07.051~058(345).fm

Similar documents
26(3D)-17.fm

304.fm

14.531~539(08-037).fm

605.fm

69-1(p.1-27).fm

416.fm

17.393~400(11-033).fm

27(5A)-07(5806).fm

<30332DB9E8B0E6BCAE2E666D>

untitled

< DC1A4C3A5B5BFC7E22E666D>

10(3)-09.fm

11(5)-12(09-10)p fm

50(1)-09.fm

202.fm

50(5)-07.fm

12.077~081(A12_이종국).fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

10(3)-12.fm

32(4B)-04(7455).fm

12(2)-04.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

untitled

82-01.fm

10(3)-10.fm

9(3)-4(p ).fm

16(1)-3(국문)(p.40-45).fm

10(3)-02.fm

14(2) 02.fm

12(3) 10.fm

<312D303128C1B6BAB4BFC1292E666D>

15.101~109(174-하천방재).fm

8(2)-4(p ).fm

23(2) 71.fm

12(4) 10.fm


<30312DC0CCC7E2B9FC2E666D>

untitled

50(6)-09.fm

23(4) 06.fm

06.177~184(10-079).fm

fm

82.fm

fm

15(2)-07.fm

16(2)-7(p ).fm

19(1) 02.fm

10.063~070(B04_윤성식).fm

27(5A)-13(5735).fm

38(6)-01.fm

fm

05.581~590(11-025).fm

10(1)-08.fm

01.01~08(유왕진).fm

143.fm

27(5A)-15(5868).fm

11(4)-03(김태림).fm

7(4)-07.fm

27(6A)-10(5570).fm

DBPIA-NURIMEDIA

415.fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

100(4)-24(90).fm

14.fm

3.fm

Microsoft Word - KSR2012A103.doc

fm

14(4) 09.fm

85.fm

untitled

한 fm

51(2)-09.fm

(163번 이희수).fm

14.091~100(328-하천방재).fm

11(1)-15.fm

41(6)-09(김창일).fm

51(4)-13.fm

04-46(1)-06(조현태).fm

201.fm

50(6)-04.fm

<30312D303720B9DAC1A4BCF62E666D>

m, w, w w. xœ y t y w en, ùw,, ƒ y (, 1994; w, 2000). ƒ x œ (NGA; National Geospatial-intelligence Agency) t t wù x (VITD; Vector product Interim Terr

49(6)-06.fm

25(3c)-03.fm

07.045~051(D04_신상욱).fm

18211.fm

fm

29(4)-07(김봉채).fm

( )-7.fm

< C0E5BFC1C0E72E666D>

93.fm

31(3B)-07(7055).fm

8(3)-15(p ).fm

50(6)-03.fm


Microsoft Word - KSR2013A317

8-15(3)-02(손태근).fm

62.fm

43(5)-1.fm

4.fm

Transcription:

w wz 8«3y 2008 6 pp. 51 ~ 58 m qp yp š w k sƒ Evaluation of Dynamic Modulus based on Aged Asphalt Binder y*á **Á***Á**** Lee, Kwan-HoÁCho, Kyung-RaeÁLee, Byung-SikÁSong, Yong-Seon Abstract Development of a new design guide which is based on empirical-mechanistic concept for pavement design is in action. It is called AASHTO 2002 Design Guide in USA and the KPRP(Korean Pavement Research Project in Korea. The material characteristic of hot mix asphalt is a key role in the design guide. Therefore it is urgent to get a proper materials database, especially the dynamic modulus of hot mix asphalt. In this research, dynamic modulus test, which is based on aged asphalt binder, has been carried out and proposed the predicted equation of dynamic modulus. Nine different hot mix asphalt with three different asphalt binder have been used for the dynamic modulus test. Short-term aging, which is covers the time for the production of asphalt plant, transportation, lay-down, and compaction, can be simulated at 135 o C with 2 hour curing. Long-term aging has been carried out for a performance period of asphalt pavement. The dynamic modulus of asphalt pavement increases with aging time. As the nominal aggregate size increases, the change of dynamic modulus is not big. Key Words : hot mix asphalt, mix design, gyratory compactor, superpave, compaction energy index, permanent deformation ü s x / w w y w ƒ y w w. AASHTO 2002, ù w x s w š, s w e sƒƒ w w w. ü qp yw sƒƒ w. e sƒw k x. qp s yp š w qp s k sƒw š, w k d w. x qp yw KS t ³ 9 (SMA SBS sw 3 qp w. m œ w, x wš»¾ š w» y 135 o C 4 w q, œ š ƒ w 135 o C 2 w.» y x œ qp y xw. yƒ w k ƒ. j q p z z ƒ ƒw. w : qpyw, w, z», rr,, x 1. 2000 l ù k w wš.»» w w. j» wš wùƒ w xs. ù,, x, œ,, m w» w zš, wwš. ü s x / w w y w ƒ y w w. AASHTO 2002, ù w x s w š, s w e sƒƒ w w w. * z Áœ w y œw (E-mail: kholee@kongju.ac.kr ** z Áœ w y œw *** z Áœ w y œw ****œ w y œw 51

ü qp yw sƒƒ w. e sƒw k x ( m 2002. k w, w, w w m w,, qp yw, p qp yw k p w e sƒ š w. qp yw k x w x s qpw w w. ü t qp yw w k DByƒ w ù, k w w w ƒ v w k. qp yp k e w sƒw š, x w»» yp ü x mw xw x wš w. 2. qp yw k w qp yw k p q w {» ww k d xp w l ³ ƒ w, w q l wk (complex modulus, E * w (½x y, 2005. x w d x, wk 1 t. k wk w, (4 tx. σ = σ o sin( ω t (1 xl k x w w ƒƒ. w (Superposition Principle w 2 lš w w. l š p qp yw w ³ w ƒ š. 2002 AASHTO w qp p w, (Viscosity Temperature Susceptibility š, y v»». 3.36~3.98 ƒ. (5 tx. log( logη = A+ VTS log( T R», η [ ] :, cpoise, T R : temperature, ( R A : - š r VTS:»» Pellinen(2002 (VTS w (6 tx ƒ ù w w. loga( T c 10 A + VTS [ log( T ] r =», c :, T R : y w,( R (T R 0 :»,( R + [ log( ] 0 10 A VTS T R (5 (6 ε = ε o sin( ω t φ E * σ σ o e iωt = -- = ----------------------- ε φ o e i( ωt φ E * σ o = ----- ε o (2 (3 (4, qp yw w p w xk wš, š p sƒ w w. Pellinen(2001 w sigmoidal function w lš w, w d k x w w.» š, MS 1. w x 2. lš yw 52 w wz «y

EXCELL Solver function w q l w. log( E * log( t r» a = δ + ------------------------------------- 1 exp β γ log( t r + = log( t c{ log( η log( η Tr } = w k log( E * δ = minimum modulus ( a = range of possible value β & γ = shape parameter η, η Tr = qp 3. qp yp (9 (10 qp s œ p w wùƒ qp w(rheology p. qp w p j yw p ƒ š. p, qp yw,, x, z œ» y yx qp s œ p w., qp yx g l s œ œ»» w x. qp w y qp yw š yw r w. yw qp 150 o C, qp { y w qp w (w wz, 1998. qp y y, qp yw, s x, s, m z œ» mw z w œ y 2-3 z ¾.» ù, y j w yp y w» w. œ» w qp yw y y, {, w (polymerization, (thixotropy, (syneresis, w w. y qpƒ w, y qp p w. { qp { w, w ù s» y j w. w j x w» w ö ww x y k.» qpü ƒ x w y. ƒ qp t ù. qp w. qp l ù ql œ k. qp yp e y w sƒw. qp yp ü x xw x w.,» y xw» w zƒ (Rolling Thin Film Oven, RTFO x» y xw» w y(pressure Aging Vessel, PAV. zƒ x» AASHTO T 240 ASTM D 2872, y x ASTM D 454 D 572. y x mw r 5 10 x œ qp s y w š š. 4. qp yw y x 4.1 w vp qp yw y w š w w j ƒ ƒ. ƒ qp yw œ w š s ¾ y» y ƒ. ƒ m š w qp yw yw» y ƒ. x œ» y» y w xwš w. k x 5, 21, 40 o C ƒ 0.1, 0.5, 1, 5, 10, 25 Hz ƒ q xw. x qp yw ü r 7ƒ w. rr w w t 1 w m qp w ƒƒ w. q p w w 4% œ qpyw wš, yw 135 o C 4» y z z» w w. 150 mm yw 100 mmƒ g wš, 150 mmƒ w, x r ƒ 1:1.5ƒ w. 4.2» y x k sƒ» y z» w y j š yw z r, š 135 o C 160 o C ƒƒ 2, 4, 6» y jš k x ww.» y ƒ k x t 2 w. ƒ wš, w q ƒ f š,» y x ƒ k ƒ f w š. lš 3 yw r 160 o C 2, 4, 6» yw r w. 5 yw r 135 o C 2, 4, 6» yw r lš w. 3 4 l š q qp yp š w k sƒ 53

t 1. y x w A1 B1 C1 D1 E1 F1 G1 13 13 ˆ13F 13F 13 19 25 j»(mm 25 100 100 100 100 100 100 100 19 100 100 100 100 100 97.5 87 12.5 97.5 97.5 97.5 97.5 97.5 82.5 76 9.5 82.5 85 83.75 90 65.75 68.75 65 4.75 67.5 72.5 70 82.5 34 55 49 2.36 51 57.5 55 72.5 22.5 39.5 37 1.18 39 45 52.5 62.5 18.25 31.25 34 0.6 27 32.5 50 52.5 14 23 17 0.3 18.5 19.5 32.5 32.5 9.5 15.5 14 0.15 11 14 17.5 22.5 7 10 9 0.075 7 7 10.5 11.5 4.5 5 4 qp yw vp G mm 2.482 2.475 2.477 2.432 2.502 2.495 2.501 G sb 2.647 2.647 2.647 2.647 2.647 2.647 2.647 Va(% 4.182 4.417 4.195 4.009 4.289 3.694 3.865 OAC(% 5.2 5.4 5.4 6.9 4.5 5.1 4.3 qp PG58-22 PG58-22 PG58-22 PG58-22 PG58-22 PG58-22 PG58-22 A2 F2 G2 H1 H2 I3 13 19 25 SMA13 SMA13 SBS13 j»(mm 25 100 100 100 100 100 100 19 100 97.5 87 100 100 100 12.5 97.5 82.5 76 95 95 97.5 9.5 82.5 68.75 65 61.25 61.25 87.5 4.75 67.5 55 49 27.5 27.5 61 2.36 51 39.5 37 20 20 41 1.18 39 31.25 34 18 18 29.5 0.6 27 23 17 16 16 20.5 0.3 18.5 15.5 14 13.5 13.5 13.5 0.15 11 10 9 11.75 11.75 9 0.075 7 5 4 10 10 6 qp yw vp G mm 2.478 2.492 2.507 2.51 2.512 2.483 G sb 2.647 2.647 2.647 2.647 2.647 2.647 Va(% 4.041 3.652 3.691 3.666 3.693 3.855 OAC(% 5.3 5.1 4.5 5.7 5.7 4.6 qp PG 64-22 PG 64-22 PG 64-22 PG 58-22 PG 64-22 PG 76-22 ƒ ù š 135 o C 160 o C» y w r k ƒw. p 160 o C» y w r y w y y w. 135 o C» yw r q š q ƒ y ƒ f. m œ w, x wš»¾ š w» y 135 o C 4 w q, œ š ƒ w 135 2 w. 4.3» y x k sƒ w z 4% w œ ƒ ƒ r 5 k x w. k x q x x ƒ w.» y ³ w y z» w r 24. k 54 w wz «y

o C q Hz 5 21 40 t 2.» y k ( : MPa» y 135 o C 160 o C 2 4 6 2 4 6 0.1 13906 21021 19717 21425 23665 21465 19264 0.5 21848 26728 25495 30556 32990 27874 22758 1 25258 32039 31608 31806 35750 30537 25325 5 34403 41599 36290 42254 48586 39767 30949 10 35906 46966 44238 43791 51388 41770 32152 25 43950 53944 47309 54473 54971 44512 34053 0.1 2262 3558 6486 5736 6418 6732 7046 0.5 4365 6312 10668 8829 10888 10189 9490 1 6067 8347 12892 11962 13985 13098 12210 5 11440 15172 18335 20384 23391 20657 17924 10 13408 18150 29889 22288 25353 22102 18850 25 18683 30046 28137 28514 28579 22931 17284 0.1 507 815 1333 1276 1041 1564 2088 0.5 646 1045 1732 1786 1419 2271 3122 1 706 1138 1997 2131 1746 2760 3774 5 1137 1953 3281 3402 3093 5619 8146 10 1531 2535 5122 4782 4839 6520 8202 25 2357 3926 6529 8554 6312 8807 11301 3. 160» y lš 4. 135» y lš x w» r y w x ( 20 C 12 ew z x o w.» y x w w» qp w» y yw. 5.» y x 6 ùkù yƒ w k ƒ. j qp z z ƒ ƒw. t 3 ù kù, AP-3 qp w yw qp yp š w k sƒ 55

6. 13 mm + AP-5 yw k t 3. 13 mm qp yw k yw 13 mm qp AP-3 AP-5 AP-3 AP-5 AP-3 AP-5 q y 2 4 8 0.1 20925 17828 24669 20566 35571 21575 0.5 27190 22627 39410 30430 45922 30775 1 31637 26297 36844 33274 43395 33111 5 5 38789 33666 46671 43129 66411 40377 10 50486 35705 47960 38843 64015 39625 25 62816 38087 56899 42774 73400 44941 0.1 4558 4181 5653 5389 9590 5995 0.5 8060 7180 10205 10174 16539 11604 1 9929 9113 13205 11886 22713 13063 21 5 17707 12911 24129 17225 36375 24010 10 23426 19384 21607 26858 35352 18707 25 29285 16746 44467 29250 45251 25722 0.1 938 859 996 864 1178 967 0.5 1445 1442 1545 1537 1805 1552 1 1741 1693 1961 1751 2438 1850 40 5 3113 3086 3738 3437 4954 3443 10 4424 4599 5682 4094 7666 4725 25 5670 5815 8448 6827 10855 6550 k ƒ AP-5 qp w qp yw k w j ùkû. 7 ùkù, œe e ƒ f, d k f w ùküš. SBS š» š š, SMA w f y ƒ ùkû. w, qp y w z œ e e y k yƒ j w ùk üš. qp yw k j» œe e w ƒ w. t 4 x qp yw 8 z d w k š. qp yw k j sƒ š,, SMA SBS qp yw k ƒ sƒ. 4.4 k d x w qp yw k d w w. w w Witczak ƒ ƒ yw š. Witczak 200 qp yw x w 2800 data-set w w», qp, w k dw w. loge = 3.750063 + 0.029232p 200 0.001767( p 2 200 0.002841p 4 0.802208V beff 0.058097V a --------------------------------- V beff + V a 3.871977 0.0021p 4 + 0.003958p 38 0.000017( p 2 38 + 0.00547p 34 + --------------------------------------------------------------------------------------------------------------------------------------------------------------- 1 e ( 0.603313 0.313351 log f 0.393532 log η +» 7. j» k E = k (psi η = qp ( 10 6 poise f = w q (Hz V a = qp yw œ (% V beff = qp zw (% P 34 = 19 mm (% P 38 = 9.5 mm (% P 4 = 4.75 mm (% P 200 = No. 200 m (% k x w š r» x r k sƒ w w» w,» Witczak d» w, x w k d ù y w. 8 Witczak d ƒ xw w sƒ 56 w wz «y

yw q 13 mm t 4. 8 y k qp yw (AP-3 k 19 mm 25 mm 13 mm 13 mm 13F ˆ13F SMA 13 mm 0.1 35571 31685 28933 20990 17918 22511 17284 17284 14980 0.5 45922 39787 36656 27591 22964 30223 25595 25595 21651 1 43395 43613 38879 31500 24987 32677 25380 25380 24813 5 5 66411 54213 52989 34684 32249 39150 39858 39858 33979 10 64015 51370 45040 36137 32822 44884 34834 34834 31779 25 73400 62958 58617 35002 32835 43801 38242 38242 32300 0.1 9590 7129 12352 4932 4277 5232 3984 3984 3149 0.5 16539 12921 17379 8651 6914 8951 6858 6858 6169 1 22713 15474 22164 10146 8503 12098 8910 8910 10575 21 5 36375 29556 33265 17595 13330 19591 11993 11993 17310 10 35352 26735 49308 23543 17077 27710 17064 17064 17615 25 45251 38149 34411 27081 14987 42784 25407 25407 33131 0.1 1178 1087 2000 995 645 793 715 715 470 0.5 1805 1591 2779 1646 1083 1249 1075 1075 662 1 2438 2495 4399 2022 1338 1613 1329 1329 804 40 5 4954 3665 7268 3551 2227 3647 2608 2608 1457 10 7666 5689 12547 4566 3448 6060 3899 3899 1965 25 10855 8782 12072 7166 5306 8307 5160 5160 4110 SBS. ü xk w ³ qp ³».» d w w 9 š, ƒ 0.807 d x e k. E * * = 0.0017 E predict 1.5902 yw k dw» w Witczak d š w. Witczak x w 10. w w Witczak y ƒ w. x d ƒ 0.888 ùkû. w w, ü t qp yw w k d w y w». loge = 7.461320 84 0.1110659p 200 + 0.007149 4 p 200 ( 2 8. Witczak d x 4.11003849 V beff 0.006554 16p 4 0.0573757 V a ----------------------------------------- V beff + V a 3.08325837 0.02179918p 4 0.0234239p 38 + 0.0013814( p 2 38 + 0.0110004p 34 + ------------------------------------------------------------------------------------------------------------------- 1.113557 2 0.5947748 log f 1 + e ( 0.61092917logη 6. 9. w w Witczak d x qp yw y t wù k y p sƒw» w ü KS ³ qp yw w y x k d w. ww qp y qp yp š w k sƒ 57

10. Witczak x w w w. (1» y 160 o C w» š 135 o C w z w. 160 o C y ƒ w e w., 135 o C» yw r q š q ƒ y ƒ f. m œ w, x wš»¾ š w» y 135 o C 4 w q, œ š ƒ w 135 o C 2 w. (2» y x œ qp y xw. yƒ w k ƒ. j qp z z ƒ ƒw. SBS š» š š, SMA w f y ƒ ùkû. p w ˆ k ƒ y w. (3 Witczak d xw w sƒ. ü xk w ³ qp ³». x w UTM» x d d wù ew yw e w. mw» Witczak d w w w Witczak d. ƒ 0.994 ùkü. (4 y x x w. x w x œ» g w k d w w, x x xw. k d w x ƒ š ƒ š x ƒ ¾ š, x d w. q x q w k w d w r wš Ÿ w y. w ww ( y D00511, 2006 w š,. š x m (2002 w x s s. KPRP- -02, pp. 142. ½x, y (2005 w qp yw k sƒ. w wz, w wz, 7«, 1y, pp. 49-61. w wz (1998 qp s œw. w wz, pp. 35. Pellinen, T.K. (2001 Invesitgation of the Use of Dynamic Modulus as an Indicator of Hot-Mix Asphalt Performance, Ph.D. dissertation, Arizona State University. Pellinen, T.K., Witczak, M.W., and Bonaquist, R.F. (2002 Asphalt Mix Master Curve Construction Using Sigmoidal Fitting Function with Non-Linear Least Squares Optimazation. 15th ASCE Engineering Mechanics Conference, ASCE. ú : 2008 04 29 ú : 2008 05 07 ú : 2008 06 04 58 w wz «y