45-5대지.02황상일

Similar documents
46-1대지.1황상일c

02À±¼ø¿Á

433대지05박창용

44-3대지.02이광률c

03이경미(237~248)ok

03권동희(17-26)ok

DBPIA-NURIMEDIA

⑦국문지리학회지-이광률-OK

44-4대지.07이영희532~


82-01.fm

01À̽ÂÈ£A9-832š


04김호걸(39~50)ok

(

03¹ü¼±±Ô

012임수진


유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

1..

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

Lumbar spine

#Ȳ¿ë¼®

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

서론 34 2

09È«¼®¿µ 5~152s

음주측정을 위한 긴급강제채혈의 절차와 법리, A Study on the Urgent Compulsory Blood

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

10(3)-10.fm

한국성인에서초기황반변성질환과 연관된위험요인연구

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

DBPIA-NURIMEDIA

발간사 반구대 암각화는 고래잡이 배와 어부, 사냥하는 광경, 다양한 수륙동물 등 약 300여점의 그림이 바위면에 새겨져 있는 세계적 암각화입니다. 오랜 기간 새겨진 그림들 가운데 고래를 잡는 배와 어부모습은 전 세계적으로 유례를 찾기 힘들 정도로 그 중요성과 가치가 큽

45-3대지.4김태호

182 동북아역사논총 42호 금융정책이 조선에 어떤 영향을 미쳤는지를 살펴보고자 한다. 일제 대외금융 정책의 기본원칙은 각 식민지와 점령지마다 별도의 발권은행을 수립하여 일본 은행권이 아닌 각 지역 통화를 발행케 한 점에 있다. 이들 통화는 일본은행권 과 等 價 로 연

???? 1

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

¨ë Áö¸®ÇÐȸÁö-¼Û°æ¾ðOK

09김정식.PDF

도비라

°í¼®ÁÖ Ãâ·Â

44-3대지.08류주현c

45-3대지.6송성대

, 41 ( ) * 1) ***.,. I.,..., ( ) ( ).,. ( ) *. ** 1

02이용배(239~253)ok

①국문지리학회지-주성재-OK

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

IKC43_06.hwp

민속지_이건욱T 최종

歯5-2-13(전미희외).PDF

ISO17025.PDF

12.077~081(A12_이종국).fm

03-서연옥.hwp

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Can032.hwp

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

<28BCF6BDC D B0E6B1E2B5B520C1F6BFAABAB020BFA9BCBAC0CFC0DAB8AE20C1A4C3A520C3DFC1F8C0FCB7AB5FC3D6C1BE E E687770>

歯1.PDF

09구자용(489~500)

DBPIA-NURIMEDIA

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

사단법인 커뮤니케이션디자인협회 시각디자인학회

12È«±â¼±¿Ü339~370

04최원석(53-72)ok

46-3대지.04이광률c

Output file

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

p 19; pp 32 37; 2013 p ㆍ 新 興 寺 大 光 殿 大 光 殿 壁 畵 考 察 ; : 2006

Crt114( ).hwp

44-6대지.07전종한-5

, ( ) * 1) *** *** (KCGS) 2003, 2004 (CGI),. (+),.,,,.,. (endogeneity) (reverse causality),.,,,. I ( ) *. ** ***

13장문현(541~556)ok

12¾ÈÇö°æ 1-155T304®¶ó

~41-기술2-충적지반

2011´ëÇпø2µµ 24p_0628

04_이근원_21~27.hwp

14.531~539(08-037).fm

_ _ Reading and Research in Archaeology. _ Reading and Research in Korean Historical Texts,,,,,. _Reading and Research in Historical Materials from Ko

4번.hwp

< C6AFC1FD28C3E0B1B8292E687770>

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

02ÇãÀÎÇý ~26š

국토

Æ÷Àå½Ã¼³94š

untitled

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

현대영화연구

300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름

04-다시_고속철도61~80p

10(3)-09.fm

( )Kju269.hwp

Transcription:

Comparisons of Grain Size Analysis Results by Different Pretreatments Procedures in Loess-paleosol Sediments Soon-Ock Yoon* Chung-Sun Park** Sangill Hwang*** 10 Abstract Grain size analysis of sediments and soils has been regarded as a one of the most important analytical methods in Earth Sciences. The results of grain size analysis by 10 different pretreatment procedures in loess-paleosol sediments are compared in the study. In spite of the most powerful effectiveness of dispersant(sodium hexametaphosphate) on the dispersions of sediments, the effects show large differences by its treatment orders with HCl. It may result from that Na + ions in the dispersant may not be able to effectively substitute Ca 2+ ions in the sediments due to the electrostatic forces between Na + and Cl - ions in the dispersant and HCl, respectively. Although H 2 O 2 and HCl are more effective in dispersion than hot water, they do not affect greatly the dispersions. Therefore, the reliable results of grain size analysis can be obtained by selecting the adequate pretreatment procedures most suitable for the purposes of researches and characteristics of sediments. : grain size, grain size analysis, pretreatment, loess, laser diffraction grain size analyzer (RACS 2009-3002) (Professor, Department of Geography and Research Institute for Basic Sciences, Kyung Hee University), soyoon@khu.ac.kr (Ph. D. Candidate, Department of Geography, Kyung Hee University), pcus96@hanmail.net (Associate Professor, Department of Geography, Kyungpook National University), hwangsi@knu.ac.kr 553

(Gee and Bauder, 1986) (loess) (magnetic susceptibility) (paleoclimatic proxy) (An et al., 1991; Porter and An, 1995) (Stoke s Law) (sedimentation method) (pipette method) (Gee and Bauder, 1986; Chough et al., 1995) X (Beuselinck et al., 1998) (Chang and Park, 2001; Hwang et al., 2005; Buscombe, 2008) (Beuselinck et al., 1998; Konert and Vandenberghe, 1997) 1 (Beuselinck et al., 1998; Konert and Vandenberghe, 1997; Blott and Pye, 2006; Loizeau et al., 1994) (Mason et al., 2003; McTainsh et al., 1997) (H 2 O 2 ) (HCl) 2 (nodule) (sodium hexametaphosphate, (NaPO 3 ) 6 ) (Na + ) (Ca 2+ ) (Lu and An, 1998) Chae(1979) (Na 2 SiO 2 9H 2 O) (NaOH) (H 2 O 2 ) Nelsen(1983) 4 4 Beuselinck et al.(1998) 554

0 1 0 4 15 sieve-pipette (Coulter LS-100) Lu and An(1998) 20 6 1 10 10 DCSD; Yoon et al., 2007) BUPS; Park et al., 2007) BDSJ; Hwang et al., 2009) 20 10 Table 1 1 1 (H 2 O 2 ) 30 50 (HCl) 50 24 Table 1. Detailed pretreatment procedures. No. Pretreatment procedures P1 hot water P2 hot water + drying + 30% H 2 O 2 P3 hot water + drying + 10% HCl P4 hot water + drying + 0.4% (NaPO 3 ) 6 P5 hot water + drying + 30% H 2 O 2 + 10% HCl P6 hot water + drying + 30% H 2 O 2 + 0.4% (NaPO 3 ) 6 P7 hot water + drying + 10% HCl + 0.4% (NaPO 3 ) 6 P8 hot water + drying + 30% H 2 O 2 + 10% HCl + 0.4% (NaPO 3 ) 6 P9 hot water + drying + 30% H 2 O 2 + 0.4% (NaPO 3 ) 6 + 10% HCl P10 hot water + drying + 30% H 2 O 2 + 10% HCl + decanting supernatant + 0.4% (NaPO 3 ) 6 555

Figure 1. Photography of Mastersizer-2000 and HydroMu. Malvern Instruments Laser Particle Size Analyzer Mastersizer-2000 (Figure 1) 0 02 2 000 100 Mastersizer-2000 Mie Fraunhofer Mie Fraunhofer (De Boer et al., 1987) Mastersizer-2000 HydroMu 2 HydroMu Figure 1 (sediment circulation window cell laser emission) laser detector 2 (Malvern Korea homepage) 99 10 3 30 HydroMu Folk and Ward(1957) 63 63 16 16 4 4 x y y x Reduced Major Axis Regression RMA RMA 556

(Beuselinck et al., 1998) RMA y (R 2 ) RMA x x RMA y x x 100 x y RMA y 5 Figure 2 RMA y x 1 y 0 y 1 0 Figure 2 a RMA y x y 1 0 Figure 2 d Figure 2 40 RMA y x Figure 2. Examples of RMA results. 557

1 y 0 Figure 2 c RMA Figure 2 A RMA y x (C) y x (B) Figure 2 (b) 1 y 0 c Figure 2 e Figure 3 10 20 P1 BDSJ270 4 225 DCSD70 430 29 (BUPS240) 97 (DCSD110) DCSD200 (BUPS) DCSD110 P4 0 22 BUPS270 15 7 P4 P6 P9 DCSD110 P4 P6 P9 6 87 7 85 7 19 8 70 7 35 11 45 0 22 0 38 0 91 2 83 108 7 03 P10 BDSJ150 30 RMA (Figure 4, Table 2) 558

Figure 3. Comparison of mean values of loess-paleosol samples. 559

0 100 Figure 4 RMA 0 937 1 391 y 11 804 3 666 0 040 0 816 (P3 P5; Figure 4(a)~(d)) 0 9378 1 068 y 0 1658 3 666 Figure 4 Table 2. Results of RMA calculations. Threshold Critical Threshold Critical No. RMA equation R 2 value value No. RMA equation R 2 value value (% or ) (% or ) (% or ) (% or ) 4(a) y=0.942x+3.666 0.515 63.21-6(a) y=-0.7866x+48.483 0.031 27.14 61.64 4(b) y=0.9481x+0.2568 0.066 4.95-6(b) y=0.5202x+9.614 0.000 20.04-4(c) y=0.9378x+0.1658 0.816 2.67-6(c) y=-0.9469x+45.556 0.001 23.40 48.11 4(d) y=1.068x+0.2845 0.754 - - 6(d) y=-1.138x+39.864 0.028 18.65 35.03 4(e)* y=2.51x-58.434 0.028 38.70 23.28 6(e)* y=1.227x-53.347 0.000 235.01 43.48 4(f) y=1.391x-1.502 0.680 3.84 1.08 6(f) y=0.8904x+3.862 0.713 35.24-4(g) y=1.12x-3.231 0.319 26.93 2.88 6(g) y=0.8868x+5.435 0.495 48.01-4(h) y=1.31x-11.804 0.696 38.08 9.01 6(h) y=0.8591x+1.948 0.810 13.83-4(i) y=1.119x-4.763 0.782 40.03 4.26 6(i) y=0.8136x+1.215 0.792 6.52-4(j)* y=5.631x-42.999 0.209 9.29 7.64 6(j)* y=0.7849x+8.643 0.595 40.18-4(k) y=0.8396x-0.1383 0.427-0.16 6(k) y=0.7936x+0.1944 0.563 0.94-4(l) y=1.114x-4.013 0.040 35.20 3.60 6(l) y=1.042x+1.776 0.234 - - 4(m) y=0.974x+2.98 0.698 - - 6(m) y=0.8923x+4.729 0.840 43.91-4(n) y=1.211x+1.451 0.742 - - 6(n) y=0.923x+2.66 0.832 34.55-4(o)* y=0.733x+1.943 0.464 7.28-6(o)* y=0.2292x+21.672 0.085 37.60-5(a) y=0.8656x-0.165 0.346-0.19 7(a) y=1.227x-21.648 0.002 95.37 17.64 5(b) y=0.7047x+10.341 0.232 35.02-7(b) y=0.8108x-3.48 0.264-4.29 5(c) y=1.191x+1.368 0.533 - - 7(c) y=0.838x+13.055 0.012 80.59-5(d) y=0.9733x+1.354 0.666 50.71-7(d) y=-1.296x+45.175 0.054 19.68 34.86 5(e)* y=2.266x-73.91 0.012 58.38 32.62 7(e)* y=4.368x-126.62 0.005 37.60 28.99 5(f) y=-1.447x+52.232 0.000 21.35 36.10 7(f) y=1.302x-5.931 0.202 19.64 4.56 5(g) y=1.42x-1.408 0.020 3.35 0.99 7(g) y=1.655x-27.27 0.437 41.63 16.48 5(h) y=1.51x-33.006 0.059 64.72 21.86 7(h) y=1.145x-2.791 0.574 19.25 2.44 5(i) y=0.7291x-11.912 0.004-16.34 7(i) y=1.35x-4.152 0.610 11.86 3.08 5(j)* y=-3.251x+76.675 0.001 18.04 23.59 7(j)* y=10.718x-296.79 0.001 30.54 27.69 5(k) y=0.8733x+19.134 0.031 - - 5(l) y=1.412x-1.02 0.457 2.48 0.72 5(m) y=1.123x-15.918 0.096-14.17 5(n) y=0.7894x-9.219 0.000-11.68 5(o)* y=0.4232x+27.308 0.031 47.34 - Note: The number of each result indicates the number in Figure 4, 5, 6 and 7, and the symbol * indicates median( ) and the others are percentages(%) of size fractions. 560

Figure 4. Comparisons of effects by H 2 O 2 on dispersion of loess-paleosol samples. The threshold and critical values are presented in each graph as gray dots with labels. The number and percentage in upper left corner indicate the number of data y>x and its percentage. 561

Figure 5. Comparisons of effects by HCl on dispersion of loess-paleosol samples. The threshold and critical values are presented in each graph as gray dots with labels. The number and percentage in upper left corner indicate the number of data y>x and its percentage. 562

(P4 P6; Figure 4(f)~(i)) 1 y 0 (P7 P8; Figure 4(k)~(n)) Figure 4(d) (n) RMA y 1 0 Figure 4(k) RMA 1 0 Figure 4(g) (Figure 4(e), (j), (o)) y 0 733 5 631 58 434 1 943 0 464 Figure 4(e) (j) Figure 4(o) Figure 5 Table 2 (Figure 4) (P2 P5; Figure 5(a)~(d)) RMA 0 7047 1 191 0 165 10 341 (P4 P7; Figure 5(f)~(i)) (P6 P8; Figure 5(k)~(n)) Figure 5(l) 0 1 Figure 5(f) 1 447 600 97 582 3 0 50 (Figure 5(e)) (Figure 5(j)) (Figure 5(o)) 563

Figure 6. Comparisons of effects by dispersant on dispersion of loess-paleosol samples. The threshold and critical values are presented in each graph as gray dots with labels. The number and percentage in upper left corner indicate the number of data y>x and its percentage. 564

Figure 6 Table 2 (P2 P6; Figure 6(a)~(d)) (Figure 5(f)~(o)) 48 483 0 031 (Figure 6(e)) (P3 P7; Figure 6(f)~(i)) (Figure 4) RMA 0 8136 0 8904 y 1 215 5 435 (P5 P8; Figure 6(k)~(n)) RMA 0 7936 1 042 y 0 1944 4 729 0 840 0 832 0 234 0 563 (Figure 6(l)) y 1 0 (Figure 6(e), (j), (o)) P8 P9 P10 48 2 Table 1 Figure 7 Table 2 (P8 P9: Figure 7(a)~(d)) 1 296 1 227 21 648 45 175 0 264 565

Figure 7. Comparisons of effects by order and dilution on dispersion of loess-paleosol samples. The threshold and critical values are presented in each graph as gray dots with labels. The number and percentage in upper left corner indicate the number of data y>x and its percentage. 566

(Figure 7(e)) 0 005 44 7 33 (P8 P10; Figure 7(f)~(j)) 1 145 1 655 1 y 27 27 2 791 0 0 202 0 610 (Figure 7(j)) RMA 10 718 296 79 R 2 0 001 2 Table 3. Results of increase or decrease after specific chemical treatments. Figure 4 P3 P5 P4 P6 P7 P8 sand + + - coarse silt - fine silt - - + clay + - + median - Figure 5 P2 P5 P4 P7 P6 P8 sand - ++ ++ coarse silt ++ ++ fine silt + -- -- clay + -- -- median ++ ++ Figure 6 P2 P6 P3 P7 P5 P8 sand -- - coarse silt -- + + fine silt ++ + clay ++ - + median -- - Figure 7 P8 P9 P8 P10 sand -- + coarse silt -- - fine silt ++ clay ++ median -- 567

100 100 RMA Table 3 RMA Table 3 P2 P6 P8 P9 P4 P7 P6 P8 P5 P8 P2 P5 P4 P7 P6 P8 P2 P5 P2 P6 (P3 P7) (P5 P8) P8 P9 (P4 P6) Lu and An(1998) P4 P6 P8 P9 (H 2 O) (O 2- ) (H + ) (Cl - ) 568

(Na + ) (PO 3- ) (electrostatic force) P9 P10 2 2 10 0 4 Park(1985) 20 Yoon et al., 2007; Park et al., 2007; Hwang et al., 2009; Shin et al., 2004) Oh and Kim, 1994; Kim, 2007) (Rare Earth Elements; Park et al., 2007; Hwang et al., 2009) (Lee and Yi, 2002) Figure 8 (MIS 5) S1(Yang and Ding, 2008) S1 (Yoon et al., 2007; DCSD70, DCSD90) 45 Figure 8. Comparisons of S1 samples in the Chinese Loess Plateau(Yang and Ding, 2008) and Daecheon area. 569

20 Figure 8 MIS 5 4 50 6 20 4 8 4 9 2 8 0 9 2 P4 P6 P9 9 0 11 3 8 3 9 0 7 0 9 2 6 4 8 8 P8 27 33 45 56 P6 P8 P6 P8 1 570

An, Z. S., Kukla G. J., Porter, S. C., and Xiao, J. L., 1991, Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years, Quaternary Research, 36, 29-36. Beuselinck, L., Govers, G., Poesen, J., Degraer, G., and Froyen, L., 1998, Grain-size analysis by laser diffractometry: Comparison with the sievepipette method, Catena, 32, 193-208. Blott, S. J. and Pye, K., 2006, Particle size distribution analysis of sand-sized particles by laser diffraction: An experimental investigation of instrument sensitivity and the effects of particle shape, Sedimentology, 53, 671-685. Buscombe, D., 2008, Estimation of grain-size distributions and associated parameters from digital images of sediment, Sedimentary Geology, 210, 1-10. Chae, K. I., 1979, The effect of dispersing agents on grain size analysis of soil(1), Journal of Sangju National University, 18, 135-141 (in Korean). Chang, Y. S. and Park, H. D., 2001, Image analysis method for the color and texture information of rock, Journal of the Korean Society for Geosystem Engineering, 38(5), 352-363 (in Korean). Chough, S. K., Rhee, C. W., Sohn, Y. K., and Hwang, I. G., 1995, Sedimentology, Woosung, Seoul 1995 De Boer, G. B. J., de Weerd, C., Thoenes, D., and Goossens, H. W. J., 1987, Laser diffraction spectrometry: Fraunhofer diffraction versus Mie scattering, Particle & Particle Systems Characterization, 4, 14-19. Folk, R. L. and Ward, W. C., 1957, Brazos River bar: A study in the significance of grain size parameters, Journal of Sedimentary Petrology, 27, 3-26. Gee, G. W. and Bauder, J. W., 1986, Particle-size analysis, in Klute, A. (ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods(second edition), American Society of Agronomy and Soil Science Society of America, Madison, 383-411. Hwang, S. I., Park, C. S., and Yoon, S. O., 2009, Weathering properties and provenance of loesspaleosol sequencen deposited in river terrace in the Bongdong area, Wangju-gun, Jeonbuk Province, Journal of the Korean Geographical Society, 44(4), 463-480 (in Korean). Hwang, T. J., Jin, C. S., Min, T. K., and Kim, C. Y., 2005, Particle size distribution analysis for granular material using digital image processing, Journal of the Korean Society of Civil Engineers, 25(4C), 259-266 (in Korean). Kim, Y. R., 2007, Properties of local loess of small basin in Charyong Ranges-Iljuk, Anseong City, Central Korea, Journal of the Korean Geomorphological Association, 14(2), 67-81 (in Korean). Konert, M. and Vandenberghe, J., 1997, Comparison of laser grain-size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction, Sedimentology, 44, 523-535. Lee, Y. I. and Yi, S. B., 2002, Characteristics of Pyeongchang-ri paleolithic-site paleosols, Yongin-si, Gyeonggi-do, Korea: Implication for archaeogeological application, Journal of the Geological Society Korea, 38(4), 417-489 (in Korean). Loizeau, J. L., Arbouille, D., Santiago, S., and Vernet, J. P., 1994, Evaluation of a wide range laser diffraction grain size analyser for use with sediments, Sedimentology, 41, 353-361. Lu, H. and An, Z., 1998, Pretreated methods on loesspalaeosol samples granulometry, Chinese Science Bulletin, 43, 237-240. Mason, J. A., Jacobs, P. M., Greene, R. S. B., and Nettleton, W. D., 2003, Sedimentary aggregates in the Peoria Loess of Nebraska, USA, Catena, 53, 377-397. McTainsh, G. H., Nickling, W. G., and Lynch, A. W., 571

1997, Dust deposition and particle size in Mali, West Africa, Catena, 29, 307-322. Nelsen, T. A., 1983, Time- and method-dependent size distributions of fine-grained sediments, Sedimentology, 30, 249-259. Oh, K. S. and Kim, N. S., 1994, Origin and postdepositional deformation of the superficial formations covering basalt plateau in Chungok area, The Korean Journal of Quaternary Research, 8(1), 43-68 (in Korean). Park, C. S., Yoon, S. O., and Hwang, S. I., 2007, Properties and provenance of loess-paleosol sequence at the Daebo Granite area of Buan, Jeonbuk Province, South Korea, Journal of the Korean Geographical Society, 42(6), 898-913 (in Korean). Park, D. W., 1985, A study on the loessial red yellow soil of Hwangsan, Kimje County and Gamgok, Chungeup County of the south western coastal area of Korea - With special reference to the possibility of loess deposition, Geography, 32, 1-10 (in Korean). Porter, S. C. and An, Z. S., 1995, Correlation between climate events in the North Atlantic and China during the last glaciation, Nature, 375, 305-308. Shin, J. B., Yu, K. M., Naruse, T., and Hayashida, A., 2004, Study on loess-paleosol stratigraphy of Quaternary unconsolidated sediments at E55S20-IV pit of Chongokni Paleolithic site, Journal of the Geological Society Korea, 40(4), 369-381 (in Korean). Yang, S. and Ding, Z., 2008, Advance-retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacialinterglacial cycles, Earth and Planetary Science Letters, 274, 499-510. Yoon, S. O., Park, C. S., Hwang, S. I., and Naruse, T., 2007, Weathering characteristics of loesspaleosol sequence at the Daecheon area, South Korea, Journal of the Geological Society of Korea, 43(3), 281-296 (in Korean). http://www.malvern.co.kr/ 702-701 hwangsi@knu.ac.kr, 053-950-5230 053-950-6227 Correspondence: Sangill Hwang, Department of Geography, College of Social Science, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, 702-701, Korea (e-mail: hwangsi@knu.ac.kr, phone: +82-53-950-5230, fax: +82-53-950-6227) 572