Comparisons of Grain Size Analysis Results by Different Pretreatments Procedures in Loess-paleosol Sediments Soon-Ock Yoon* Chung-Sun Park** Sangill Hwang*** 10 Abstract Grain size analysis of sediments and soils has been regarded as a one of the most important analytical methods in Earth Sciences. The results of grain size analysis by 10 different pretreatment procedures in loess-paleosol sediments are compared in the study. In spite of the most powerful effectiveness of dispersant(sodium hexametaphosphate) on the dispersions of sediments, the effects show large differences by its treatment orders with HCl. It may result from that Na + ions in the dispersant may not be able to effectively substitute Ca 2+ ions in the sediments due to the electrostatic forces between Na + and Cl - ions in the dispersant and HCl, respectively. Although H 2 O 2 and HCl are more effective in dispersion than hot water, they do not affect greatly the dispersions. Therefore, the reliable results of grain size analysis can be obtained by selecting the adequate pretreatment procedures most suitable for the purposes of researches and characteristics of sediments. : grain size, grain size analysis, pretreatment, loess, laser diffraction grain size analyzer (RACS 2009-3002) (Professor, Department of Geography and Research Institute for Basic Sciences, Kyung Hee University), soyoon@khu.ac.kr (Ph. D. Candidate, Department of Geography, Kyung Hee University), pcus96@hanmail.net (Associate Professor, Department of Geography, Kyungpook National University), hwangsi@knu.ac.kr 553
(Gee and Bauder, 1986) (loess) (magnetic susceptibility) (paleoclimatic proxy) (An et al., 1991; Porter and An, 1995) (Stoke s Law) (sedimentation method) (pipette method) (Gee and Bauder, 1986; Chough et al., 1995) X (Beuselinck et al., 1998) (Chang and Park, 2001; Hwang et al., 2005; Buscombe, 2008) (Beuselinck et al., 1998; Konert and Vandenberghe, 1997) 1 (Beuselinck et al., 1998; Konert and Vandenberghe, 1997; Blott and Pye, 2006; Loizeau et al., 1994) (Mason et al., 2003; McTainsh et al., 1997) (H 2 O 2 ) (HCl) 2 (nodule) (sodium hexametaphosphate, (NaPO 3 ) 6 ) (Na + ) (Ca 2+ ) (Lu and An, 1998) Chae(1979) (Na 2 SiO 2 9H 2 O) (NaOH) (H 2 O 2 ) Nelsen(1983) 4 4 Beuselinck et al.(1998) 554
0 1 0 4 15 sieve-pipette (Coulter LS-100) Lu and An(1998) 20 6 1 10 10 DCSD; Yoon et al., 2007) BUPS; Park et al., 2007) BDSJ; Hwang et al., 2009) 20 10 Table 1 1 1 (H 2 O 2 ) 30 50 (HCl) 50 24 Table 1. Detailed pretreatment procedures. No. Pretreatment procedures P1 hot water P2 hot water + drying + 30% H 2 O 2 P3 hot water + drying + 10% HCl P4 hot water + drying + 0.4% (NaPO 3 ) 6 P5 hot water + drying + 30% H 2 O 2 + 10% HCl P6 hot water + drying + 30% H 2 O 2 + 0.4% (NaPO 3 ) 6 P7 hot water + drying + 10% HCl + 0.4% (NaPO 3 ) 6 P8 hot water + drying + 30% H 2 O 2 + 10% HCl + 0.4% (NaPO 3 ) 6 P9 hot water + drying + 30% H 2 O 2 + 0.4% (NaPO 3 ) 6 + 10% HCl P10 hot water + drying + 30% H 2 O 2 + 10% HCl + decanting supernatant + 0.4% (NaPO 3 ) 6 555
Figure 1. Photography of Mastersizer-2000 and HydroMu. Malvern Instruments Laser Particle Size Analyzer Mastersizer-2000 (Figure 1) 0 02 2 000 100 Mastersizer-2000 Mie Fraunhofer Mie Fraunhofer (De Boer et al., 1987) Mastersizer-2000 HydroMu 2 HydroMu Figure 1 (sediment circulation window cell laser emission) laser detector 2 (Malvern Korea homepage) 99 10 3 30 HydroMu Folk and Ward(1957) 63 63 16 16 4 4 x y y x Reduced Major Axis Regression RMA RMA 556
(Beuselinck et al., 1998) RMA y (R 2 ) RMA x x RMA y x x 100 x y RMA y 5 Figure 2 RMA y x 1 y 0 y 1 0 Figure 2 a RMA y x y 1 0 Figure 2 d Figure 2 40 RMA y x Figure 2. Examples of RMA results. 557
1 y 0 Figure 2 c RMA Figure 2 A RMA y x (C) y x (B) Figure 2 (b) 1 y 0 c Figure 2 e Figure 3 10 20 P1 BDSJ270 4 225 DCSD70 430 29 (BUPS240) 97 (DCSD110) DCSD200 (BUPS) DCSD110 P4 0 22 BUPS270 15 7 P4 P6 P9 DCSD110 P4 P6 P9 6 87 7 85 7 19 8 70 7 35 11 45 0 22 0 38 0 91 2 83 108 7 03 P10 BDSJ150 30 RMA (Figure 4, Table 2) 558
Figure 3. Comparison of mean values of loess-paleosol samples. 559
0 100 Figure 4 RMA 0 937 1 391 y 11 804 3 666 0 040 0 816 (P3 P5; Figure 4(a)~(d)) 0 9378 1 068 y 0 1658 3 666 Figure 4 Table 2. Results of RMA calculations. Threshold Critical Threshold Critical No. RMA equation R 2 value value No. RMA equation R 2 value value (% or ) (% or ) (% or ) (% or ) 4(a) y=0.942x+3.666 0.515 63.21-6(a) y=-0.7866x+48.483 0.031 27.14 61.64 4(b) y=0.9481x+0.2568 0.066 4.95-6(b) y=0.5202x+9.614 0.000 20.04-4(c) y=0.9378x+0.1658 0.816 2.67-6(c) y=-0.9469x+45.556 0.001 23.40 48.11 4(d) y=1.068x+0.2845 0.754 - - 6(d) y=-1.138x+39.864 0.028 18.65 35.03 4(e)* y=2.51x-58.434 0.028 38.70 23.28 6(e)* y=1.227x-53.347 0.000 235.01 43.48 4(f) y=1.391x-1.502 0.680 3.84 1.08 6(f) y=0.8904x+3.862 0.713 35.24-4(g) y=1.12x-3.231 0.319 26.93 2.88 6(g) y=0.8868x+5.435 0.495 48.01-4(h) y=1.31x-11.804 0.696 38.08 9.01 6(h) y=0.8591x+1.948 0.810 13.83-4(i) y=1.119x-4.763 0.782 40.03 4.26 6(i) y=0.8136x+1.215 0.792 6.52-4(j)* y=5.631x-42.999 0.209 9.29 7.64 6(j)* y=0.7849x+8.643 0.595 40.18-4(k) y=0.8396x-0.1383 0.427-0.16 6(k) y=0.7936x+0.1944 0.563 0.94-4(l) y=1.114x-4.013 0.040 35.20 3.60 6(l) y=1.042x+1.776 0.234 - - 4(m) y=0.974x+2.98 0.698 - - 6(m) y=0.8923x+4.729 0.840 43.91-4(n) y=1.211x+1.451 0.742 - - 6(n) y=0.923x+2.66 0.832 34.55-4(o)* y=0.733x+1.943 0.464 7.28-6(o)* y=0.2292x+21.672 0.085 37.60-5(a) y=0.8656x-0.165 0.346-0.19 7(a) y=1.227x-21.648 0.002 95.37 17.64 5(b) y=0.7047x+10.341 0.232 35.02-7(b) y=0.8108x-3.48 0.264-4.29 5(c) y=1.191x+1.368 0.533 - - 7(c) y=0.838x+13.055 0.012 80.59-5(d) y=0.9733x+1.354 0.666 50.71-7(d) y=-1.296x+45.175 0.054 19.68 34.86 5(e)* y=2.266x-73.91 0.012 58.38 32.62 7(e)* y=4.368x-126.62 0.005 37.60 28.99 5(f) y=-1.447x+52.232 0.000 21.35 36.10 7(f) y=1.302x-5.931 0.202 19.64 4.56 5(g) y=1.42x-1.408 0.020 3.35 0.99 7(g) y=1.655x-27.27 0.437 41.63 16.48 5(h) y=1.51x-33.006 0.059 64.72 21.86 7(h) y=1.145x-2.791 0.574 19.25 2.44 5(i) y=0.7291x-11.912 0.004-16.34 7(i) y=1.35x-4.152 0.610 11.86 3.08 5(j)* y=-3.251x+76.675 0.001 18.04 23.59 7(j)* y=10.718x-296.79 0.001 30.54 27.69 5(k) y=0.8733x+19.134 0.031 - - 5(l) y=1.412x-1.02 0.457 2.48 0.72 5(m) y=1.123x-15.918 0.096-14.17 5(n) y=0.7894x-9.219 0.000-11.68 5(o)* y=0.4232x+27.308 0.031 47.34 - Note: The number of each result indicates the number in Figure 4, 5, 6 and 7, and the symbol * indicates median( ) and the others are percentages(%) of size fractions. 560
Figure 4. Comparisons of effects by H 2 O 2 on dispersion of loess-paleosol samples. The threshold and critical values are presented in each graph as gray dots with labels. The number and percentage in upper left corner indicate the number of data y>x and its percentage. 561
Figure 5. Comparisons of effects by HCl on dispersion of loess-paleosol samples. The threshold and critical values are presented in each graph as gray dots with labels. The number and percentage in upper left corner indicate the number of data y>x and its percentage. 562
(P4 P6; Figure 4(f)~(i)) 1 y 0 (P7 P8; Figure 4(k)~(n)) Figure 4(d) (n) RMA y 1 0 Figure 4(k) RMA 1 0 Figure 4(g) (Figure 4(e), (j), (o)) y 0 733 5 631 58 434 1 943 0 464 Figure 4(e) (j) Figure 4(o) Figure 5 Table 2 (Figure 4) (P2 P5; Figure 5(a)~(d)) RMA 0 7047 1 191 0 165 10 341 (P4 P7; Figure 5(f)~(i)) (P6 P8; Figure 5(k)~(n)) Figure 5(l) 0 1 Figure 5(f) 1 447 600 97 582 3 0 50 (Figure 5(e)) (Figure 5(j)) (Figure 5(o)) 563
Figure 6. Comparisons of effects by dispersant on dispersion of loess-paleosol samples. The threshold and critical values are presented in each graph as gray dots with labels. The number and percentage in upper left corner indicate the number of data y>x and its percentage. 564
Figure 6 Table 2 (P2 P6; Figure 6(a)~(d)) (Figure 5(f)~(o)) 48 483 0 031 (Figure 6(e)) (P3 P7; Figure 6(f)~(i)) (Figure 4) RMA 0 8136 0 8904 y 1 215 5 435 (P5 P8; Figure 6(k)~(n)) RMA 0 7936 1 042 y 0 1944 4 729 0 840 0 832 0 234 0 563 (Figure 6(l)) y 1 0 (Figure 6(e), (j), (o)) P8 P9 P10 48 2 Table 1 Figure 7 Table 2 (P8 P9: Figure 7(a)~(d)) 1 296 1 227 21 648 45 175 0 264 565
Figure 7. Comparisons of effects by order and dilution on dispersion of loess-paleosol samples. The threshold and critical values are presented in each graph as gray dots with labels. The number and percentage in upper left corner indicate the number of data y>x and its percentage. 566
(Figure 7(e)) 0 005 44 7 33 (P8 P10; Figure 7(f)~(j)) 1 145 1 655 1 y 27 27 2 791 0 0 202 0 610 (Figure 7(j)) RMA 10 718 296 79 R 2 0 001 2 Table 3. Results of increase or decrease after specific chemical treatments. Figure 4 P3 P5 P4 P6 P7 P8 sand + + - coarse silt - fine silt - - + clay + - + median - Figure 5 P2 P5 P4 P7 P6 P8 sand - ++ ++ coarse silt ++ ++ fine silt + -- -- clay + -- -- median ++ ++ Figure 6 P2 P6 P3 P7 P5 P8 sand -- - coarse silt -- + + fine silt ++ + clay ++ - + median -- - Figure 7 P8 P9 P8 P10 sand -- + coarse silt -- - fine silt ++ clay ++ median -- 567
100 100 RMA Table 3 RMA Table 3 P2 P6 P8 P9 P4 P7 P6 P8 P5 P8 P2 P5 P4 P7 P6 P8 P2 P5 P2 P6 (P3 P7) (P5 P8) P8 P9 (P4 P6) Lu and An(1998) P4 P6 P8 P9 (H 2 O) (O 2- ) (H + ) (Cl - ) 568
(Na + ) (PO 3- ) (electrostatic force) P9 P10 2 2 10 0 4 Park(1985) 20 Yoon et al., 2007; Park et al., 2007; Hwang et al., 2009; Shin et al., 2004) Oh and Kim, 1994; Kim, 2007) (Rare Earth Elements; Park et al., 2007; Hwang et al., 2009) (Lee and Yi, 2002) Figure 8 (MIS 5) S1(Yang and Ding, 2008) S1 (Yoon et al., 2007; DCSD70, DCSD90) 45 Figure 8. Comparisons of S1 samples in the Chinese Loess Plateau(Yang and Ding, 2008) and Daecheon area. 569
20 Figure 8 MIS 5 4 50 6 20 4 8 4 9 2 8 0 9 2 P4 P6 P9 9 0 11 3 8 3 9 0 7 0 9 2 6 4 8 8 P8 27 33 45 56 P6 P8 P6 P8 1 570
An, Z. S., Kukla G. J., Porter, S. C., and Xiao, J. L., 1991, Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years, Quaternary Research, 36, 29-36. Beuselinck, L., Govers, G., Poesen, J., Degraer, G., and Froyen, L., 1998, Grain-size analysis by laser diffractometry: Comparison with the sievepipette method, Catena, 32, 193-208. Blott, S. J. and Pye, K., 2006, Particle size distribution analysis of sand-sized particles by laser diffraction: An experimental investigation of instrument sensitivity and the effects of particle shape, Sedimentology, 53, 671-685. Buscombe, D., 2008, Estimation of grain-size distributions and associated parameters from digital images of sediment, Sedimentary Geology, 210, 1-10. Chae, K. I., 1979, The effect of dispersing agents on grain size analysis of soil(1), Journal of Sangju National University, 18, 135-141 (in Korean). Chang, Y. S. and Park, H. D., 2001, Image analysis method for the color and texture information of rock, Journal of the Korean Society for Geosystem Engineering, 38(5), 352-363 (in Korean). Chough, S. K., Rhee, C. W., Sohn, Y. K., and Hwang, I. G., 1995, Sedimentology, Woosung, Seoul 1995 De Boer, G. B. J., de Weerd, C., Thoenes, D., and Goossens, H. W. J., 1987, Laser diffraction spectrometry: Fraunhofer diffraction versus Mie scattering, Particle & Particle Systems Characterization, 4, 14-19. Folk, R. L. and Ward, W. C., 1957, Brazos River bar: A study in the significance of grain size parameters, Journal of Sedimentary Petrology, 27, 3-26. Gee, G. W. and Bauder, J. W., 1986, Particle-size analysis, in Klute, A. (ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods(second edition), American Society of Agronomy and Soil Science Society of America, Madison, 383-411. Hwang, S. I., Park, C. S., and Yoon, S. O., 2009, Weathering properties and provenance of loesspaleosol sequencen deposited in river terrace in the Bongdong area, Wangju-gun, Jeonbuk Province, Journal of the Korean Geographical Society, 44(4), 463-480 (in Korean). Hwang, T. J., Jin, C. S., Min, T. K., and Kim, C. Y., 2005, Particle size distribution analysis for granular material using digital image processing, Journal of the Korean Society of Civil Engineers, 25(4C), 259-266 (in Korean). Kim, Y. R., 2007, Properties of local loess of small basin in Charyong Ranges-Iljuk, Anseong City, Central Korea, Journal of the Korean Geomorphological Association, 14(2), 67-81 (in Korean). Konert, M. and Vandenberghe, J., 1997, Comparison of laser grain-size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction, Sedimentology, 44, 523-535. Lee, Y. I. and Yi, S. B., 2002, Characteristics of Pyeongchang-ri paleolithic-site paleosols, Yongin-si, Gyeonggi-do, Korea: Implication for archaeogeological application, Journal of the Geological Society Korea, 38(4), 417-489 (in Korean). Loizeau, J. L., Arbouille, D., Santiago, S., and Vernet, J. P., 1994, Evaluation of a wide range laser diffraction grain size analyser for use with sediments, Sedimentology, 41, 353-361. Lu, H. and An, Z., 1998, Pretreated methods on loesspalaeosol samples granulometry, Chinese Science Bulletin, 43, 237-240. Mason, J. A., Jacobs, P. M., Greene, R. S. B., and Nettleton, W. D., 2003, Sedimentary aggregates in the Peoria Loess of Nebraska, USA, Catena, 53, 377-397. McTainsh, G. H., Nickling, W. G., and Lynch, A. W., 571
1997, Dust deposition and particle size in Mali, West Africa, Catena, 29, 307-322. Nelsen, T. A., 1983, Time- and method-dependent size distributions of fine-grained sediments, Sedimentology, 30, 249-259. Oh, K. S. and Kim, N. S., 1994, Origin and postdepositional deformation of the superficial formations covering basalt plateau in Chungok area, The Korean Journal of Quaternary Research, 8(1), 43-68 (in Korean). Park, C. S., Yoon, S. O., and Hwang, S. I., 2007, Properties and provenance of loess-paleosol sequence at the Daebo Granite area of Buan, Jeonbuk Province, South Korea, Journal of the Korean Geographical Society, 42(6), 898-913 (in Korean). Park, D. W., 1985, A study on the loessial red yellow soil of Hwangsan, Kimje County and Gamgok, Chungeup County of the south western coastal area of Korea - With special reference to the possibility of loess deposition, Geography, 32, 1-10 (in Korean). Porter, S. C. and An, Z. S., 1995, Correlation between climate events in the North Atlantic and China during the last glaciation, Nature, 375, 305-308. Shin, J. B., Yu, K. M., Naruse, T., and Hayashida, A., 2004, Study on loess-paleosol stratigraphy of Quaternary unconsolidated sediments at E55S20-IV pit of Chongokni Paleolithic site, Journal of the Geological Society Korea, 40(4), 369-381 (in Korean). Yang, S. and Ding, Z., 2008, Advance-retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacialinterglacial cycles, Earth and Planetary Science Letters, 274, 499-510. Yoon, S. O., Park, C. S., Hwang, S. I., and Naruse, T., 2007, Weathering characteristics of loesspaleosol sequence at the Daecheon area, South Korea, Journal of the Geological Society of Korea, 43(3), 281-296 (in Korean). http://www.malvern.co.kr/ 702-701 hwangsi@knu.ac.kr, 053-950-5230 053-950-6227 Correspondence: Sangill Hwang, Department of Geography, College of Social Science, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, 702-701, Korea (e-mail: hwangsi@knu.ac.kr, phone: +82-53-950-5230, fax: +82-53-950-6227) 572