는 MSS/MSI-L 종양에대한 MSI-H 종양의특성에대한것이다. MSI-L 종양은 MSS와정의에서는다르지만 38 임상병리학적인특성에거의차이가없어서 MSS 종양과같은범주로여겨지는경우가많다. 하지만 MSI- L 종양에서 MSS에비하여 K-ras 유전자변이의빈도가높고 80,81 예후에서도차이가있다는보고가있다. 82,83 대장암에서 MSI-L의임상적의의에대하여는앞으로연구가필요한부분이다. CIMP (CpG island methylator phenotype) CIMP는 Toyota 등에의하여대장암에서기술된이후염색체불안정성, 미소위성체불안정성과함께대장암이발생하는한기전으로알려져있다. 36 또한 CIMP 기전에의한대장암은단지과메틸화 (hypermethylation) 의특징뿐아니라임상병리학적 ( 고령, 여성, 우측대장에호발 ), 분자생물학적 (MSI, K-ras, p53, B-raf 유전자변이와연관 ) 으로특징적인모양을보인다. 35,84,85 이와같은 CIMP 대장암의특성과염색체불안정성, 미소위성체불안정성과의관계등에기초하여 Jass는대장암의분자생물학적분류를제안하기도하였다. 86 분자생물학적인표지자로써 CIMP의역할에대한연구는최근에많은결과가보고되고있지만문제는 CIMP를진단하기위한표지자의표준화가안되어있다는것이다. CIMP는 MSI와같이유전자의여러부분을검사하여양성과음성을구분하기때문에사용된표지자의종류및수가다르게되면결과의차이를보일수있고결국이러한차이로인하여객관적인결과의해석이어렵게된다. 이와같은문제를해결하기위하여 CIMP 표지자의표준화를위한연구가계속되고있고 87-89 조만간표준화된 CIMP panel에대한동의가이루어질것으로기대된다. 이를바탕으로 CIMP에대한중재연구또한더욱활발해질것이다. 결론대장암에대한분자생물학적인이해가깊어지고실험기법이발전하면서대장암의발생및진행과정에대한분자생물학적이해를위한연구에서많은환자의검체들을가지고실제임상에적용하기위한표지자를찾고자하는중재연구가 활발히진행되고있다. 하지만실험실에서의세포주실험과는달리고형암의이질성, 많은임상변수등으로인하여연구결과들이서로상충되는경우가많다. 이러한이유로 American Society of Clinical Oncology (ASCO), European Group on Tumour Markers (EGTM) 에서분자생물학적표지자의임상활용가능성에대하여검토를하였으나아직임상에서사용을권고하기에는증거가부족한것으로결론지어졌다. 90,91 하지만이와같은문제점들은후속연구들에의하여극복될수있을것이며표준화된치료에근거한임상자료들과실험실연구성과의유기적인연결이대장암환자각각에게맞춤형치료를근간에실현시킬수있을것이다. REFERENCES 1. Ministry for Health, Welfare and Family Affairs. Annual Report of cancer incidence (2005) and survival (1993-2005) in Korea. Seoul: Ministry for Health, Welfare and Family Affairs; 2008. 2. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759-67. 3. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature 2007;446:153-8. 4. Wang TL, Rago C, Silliman N, Ptak J, Markowitz S, Willson JK, et al. Prevalence of somatic alterations in the colorectal cancer cell genome. Proc Natl Acad Sci 2002;99:3076-80. 5. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999; 21:163-7. 6. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988;319:525-32. 7. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998;392:300-3. 8. Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev 2004;23:11-27. 9. Tsafrir D, Bacolod M, Selvanayagam Z, Tsafrir I, Shia J, Zeng Z, et al. Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Res 2006;66:2129-37. 10. Nishida N, Nagasaka T, Kashiwagi K, Boland CR, Goel A. High copy amplification of the Aurora-A gene is associated with chromosomal instability phenotype in human colorectal cancers. Cancer Biol Ther

이강영 : 대장암에서유전자불안정성의임상적의의 135 2007;6:525-33. 11. Iacopetta BJ, Welch J, Soong R, House AK, Zhou XP, Hamelin R. Mutation of the transforming growth factor-beta type II receptor gene in right-sided colorectal cancer: relationship to clinicopathological features and genetic alterations. J Pathol 1998;184:390-5. 12. Maser RS, DePinho RA. Connecting chromosomes, crisis, and cancer. Science 2002;297:565-9. 13. Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 2003; 3:695-701. 14. Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet 2003;34:369-76. 15. Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 2001;3:433-8. 16. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323-31. 17. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatchrepair status. Nature 2002;418:934. 18. Scolnick DM, Halazonetis TD. Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 2000;406:430-5. 19. Masramon L, Ribas M, Cifuentes P, Arribas R, Garcia F, Egozcue J, et al. Cytogenetic characterization of two colon cell lines by using conventional G-banding, comparative genomic hybridization, and whole chromosome painting. Cancer Genet Cytogenet 2000;12:17-21. 20. Abdel-Rahman WM, Katsura K, Rens W, Gorman PA, Sheer D, Bicknell D, et al. Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc Natl Acad Sci 2001;98:2538-43. 21. Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet 2004;5:435-45. 22. Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem 2005; 74:681-710. 23. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science 1993;260:816-9. 24. Aaltonen LA, Peltoma_ki P, Mecklin JP, Ja_rvinen H, Jass JR, Green JS, et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res 1994;54:1645-8. 25. Peltoma_ki P. DNA mismatch repair and cancer. Mutat Res 2001;488: 77-85. 26. Peltoma_ki P, Vasen HF. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 1997;113:1146-58. 27. Veigl ML, Kasturi L, Olechnowicz J, Ma AH, Lutterbaugh JD, Periyasamy S, et al. Biallelic inactivation of hmlh1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci 1998;95:8698-702. 28. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, et al. Incidence and functional consequences of hmlh1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci 1998;95:6870-5. 29. Thibodeau SN, French AJ, Cunningham JM, Tester D, Burgart LJ, Roche PC, et al. Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hmlh1. Cancer Res 1998;58:1713-8. 30. Chung DC, Rustgi AK. The hereditary nonpolyposis colorectal cancer syndrome: genetics and clinical implications. Ann Intern Med 2003; 138:560-70. 31. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998;58:5248-57. 32. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998;72:141-96. 33. Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 2001;134:573-86. 34. Cross SH, Bird AP. CpG islands and genes. Curr Opin Genet Dev 1995; 5:309-14. 35. Issa JP. The epigenetics of colorectal cancer. Ann N Y Acad Sci 2000; 910:140-53. 36. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci 1999;96:8681-6. 37. Whitehall VL, Wynter CV, Walsh MD, Simms LA, Purdie D, Pandeya N, et al. Morphological and molecular heterogeneity within nonmicrosatellite instability-high colorectal cancer. Cancer Res 2002;62:6011-4. 38. van Rijnsoever M, Grieu F, Elsaleh H, Joseph D, Iacopetta B. Characterisation of colorectal cancers showing hypermethylation at multiple

136 Kang Young Lee: Genomic Instability in Colorectal Cancer; from Bench to Bed CpG islands. Gut 2002;51:797-802. 39. Ward R, Meagher A, Tomlinson I, O Connor T, Norrie M, Wu R, et al. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut 2001;48:821-9. 40. Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 2000;342:69-77. 41. Greenson JK, Bonner JD, Ben-Yzhak O, Cohen HI, Miselevich I, Resnick MB, et al. Phenotype of microsatellite unstable colorectal carcinomas: Well-differentiated and focally mucinous tumors and the absence of dirty necrosis correlate with microsatellite instability. Am J Surg Pathol 2003;27:563-70. 42. Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 2005;65:6063-9. 43. Walther A, Houlston R, Tomlinson I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 2008; 57:941-50. 44. Popat S, Houlston RS. A systematic review and meta-analysis of the relationship between chromosome 18q genotype, DCC status and colorectal cancer prognosis. Eur J Cancer 2005;41:2060-70. 45. Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 1990;247:49-56. 46. Kirley SD, D Apuzzo M, Lauwers GY, Graeme-Cook F, Chung DC, Zukerberg LR. The Cables gene on chromosome 18Q regulates colon cancer progression in vivo. Cancer Biol Ther 2005;4:861-3. 47. Aschele C, Debernardis D, Lonardi S, Bandelloni R, Casazza S, Monfardini S, et al. Deleted in colon cancer protein expression in colorectal cancer metastases: a major predictor of survival in patients with unresectable metastatic disease receiving palliative fluorouracil-based chemotherapy. J Clin Oncol 2004;22:3758-65. 48. Reymond MA, Dworak O, Remke S, Hohenberger W, Kirchner T, Ko_ckerling F. DCC protein as a predictor of distant metastases after curative surgery for rectal cancer. Dis Colon Rectum 1998;41:755-60. 49. Shibata D, Reale MA, Lavin P, Silverman M, Fearon ER, Steele G Jr, et al. The DCC protein and prognosis in colorectal cancer. N Engl J Med 1996;335:1727-32. 50. Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Haller DG, et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 2001;344:1196-206. 51. Ogunbiyi OA, Goodfellow PJ, Herfarth K, Gagliardi G, Swanson PE, Birnbaum EH, et al. Confirmation that chromosome 18q allelic loss in colon cancer is a prognostic indicator. J Clin Oncol 1998;16:427-33. 52. Diep CB, Thorstensen L, Meling GI, Skovlund E, Rognum TO, Lothe RA. Genetic tumor markers with prognostic impact in Dukes stages B and C colorectal cancer patients. J Clin Oncol 2003;21:820-9. 53. Jen J, Kim H, Piantadosi S, Liu ZF, Levitt RC, Sistonen P, et al. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med 1994;331:213-21. 54. Munro AJ, Lain S, Lane DP. P53 abnormalities and outcomes in colorectal cancer: a systematic review. Br J Cancer 2005;92:434-44. 55. Rodrigues NR, Rowan A, Smith ME, Kerr IB, Bodmer WF, Gannon JV, et al. p53 mutations in colorectal cancer. Proc Natl Acad Sci 1990; 87:7555-9. 56. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature 1991;351:453-6. 57. Mollevi DG, Serrano T, Ginesta$ MM, Valls J, Torras J, Navarro M, et al. Mutations in TP53 are a prognostic factor in colorectal hepatic metastases undergoing surgical resection. Carcinogenesis 2007;28:1241-6. 58. Chang SC, Lin JK, Yang SH, Wang HS, Li AF, Chi CW. Relationship between genetic alterations and prognosis in sporadic colorectal cancer. Int J Cancer 2006;118:1721-7. 59. Choi SW, Lee KJ, Bae YA, Min KO, Kwon MS, Kim KM, et al. Genetic classification of colorectal cancer based on chromosomal loss and microsatellite instability predicts survival. Clin Cancer Res 2002;8: 2311-22. 60. Petersen S, Thames HD, Nieder C, Petersen C, Baumann M. The results of colorectal cancer treatment by p53 status: treatment-specific overview. Dis Colon Rectum 2001;44:322-34. 61. Barratt PL, Seymour MT, Stenning SP, Georgiades I, Walker C, Birbeck K, et al. DNA markers predicting benefit from adjuvant fluorouracil in patients with colon cancer: a molecular study. Lancet 2002;360:1381-91. 62. Kim H, Jen J, Vogelstein B, Hamilton SR. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol 1994;145:148-56. 63. Samowitz WS, Curtin K, Ma KN, Schaffer D, Coleman LW, Leppert M, et al. Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol Biomarkers Prev 2001;10:917-23. 64. Wright CM, Dent OF, Barker M, Newland RC, Chapuis PH, Bokey EL, et al. Prognostic significance of extensive microsatellite instability

이강영 : 대장암에서유전자불안정성의임상적의의 137 in sporadic clinicopathological stage C colorectal cancer. Br J Surg 2000;87:1197-202. 65. Gafa$ R, Maestri I, Matteuzzi M, Santini A, Ferretti S, Cavazzini L, et al. Sporadic colorectal adenocarcinomas with high-frequency microsatellite instability. Cancer 2000;89:2025-37. 66. Prall F, Du_hrkop T, Weirich V, Ostwald C, Lenz P, Nizze H, et al. Prognostic role of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability. Hum Pathol 2004;35:808-16. 67. Phillips SM, Banerjea A, Feakins R, Li SR, Bustin SA, Dorudi S. Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br J Surg 2004;91:469-75. 68. Dolcetti R, Viel A, Doglioni C, Russo A, Guidoboni M, Capozzi E, et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol 1999;154:1805-13. 69. Guidoboni M, Gafa$ R, Viel A, Doglioni C, Russo A, Santini A, et al. Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis. Am J Pathol 2001;159:297-304. 70. Koi M, Umar A, Chauhan DP, Cherian SP, Carethers JM, Kunkel TA, et al. Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N -nitro-n-nitrosoguanidine tolerance in colon tumor cells with homozygous hmlh1 mutation. Cancer Res 1994;54:4308-12. 71. Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehme@ A, et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res 1996; 56:4881-6. 72. Griffin S, Branch P, Xu YZ, Karran P. DNA mismatch binding and incision at modified guanine bases by extracts of mammalian cells: implications for tolerance to DNA methylation damage. Biochemistry 1994;33:4787-93. 73. Karran P, Hampson R. Genomic instability and tolerance to alkylating agents. Cancer Surv 1996;28:69-85. 74. Meyers M, Wagner MW, Hwang HS, Kinsella TJ, Boothman DA. Role of the hmlh1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses. Cancer Res 2001;61:5193-201. 75. Arnold CN, Goel A, Boland CR. Role of hmlh1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 2003;106:66-73. 76. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003;349:247-57. 77. Carethers JM, Smith EJ, Behling CA, Nguyen L, Tajima A, Doctolero RT, et al. Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology 2004;126:394-401. 78. Elsaleh H, Powell B, McCaul K, Grieu F, Grant R, Joseph D, et al. P53 alteration and microsatellite instability have predictive value for survival benefit from chemotherapy in stage III colorectal carcinoma. Clin Cancer Res 2001;7:1343-9. 79. Kim GP, Colangelo LH, Wieand HS, Paik S, Kirsch IR, Wolmark N, et al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol 2007;25:767-72. 80. Jass JR, Biden KG, Cummings MC, Simms LA, Walsh M, Schoch E, et al. Characterisation of a subtype of colorectal cancer combining features of the suppressor and mild mutator pathways. J Clin Pathol 1999; 52:455-60. 81. Whitehall VL, Walsh MD, Young J, Leggett BA, Jass JR. Methylation of O-6-methylguanine DNA methyltransferase characterizes a subset of colorectal cancer with low-level DNA microsatellite instability. Cancer Res 2001;61:827-30. 82. Kohonen-Corish MR, Daniel JJ, Chan C, Lin BP, Kwun SY, Dent OF, et al. Low microsatellite instability is associated with poor prognosis in stage C colon cancer. J Clin Oncol 2005;23:2318-24. 83. Wright CM, Dent OF, Newland RC, Barker M, Chapuis PH, Bokey EL, et al. Low level microsatellite instability may be associated with reduced cancer specific survival in sporadic stage C colorectal carcinoma. Gut 2005;54:103-8. 84. Samowitz WS, Albertsen H, Herrick J, Levin TR, Sweeney C, Murtaugh MA, et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 2005;129:837-45. 85. Ogino S, Odze RD, Kawasaki T, Brahmandam M, Kirkner GJ, Laird PW, et al. Correlation of pathologic features with CpG island methylator phenotype (CIMP) by quantitative DNA methylation analysis in colorectal carcinoma. Am J Surg Pathol 2006;30:1175-83. 86. Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 2007; 50:113-30.

138 Kang Young Lee: Genomic Instability in Colorectal Cancer; from Bench to Bed 87. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006;38:787-93. 88. Ogino S, Kawasaki T, Kirkner GJ, Kraft P, Loda M, Fuchs CS. Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn 2007;9:305-14. 89. Lee S, Cho NY, Yoo EJ, Kim JH, Kang GH. CpG island methylator phenotype in colorectal cancers: comparison of the new and classic CpG island methylator phenotype marker panels. Arch Pathol Lab Med 2008;132:1657-65. 90. Duffy MJ, van Dalen A, Haglund C, Hansson L, Holinski-Feder E, Klapdor R, et al. Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use. Eur J Cancer 2007;43:1348-60. 91. Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 2006;24:5313-27.