J Korean Soc Food Sci Nutr 한국식품영양과학회지 45(12), 1725~1731(2016) http://dx.doi.org/10.3746/jkfn.2016.45.12.1725 증포삼채뿌리메탄올추출물의항산화성분및항산화활성 전현일 1 양재헌 2 송근섭 1 김영수 1 1 전북대학교식품공학과 2 전북대학교헬스케어사업단 Antioxidant Compounds and Activities of Methanolic Extracts from Steam-Dried Allium hookeri Root Hyun-Il Jun 1, Jae-Heon Yang 2, Geun-Seoup Song 1, and Young-Soo Kim 1 1 Department of Food Science and Technology and 2 Center for Healthcare Technology Development, Chonbuk National University ABSTRACT This study was carried out to investigate the effects of steam-drying on antioxidant compounds and antioxidant activity of Alliun hookeri root (AHR). The yield of methanolic extracts, total phenolic content (TPC), browning intensity (280 nm and 420 nm), and organosulfur compound contents (alliin and cycloalliin) in raw and steam-dried AHRs were 10.71 37.40%, 15.53 36.36 μg/mg, 0.48 2.09, 0.01 0.25, 1.46 700.61 μg/mg, and 1,173.95 2,182.60 μg/mg, respectively. Yield, TPC, and browning intensity of AHRs increased by steam-drying, whereas organosulfur compound contents decreased. Of all methanolic extracts from raw and steam-dried AHRs, four-time steam-drying showed the lowest EC 50 values (0.43, 7.53, 0.34, and 0.48 mg/ml, respectively) for DPPH radical scavenging activity, ABTS radical scavenging activity, SOD-like activity, and reducing power, whereas four-time steam-drying resulted in the highest TPC (36.36 μg/mg) and browning intensity (2.09 and 0.25 at 280 and 420 nm, respectively). The antioxidant activities of methanolic extracts from raw and steam-dried AHRs were closely correlated with their TPC, browning intensity, and organosulfur compound content, showing correlation determination coefficient (R 2 ) values higher than 0.82. As a result, four-time steam-drying of AHRs could be useful as potential antioxidant sources. Key words: steam-drying, Allium hookeri root, methanol extracts, antioxidant compounds, antioxidant activities 서 삼채 (Allium hookeri) 는해발 1,400미터이상의고랭지에서자생하는백합과 (Liliaceae) 의파속식물 (Allium species) 로원산지인미얀마에서는쥬밋이라고불리며식용과약용으로사용되는국민채소이다 (1). 삼채는 2011년국내현지화에성공한후에전국각지에서재배되면서생산량이지속해서증가하고있으나삼채의뿌리, 잎, 꽃등각부위중에서식품가공원료로는아직뿌리가주를이루고있다 (2). 삼채뿌리 (Allium hookeri root, AHR) 는 gallic acid, chlorogenic acid, protocatechuic acid, hydroxybenzoic acid, vanillic acid, ferulic acid, sinapic acid, catechin, rutin 등페놀성화합물과 allicin을포함한 alkyl thiosulfinate 형태의함황화합물을다량함유하고있어항산화, 항당뇨, 항염증, 항노화등다양한생리활성이있다고알려져 Received 16 August 2016; Accepted 11 November 2016 Corresponding author: Young-Soo Kim, Department of Food Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 54896, Korea E-mail: ykim@jbnu.ac.kr, Phone: +82-63-270-2569 론 있다 (3-6). 국내건강기능식품 (2015년) 의시장규모는전년보다 16.2 % 가증가한 2조 3,291억원이었고, 품목별생산실적은홍삼 (38.1%), 개별인정형 (17.5%), 비타민및무기질 (11.4%), 프로바이오틱스 (8.7%), 밀크씨슬추출물 (3.9%) 순으로면역기능개선이나영양소보충과같이항노화와관련성이높은제품이 79.5% 이상으로나타났다 (7). 이는노화에영향을주는체내활성산소종 (reactive oxygen species, ROS) 함량을줄이는데효과적인식품소재나이를활용한건강기능성식품에관심이높은국내고령화사회의상황이반영된결과로판단된다 (8). 그러나건강기능식품산업의큰성장에도불구하고건강기능식품소재대부분을수입하고있어국내에서수급가능한새로운소재확보가필요한상황에서삼채뿌리는좋은천연소재로판단된다 (9). 건강기능식품제조시천연식품소재의생리활성을증가시키기위해발효, 가열, 건조등다양한가공방법이많이사용된다 (10). 일반적으로항산화성분은식품소재에메탄올, 에탄올, 열수등추출용매를첨가하여추출하지만, 추출용매, 추출시간, 추출온도등추출조건에따라기능성성분의함량과활성에영향을주는것으로알려져있다 (9,10).
1726 전현일 양재헌 송근섭 김영수 마늘 (Allium sativum L.), 양파 (Allium cepa L.), 부추 (Allium tuberosum R.) 등파속식물이현재건강기능식품으로활용되는상황에서아직삼채뿌리는뛰어난생리활성에도불구하고건강기능식품으로활용이미비한실정이다 (11). 이에본연구에서는삼채뿌리를항산화용도의건강기능식품으로활용하기위한기초자료를얻고자증포처리횟수가삼채뿌리메탄올추출물의항산화성분 ( 페놀성화합물, 갈변물질, 함황화합물등 ) 과항산화활성 (DPPH 라디칼소거활성, ABTS 라디칼소거활성, SOD 유사활성, 환원력등 ) 에미치는영향에대하여비교분석하였다. 재료및방법재료및시약본연구에사용한삼채는전북순창지역에서 2015년에재배된것으로줄기와뿌리를절단한후뿌리만열풍건조 (70 C, 12시간 ) 하여사용하였다. Pyrogallol, gallic acid, DPPH(2,2-diphenyl-1-picrylhydrazyl), ABTS(2,2-azino-bis-3-ethylbenzothiozoline-6-sulfonic acid), BHT (butylated hydroxytoluene), ascorbic acid, alliin 등은 Sigma-Aldrich사 (St. Louis, MO, USA), cycloalliin은 Wako 사 (Wako Pure Chemical Industries, Ltd., Osaka, Japan) 에서구입하였으며, 그밖의시약들은 analytical 및 HPLC grade를사용하였다. 증포처리및메탄올추출물제조건조한생삼채뿌리 300 g을상압증자기 (HD-300, Hyundaetotalmacine Co., Ltd., Gimpo, Korea) 에넣고증자 (100 C, 4시간 ) 한후에열풍건조 (60 C, 8시간 ) 하는증포처리과정을각각 2회와 4회반복하였다. 증포처리한삼채뿌리는송풍건조 (30 C, 24시간 ) 한것을완제품으로하였다. 메탄올추출물제조는생삼채뿌리와증포처리한삼채뿌리를제분 (Single type stainless roller, Shinpoong Eng. Ltd., Gwangju, Korea) 한후에표준망체 (250 μm, Daihan Scientific Co., Ltd., Seoul, Korea) 로체질하였다. 체질한삼채뿌리 100 g에 80% 메탄올 1,000 ml를첨가하여초음파처리 (25 C, 30분 ) 한후에원심분리 (5,000 rpm, 10 min) 및여과 (Whatman No. 4, GE Healthcare Bio-Sciences AB, Uppsala, Sweden) 하는과정을 3회반복하여얻었다. 이렇게얻어진여액을모아서동결건조한후 -20 C에보관하면서항산화활성의분석시료로사용하였다. 갈변도측정갈변도는 DuBois 등 (12) 의방법을변형하여측정하였다. 분말시료 10 g에 80% 메탄올 100 ml를첨가하여균질화시킨후에원심분리 (5,000 rpm, 10분 ) 및여과 (Whatman No. 4) 한용액을 280 nm와 420 nm에서흡광도를측정하였고대조구로는 80% 메탄올을사용하였다. 총페놀성화합물측정총페놀성화합물함량 (total phenolic content, TPC) 은 ISO 14502-1(13) 의방법을이용하여측정하였다. 메탄올추출물 1 ml에 10% Folin-Ciocalteu s phenol reagent 5 ml를첨가하여 3분간반응시킨후에 7.5% Na 2CO 3 4 ml를첨가하였다. 이반응액을암소에서반응 (23 C, 1시간 ) 시킨후 765 nm에서흡광도를측정하였으며, 추출물의총페놀성화합물함량은 gallic acid를표준물질로하여추출물 mg당 μg gallic acid로나타내었다. Alliin과 cycloallin 측정 Alliin과 cycloalliin 함량은 Ichikawa 등 (14) 의방법을변형하여사용하였다. Alliin과 cycloalliin은 Xevo TQ-S mass spectrometer(ms/ms) 가장착된 ACQUITY UPLC system(waters Co., Milford, MA, USA) 에서분석되었다. 시료주입량은 5 μl, 칼럼은 Acquity UPLC BEH Amide column(2.1 mm 150 mm, 1.7 μm, Waters Co.), 칼럼온도는 30 C이고유속은 0.5 ml/min이었다. 이동상은 10 mm ammonium formate(ph 3.0, 용매 A) 와 0.1% formic acid 가함유된 acetonitrile( 용매 B) 이었으며, gradient program 은 0~0.5분은용매 B를 100% 로유지, 0.5~4분은용매 B를 100% 에서 50% 로감소, 4~4.5분은용매 B를 50% 로유지, 4.5~6.0분은용매 B를 50% 에서 100% 로증가, 6~10분은용매 B를 100% 로유지하게설정하였다. UPLC-MS/MS 기기는 Xevo TQ-S(Waters Co.) 를사용하였으며검출및정량을위한 MS/MS는전기분무이온화 (electrospray ionization, ESI) 방식의양이온모드에서 multiple reaction monitoring(mrm) 방법을사용하였다. 분석파라미터는온도 380 C, ion spray voltage 3.0 kv, capillary voltage 3 kv, con voltage 30 kv, source offset 30 V, collision energy 650 L/h, desolvation gas 150 L/h였다. 이때 alliin 과 cycloalliin 표준품의전구이온 (m/z 178.14) 및생성이온 (m/z 88.09) 의머무름시간은각각 3.34분과 3.47분이었으며데이터처리장치는 MassLynx software(version V4.1, Waters Co.) 를사용하였다. 항산화활성측정 DPPH 라디칼소거활성은 Kano 등 (15) 의방법을변형하여측정하였다. 메탄올추출물 1.5 ml에 100 μm DPPH 용액 1.5 ml를첨가하여암소에서 30분간반응시킨후에 515 nm에서흡광도를측정하였으며대조구로는 ascorbic acid 를사용하였다. DPPH 라디칼의흡광도를 50% 감소시키는데필요한시료의농도 (the half maximal effective concentration, EC 50, μg/ml) 는다음의식에의하여얻어진결과에서산출하여나타내었다. DPPH radical scavenging activity (%)= Absorbance control-absorbance sample 100 Absorbance control
증포삼채뿌리메탄올추출물의항산화활성 1727 ABTS 라디칼소거활성은 Re 등 (16) 의방법을이용하여측정하였다. 메탄올추출물 30 μl에 ABTS 라디칼용액 3 ml를첨가하여암소에서 6분간반응시킨후에 734 nm에서흡광도를측정하였으며대조구로는 BHT를사용하였다. ABTS 라디칼의흡광도를 50% 감소시키는데필요한시료의농도 (EC 50, μg/ml) 는다음의식에의하여얻어진결과에서산출하여나타내었다. ABTS radical cation scavenging activity (%)= Absorbance control-absorbance sample 100 Absorbance control SOD 유사활성은 Li(17) 의방법을이용하여측정하였다. 메탄올추출물 300 μl에 1 mm EDTA를함유한 50 mm tris-hcl buffer(ph 7.4, 37 C) 2,650 μl와 1 mm HCl에녹인 60 mm pyrogallol 50 μl를첨가하여 5분간반응시킨후에 325 nm에서흡광도를측정하였으며대조구로는 ascorbic acid를사용하였다. Pyrogallol의흡광도를 50% 감소시키는데필요한시료의농도 (EC 50, μg/ml) 는다음의식에의하여얻어진결과에서산출하여나타내었다. SOD-like activity (%)= Absorbance control-absorbance sample 100 Absorbance control 환원력은 Oyaizu(18) 의방법을이용하여측정하였다. 메탄올추출물 1 ml에 0.2 M phosphate buffer(ph 6.6) 2.5 ml와 1% K 2Fe(CN) 6 2.5 ml를첨가하여 50 C에서 20분간반응시켰다. 이반응액에 10% trichloroacetic acid 2.5 ml 를첨가하여원심분리 (3,500 rpm, 10분 ) 한후에상등액을취하였다. 이상등액 5 ml에증류수 5 ml와 0.1% FeCl 3 1 ml를첨가하여 700 nm에서흡광도를측정하였으며대조구로는 ascorbic acid를사용하였다. 환원력은시료액첨가구와무첨가구의흡광도의차이로나타내었으며, 반응액의흡광도가 0.5가되는데필요한시료의농도 (EC 50, μg/ml) 는얻어진결과에서산출하여나타내었다. 통계분석각실험은 3회반복실험하여얻은결과를 SAS 통계프로 그램 (Ver. 9.1, SAS Institute, Cary, NC, USA) 을이용하여평균과표준편차로나타내었다. 각시료간의유의성은 P< 0.05 수준에서 one way ANOVA로분산분석한후에 Duncan's multiple range test로비교하였으며, 총페놀성화합물과갈변물질같은항산화성분과항산화활성의연관성은 Pearson 상관분석을이용한단순회귀분석 (simple regression analysis) 을하여비교하였다. 결과및고찰항산화성분생 (control) 및증포처리한삼채뿌리메탄올추출물의수율및항산화성분결과는 Table 1 및 Fig. 1과같다. 생및증포처리한삼채뿌리메탄올추출물의수율과총페놀성화합물함량은 10.71~37.40% 와 15.53~36.36 μg/mg으로증포처리에의해서증가하였다. 특히증포처리횟수가 2회에서 4회로증가함에따라생삼채뿌리메탄올추출물보다수율은각각 3.4배와 3.5배, 총페놀성화합물함량은각각 2.1 배와 2.3배증가하였다. 삼채뿌리에는 gallic acid, chlorogenic acid, protocatechuic acid, hydroxybenzoic acid, vanillic acid, ferulic acid, sinapic acid, catechin, rutin 등과같은비배당체뿐만아니라 ferulic acid-4-o-β-dglucopyranoside와같은배당체형태등다양한페놀성화합물이존재한다고알려져있다 (3,19). 이와같은결과는수삼보다홍삼메탄올추출물의총페놀성화합물함량이높았다는기존의연구결과와유사하였으며, 이는삼채뿌리가고온에서찌고말리는과정에서삼채뿌리의식물세포벽내부로증기의유입과배출이반복되면서고분자페놀성화합물이저분자페놀성화합물로분해되거나세포벽과결합한 bound형페놀성화합물이추출용매에손쉽게용해되는 free 형페놀성화합물로전환되기때문에생삼채뿌리보다증포삼채뿌리의 TPC가증가한것으로추정된다 (20,21). 생및증포처리한삼채뿌리메탄올추출물의갈변도는측정파장과관계없이증포처리에의해서증가하였으며, 이는총페놀성화합물함량의경우와유사한경향이었다. 특히증포처리횟수가 2회에서 4회로증가함에따라생삼채뿌리보다 280 nm에서는각각 3.8배와 4.4배, 420 nm에서는 Table 1. Yield, total phenolic content, browning intensity, and organosulfur compounds of 80% methanol extract from steam-dried Allium hookeri root Components Steam drying times Control 2 4 Yield (%) 10.71±0.67 b1)2) 36.92±0.69 a 37.40±0.41 a Total phenolic content (μg/mg) 15.53±0.69 c 33.18±0.60 b 36.36±0.82 a Browning intensity Organosulfur compound (μg/g) 280 nm 420 nm Alliin Cycloalliin 0.48±0.01 c 1.82±0.01 b 2.09±0.01 a 0.01±0.00 c 0.21±0.00 b 0.25±0.00 a 700.61±9.11 a 4.40±0.79 b 1.46±0.08 c 2,182.60±4.52 a 1,173.95±27.29 c 1,253.43±5.97 b 1) Values are mean±sd (n=3). 2) Different lower case letters (a-c) in the same row indicate a significant difference according to Duncan's multiple range test (P<0.05).
1728 전현일 양재헌 송근섭 김영수 A B C D Fig. 1. MRM mass chromatograms for alliin and cycloalliin by UPLC-ESI/MS/MS in positive mode. A: standard (1 mg/ml), B: control, C: steam drying (2 times), D: steam drying (4 times). 각각 21.0배와 25.0배증가하여 furfural, hydroxymethyl furfural 등과같은갈변중간생성물보다항산화성분으로알려진고분자 melanoidin( 갈변물질또는갈색색소 ) 생성이많은것으로나타났다 (12). 이와같은결과는추출온도와추출시간이증가할수록홍삼열수추출물의갈변도가증가했다는기존의연구결과와유사하였으며, 이는고온의증포과정중에삼채뿌리에존재하는유리당, 유리아미노산, 페놀성화합물등의성분들이고온의증포과정중에 Maillard 반응, caramelization 반응, 페놀성화합물자동산화반응등과같은비효소적갈변반응이일어나서 melanoidin으로전환되기때문으로추정된다 (22,23). UPLC-ESI/MS/MS를사용하여함황화합물을분석하였을때, alliin과 cycloalliin 표준품의전구이온 (m/z 178.14) 및생성이온 (m/z 88.09) 의머무름시간은각각 3.34분과 3.47분이었으며, 생및증포처리한삼채뿌리메탄올추출물에서도유사한머무름시간에 alliin과 cycloalliin이관찰되었다 (Fig. 1). 이는원소분석기로분석한황성분 (24) 이아 닌삼채뿌리의함황화합물함량을개별적으로동정하여분석한최초의결과이다. 생및증포처리한삼채뿌리메탄올추출물의 alliin과 cycloalliin 함량은각각 1.46~700.61 μg/ mg 및 1,173.95~2,182.60 μg/mg으로증포처리에의해서감소하였다. 즉증포처리횟수가 2회에서 4회로증가함에따라생삼채뿌리메탄올추출물에비하여 alliin은각각 159.2배와 479.9배, cycloalliin은각각 1.9배와 1.7배감소하여 alliin이증포처리과정에서급격히감소하는것으로나타났다. 이와같은결과는삼채뿌리의중요한기능성성분중하나인함황화합물이증포처리횟수가증가할수록감소한다는결과 (2,24) 와유사하였으며, 이는삼채뿌리에존재하던 alliin이증포처리과정에서파쇄, 절단, 전단, 휘발등과같은물리적요인과 alliinase와같은분해효소에의해서 allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide 등과같은다양한저분자 thiosulfinates로전환되어급격히감소하는것으로추정된다 (6). 반면에환상구조로되어있는 imino 화합물인 cycloalliin은신선한상태에서는그함유량이적을지라도열처리후에는총함황화합물의 50% 이상이남아있기때문에증포처리한삼채의함황화합물지표물질로서 alliin보다적합하다고판단된다 (25,26). 결과적으로증포처리는삼채뿌리특유의이취와매운맛을감소시켜줄뿐만아니라페놀성화합물과갈변물질같은항산화성분함량을증가시켜주므로항산화용건강기능성식품소재로활용하기위한적합한방법으로판단된다 (27). 그러나증포처리조건에따라색, 영양성분, 기능성성분및이화학적특성이변하기때문에소재의활용도를높이기위해서는다른항산화성분에관한추가적인연구가필요하다. 항산화활성및항산화성분과의상관성생및증포처리한삼채뿌리메탄올추출물의항산화활성에대한결과는 Table 2와같다. 생및증포처리한삼채뿌리메탄올추출물을 0.01~15 mg/ml의농도로조제하여 DPPH 라디칼소거활성, ABTS 라디칼소거활성, SOD 유사활성및환원력에관한항산화활성을 EC 50 값으로산출한결과, DPPH 라디칼소거활성은 0.43~1.81 mg/ml, ABTS 라디칼소거활성은 7.53~13.71 mg/ml, SOD 유사활성은 0.34 ~3.23 mg/ml 및환원력은 2.20~8.38 mg/ml로나타났으며, 모든측정방법에서증포처리에의해생삼채뿌리보다크게감소하였다. 또한, 증포처리횟수가 2회에서 4회로증가함에따라생삼채뿌리보다 DPPH 라디칼소거활성의 EC 50 값이각각 3.4배와 4.2배, ABTS 라디칼소거활성의 EC 50 값이각각 1.4배와 1.8배, SOD 유사활성의 EC 50 값이각각 6.0배와 9.5배, 환원력의 EC 50 값이각각 3.4배와 3.8 배감소하는것으로나타났다. 이와같은결과는증포처리한삼채뿌리열수추출물이생삼채뿌리열수추출물보다 EC 50 값이감소하며증포처리횟수가증가할수록더많이감소하였다는기존의연구결과와유사하였다 (24). 이는페놀성화합물의 phenolic hydroxyl group과갈변반응으로생성
증포삼채뿌리메탄올추출물의항산화활성 1729 Table 2. EC 50 value of 80% methanol extract from steam-dried Allium hookeri root Antioxidant activity Components DPPH radical scavenging activity ABTS radical scavenging activity SOD-like activity Reducing power value (mg/ml) by steam drying times Comparison 2) Control 2 4 0.02±0.00 d3)4) 0.71±0.02 d 0.01±0.00 d 0.02±0.00 d EC 50 1) 1.81±0.01 a 13.71±0.55 a 3.23±0.09 a 8.38±0.89 a 0.53±0.08 b 9.81±1.34 b 0.54±0.01 b 2.45±0.02 b 0.43±0.01 c 7.53±0.29 c 0.34±0.02 c 2.20±0.02 c 1) EC 50 value is expressed as the effective concentration at which antioxidant activity using DPPH radicals, ABTS radicals, and pyrogallols were scavenged by 50%; absorbance was 0.5 for reducing power. 2) Comparison is ascorbic acid for DPPH radical scavenging activity, SOD-like activity, and reducing power; and butylated hydroxytoluene (BHT) for ABTS radical scavenging activity. 3) Values are mean±sd (n=3). 4) Different lower case letters (a-d) in the same row indicate a significant difference according to Duncan's multiple range test (P<0.05). Table 3. Regression analysis 1) for EC 50 2) value between each antioxidant activity and antioxidant compound of 80% methanol extract from steam-dried Allium hookeri root DPPH radical scavenging activity Y=-0.068X 1+2.863, Y=-0.890X 2+2.224, Y=-5.965X 3+1.857, Y=0.002X 4+0.473, R 2 =1 Y=0.001X 5-1.170, R 2 =0.98 ABTS radical scavenging activity Y=-0.271X 1+18.037, R 2 =0.95 Y=-3.540X 2+15.530, R 2 =0.95 Y=-23.734X 3+14.068, R 2 =0.95 Y=0.007X 4+8.646, R 2 =0.87 Y=0.005X 5+12.618, R 2 =0.82 SOD-like activity Y=-0.143X 1+5.435, Y=-1.863X 2+4.097, Y=-12.496X 3+3.328, Y=0.004X 4+0.428, R 2 =1 Y=0.003X 5-3.013, R 2 =0.98 Reducing power Y=-0.310X 1+13.132, Y=-4.027X 2+10.236, Y=-27.008X 3+8.575, Y=0.009X 4+2.299, R 2 =1 Y=0.006X 5-5.187, 1) X 1, X 2, X 3, X 4, X 5, Y, and R 2 are total phenolic content, browning intensity at 280 nm, browning intensity at 420 nm, alliin content, cycloalliin content, and correlation determination coefficient, respectively. 2) EC 50 value is expressed as the effective concentration at which antioxidant activity using DPPH radicals, ABTS radicals, and pyrogallols were scavenged by 50%; absorbance was 0.5 for reducing power. 된 melanoidin이가진강한환원성으로인하여라디칼소거, 과산화물분해등과같은항산화활성을가지기때문에증포처리과정에서생성된페놀성화합물과갈변물질이증포처리한삼채뿌리메탄올추출물의항산화활성에영향을주었을것으로추정된다 (28,29). 한편기존에보고된 DPPH 라디칼소거활성의경우생삼채뿌리메탄올추출물에서분리한 ferulic acid-4-o-β-d-glucopyranoside는대조구인 ascorbic acid보다더낮은 EC 50 값을나타내어조추출물인메탄올추출물을정제함으로써다양한항산화활성을가진항산화물질의분리및획득이가능하다고판단된다 (19). 메탄올추출물에함유된항산화성분과각항산화활성 EC 50 값의상관성을살펴본결과 (Table 3), 총페놀성화합물함량및갈변도 (280 nm와 420 nm) 의결정계수 (correlation determination coefficient, R 2 ) 값은 0.95~0.99로각항산화활성과강한상관성을나타내었다. 함황화합물의 R 2 값은 alliin이 0.87~1, cycloalliin이 0.82~0.99로각항산화활성에따라서차이를보였으며, 특히 ABTS 라디칼소거활성의 R 2 값이낮게나타났다. 한편회귀분석에서얻은기울기 ( 항산화활성의능력을의미 ) 값을비교해보면각항산화활성의항산화성분별기울기값은큰차이를보였으나, 총페놀성화합물함량 (-0.310~-0.068) 및갈변물질 (280 nm에서 -4.027~-0.890, 420 nm에서 -27.008~-5.965) 은음의값을, 함황화합물 (alliin이 0.002~0.009, cycloalliin 이 0.001~0.006) 은양의값을나타내었다. 따라서증포처리로인한삼채뿌리의함황화합물함량이감소한다할지라도총페놀성화합물과갈변물질의함량이증가하여삼채뿌리의전체적인항산화활성이증가된것으로판단된다. 이와같은결과는귀리메탄올추출물이 DPPH 라디칼소거활성, ABTS 라디칼소거활성, 환원력등과같은항산화활성에서총페놀성화합물이높은상관성을보였으나비타민 E는상관성이낮았다는기존의결과와유사하였으며, 이는항산화성분의종류와특성에따라라디칼소거능이나금속이온환원력이변하기때문으로판단된다 (30,31). 요약증포처리가삼채뿌리메탄올추출물의항산화성분 ( 총페놀성화합물함량, 갈변물질, 함황화합물 ) 및항산화활성 (DPPH 라디칼소거활성, ABTS 라디칼소거활성, SOD 유사활성, 환원력 ) 에미치는영향을조사하였다. 증포횟수가 2회에서 4회로증가함에따라생삼채뿌리보다총페놀성화합물함량이각각 2.1배와 2.3배증가했으며갈변물질
1730 전현일 양재헌 송근섭 김영수 도파장에상관없이유사한경향이었다. 반면함황화합물은 alliin이각각 159.2배와 479.9배, cycloalliin이각각 1.9배와 1.7배감소하였다. 생및증포삼채뿌리메탄올추출물의항산화활성의 EC 50 값은 DPPH 라디칼소거활성이 0.43~ 1.81 mg/ml, ABTS 라디칼소거활성은 7.53~13.71 mg/ ml, SOD 유사활성은 0.34~3.23 mg/ml, 환원력은 2.20~ 8.38 mg/ml로증포처리에의해서생삼채뿌리보다 EC 50 값이감소하였다. 항산화성분과각항산화활성에대한 EC 50 값의결정계수 (R 2 ) 는 0.82 이상의높은값을나타내어강한상관성을나타내었다. 결과적으로증포처리는삼채뿌리의항산화활성을증가시키는데효과적인가공방법으로판단된다. 감사의글 본논문은농촌진흥청의공동연구사업 삼채를이용한식이소재개발및기능성유효성분탐색 (Project No. PJ0104 9004) 의연구비지원으로이루어졌으며, 이에감사드립니다. REFERENCES 1. Ayam VS. 2011. Allium hookeri, Thw. Enum. A lesser known terrestrial perennial herb used as food and its ethnobotanical relevance in Manipur. Afr J Food Agric Nutr Dev 11: 5389-5412. 2. Won SG. 2015. A study on antioxidative effects and antioxidative substances by various extract methods from different parts of Allium hookeri. MS Thesis. Kyungnam University, Changwon, Korea. 3. Park SY, Je JY, Ahn CB. 2015. Phenolic composition and hepatoprotective activities of Allium hookeri against hydrogen-peroxide-induced oxidative stress in cultured hepatocytes. J Food Biochem 40: 284-293. 4. Lee EB, Kim JH, Yang JH, Kim YS, Jun HI, Ki B, Lee SH, Kim YS, Han S, Kim DK. 2015. Antioxidant and longevity properties of the root of Allium hookeri in Caenorhabditis elegans. Kor J Pharmacogn 46: 234-242. 5. Roh SS, Kwon OJ, Yang JH, Kim YS, Lee SH, Jin JS, Jeon YD, Yokozawa T, Kim HJ. 2016. Allium hookeri root protects oxidative stress-induced inflammatory responses and β-cell damage in pancreas of streptozotocin-induced diabetic rats. BMC Complement Altern Med 16: 63. 6. Rhyu DY, Park SH. 2013. Characterization of alkyl thiosulfinate in Allium hookeri root using HPLC-ESI-MS. J Korean Soc Appl Biol Chem 56: 457-459. 7. MFDS. 2016. Analysis report for annual production of functional food in 2016. Ministry of Food and Drug Safety, Cheongju, Korea. p 1-12. 8. Son CG. 2014. Progress of functional food market in Korea and strategy of Korean medicine. J Korean Med 35: 68-74. 9. Jun HI, Park SY, Jeong DY, Song GS, Kim YS. 2014. Quality properties of yogurt added with hot water concentrates from Allium hookeri root. J Korean Soc Food Sci Nutr 43: 1415-1422. 10. Jang JY, Lee J, Choi EJ, Choi HJ, Oh YJ, Lee SH, Kim HJ. 2015. Effect of starter cultures on the antioxidant activities of Allium hookeri root-hot water extract. Korean J Food Cook Sci 31: 98-102. 11. Kim KH, Kim HJ, Byun MW, Yook HS. 2012. Antioxidant and antimicrobial activities of ethanol extract from six vegetables containing different sulfur compounds. J Korean Soc Food Sci Nutr 41: 577-583. 12. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. 13. ISO 14502-1. 2005. Determination of substances characteristic of green and black tea. Part 1. content of total polyphenols in tea-colorimetric method using Folin-Ciocalteu reagent. 14. Ichikawa M, Mizuno I, Yoshida J, Ide N, Ushijima M, Kodera Y, Hayama M, Ono K. 2006. Pharmacokinetics of cycloalliin, an organosulfur compound found in garlic and onion, in rats. J Agric Food Chem 54: 9811-9819. 15. Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F. 2005. Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem 69: 979-988. 16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. 17. Li X. 2012. Improved pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J Agric Food Chem 60: 6418-6424. 18. Oyaizu M. 1986. Studies on products of browning reaction -antioxidant activities of products of browning reaction prepared from glucosamine. Jap J Nutr 44: 307-315. 19. Jun HI, Jang H, Ahn D, Kim DK, Yang JH, Yun BS, Kim YS. 2015. Isolation and characterization of phenolic compound from Allium hookeri root for potential use as antioxidant in foods. Food Sci Biotechnol 24: 2031-2034. 20. Jin Y, Kim YJ, Jeon JN, Wang C, Min JW, Jung SY, Yang DC. 2012. Changes of ginsenosides and physiochemical properties in ginseng by new 9 repetitive steaming and drying process. Korean J Plant Res 25: 473-481. 21. Lee JW, Kim NY, Oh HL, Lee KJ, Yang KH, Doh ES, Kim MR. 2011. Antioxidant activity of Rehmanniae Radix Preparata prepared from dried root through steaming-drying cycles. J East Asian Soc Diet Life 21: 838-843. 22. Lee GS, Nam KY, Choi JE. 2013. Ginsenoside composition and quality characteristics of red ginseng extracts prepared with different extracting methods. Korean J Med Crop Sci 21: 276-281. 23. Lertittikul W, Benjakul S, Tanaka M. 2007. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein-glucose model system as influenced by ph. Food Chem 100: 669-677. 24. Jun HI, Jang HN, Yang JH, Song GS, Kim YS. 2015. Physicochemical properties and antioxidant activities of steamdried Allium hookeri root. J Korean Soc Food Sci Nutr 44: 412-417. 25. Yanagita T, Han SY, Wang YM, Tsuruta Y, Anno T. 2003. Cycloalliin, a cyclic sulfur imino acid, reduces serum triacylglycerol in rats. Nutrition 19: 140-143. 26. Jung EB, Choi JH, Yu HJ, Kim KH, Lee SK, Hwang YI, Lee SH. 2013. Organosulfur compounds in fermented garlic extracts and the effects on alcohol induced cytotoxicity in CYP2E1-transfected HepG2 cells. J Korean Soc Food Sci Nutr 42: 342-347. 27. Rosen RT, Hiserodt RD, Fukuda EK, Ruiz RJ, Zhou Z, Lech
증포삼채뿌리메탄올추출물의항산화활성 1731 J, Rosen SL, Hartman TG. 2001. Determination of allcin, S-allylcysteine and volatile metabolites of garlic in breath, plasma or simulated gastric fluids. J Nutr 131: 968S-971S. 28. Jacobo-Velázquez DA, Cisneros-Zevallos L. 2009. Correlations of antioxidant activity against phenolic content revisited: a new approach in data analysis for food and medicinal plants. J Food Sci 74: R107-R113. 29. Lee MJ, Kim HD, Park JW, Kim DS. 1992. Comparison of the antioxidant activity of melanoidin with commercial antioxidants and their synergistic effects. J Korean Soc Food Nutr 21: 686-692. 30. Ham H, Woo KS, Lee B, Park JY, Sim EY, Kim BJ, Lee C, Kim SJ, Kim WH, Lee J, Lee YY. 2015. Antioxidant compounds and activities of methanolic extracts from oat cultivars. J Korean Soc Food Sci Nutr 44: 1660-1665. 31. Jun HI, Kim YA, Kim YS. 2014. Antioxidant activities of Rubus coreanus Miquel and Morus alba L. fruits. J Korean Soc Food Sci Nutr 43: 381-388.