5 DOI : 10.3831/KPI.2010.13.3.05 Received : 10. 05. 19 Revised : 10. 06. 10 Accepted : 10. 09. 07 Key Words: Scolopendrid Pharmacopuncture, nitrite scavenging ability, SOD-like activity, antioxidant activity, Biological Activities of Scolopendrid Pharmacopuncture Kim Sung-Chul 1, Seo Geun-young 2,3, Lee sung-won 2,3, Park Sung-Joo 4, Kim Jae-Hyo 2,3, Ahn Seong-Hun 2,3, Hwang Sung-Yeoun 3 1 Dept. of Acupuncture & Moxibustion, Gwang-Ju Oriental Medical Hospital, Wonkwang University 2 Dept. of Meridian & Acupoint, college of Oriental Medicine, Wonkwang University 3 Korea Bio Medical Science institue 4 Dept. of herbology, school of Oriental Medicine, Wonkwang University ABSTRACT Reactive Oxygen Species(ROS) are continuously produced at a high rate as a by-product of aerobic metabolism. Since tissue damage by free radical increases with age, the reactive oxygen species(ros) such as hydrogen peroxide(h2o2), nitric oxide(no). Several lines of evidence provided that ROS appears to cause to develop aging-related various diseases such as cancer, arthritis, cardiovascular disease. Our reserch objective was to examine the in vitro biological activity of Scolopendrid Pharmacopuncture, including the total poly-phenol content, DPPH radical scavenging, ABTS radical scavenging, Superoxide dismutase(sod)-like activity, Nitrite scavenging ability. The total poly-phenol contents of Scolopendrid Pharmacopuncture was 35.859mg/L. Elctron donation ability on DPPH was 36.82%. The 2,2'-azinobis-3-ehtlbezothiazoline-6-sulfonic acid radical decolorization (ABTS) was 84.7%. The superoxide dismutase (SOD)-like activities of Scolopendrid Pharmacopuncture was 44.33%. The nitrite scavenging effects were ph dependent, and were highest at ph 1.5(45.2%) and lowest at ph 6.0(11.3%). We conclude that Scolopendrid Pharmacopuncture may be useful as potential sources of antioxidant. I Scolopendra subspinipes mutilans 2 histamine tyrosine, leucine, formic acid, cholesterol Hwang Sung-Yeoun address : 344-2 Shinyong-Dong, Iksan, Jeonbuk, KOREA Tel. 02-3443-9252, 011-741-6404 email : kbmsi2009@gmail.com This research was supported by a grant of the Traditional Korean Medicine R&D Project, Ministry for Health & Welfare & Family Affairs, Republic of Korea (B080013).
6 Journal of Pharmacopuncture 13 3 2010 9 2002 II 1 Alcohol 105 107 5-6 2 8 Rotary Vacuum evaporator EYELA, JAPAN 70 3 90 2 8 Rotary Vacuum evaporator 80 1 2 8 Rotary Vacuum evaporator 70 2 8 Rotary Vacuum evaporator Rotary Vacuum evaporator 200 300 0.45 0.1 Freezing dryer KOREA 200 9.88 7.68 2 Sodium carbonate, Gallic acid, Folin-Ciocalteu's phenol reagent, Potassium persulfate, 1,1-diphenyl-2-picrylhydrazyl(DPPH), 2,2 -azino-bis-3- ethylbenzothiazoline-6-sulphonic acid(abts), Trolox, Pyrogallol, Ascorbic acid, Sodium nitrite, Citrate buffer, Acetic acid, Naphtylamine, Trisbase, Dimethyl sulfoxide(dmso) Sigma(St. Louis, MO, USA) Sulfanilic acid 1 (Kanto chemical, Japan) 1 128.6g 1000 Electronic magnetic stirrer Tost MS 300, KOREA 3 Electronic magnetic stirrer 2 Dewanto Folin-ciacalteu rearent 200 Folin-Ciocalteau's phenol regent 200 2 Na2CO3 200 1 750nm
7 Gallic acid 3 DPPH radical DPPH assay Dietz 0.2mM DPPH 20 Spectrophotometer 520nm DPPH free radical Ascorbic acid DPPH radical DPPH scavenging ability 100 ABTS radical potassium persulfate ABTS free radical radical Van den Berg 7mM 2.2-azino-bis(3-rthylbenzthiazoline-6-sulfonic acid)(abts) 2.45mM potassium persulfate 24 ABTS 732nm 0.9 0.1 ABTS radical 950 50 10 Trolox ABTS scavenging ability 1 100 4 Superoxide dismutase(sod) SOD pyrogallol Superoxide radical Superoxide pyrogallol Superoxide SOD Markund 0.2 ph 8.5 Tris-HCl buffer(50mm tris amino-methane 10mM EDTA) 2.6 7.2 0.2 25 10 1N HCl 0.1 pyrogallol 420nm SOD SOD-like activity 1 100 5 ABTS radical 6. Nitrite radical Griess sulfanilamide N-1-naphylethylenediamine dihydrochloride NO2 azo azo 520nm Kato 1mM NaNO2 1 0.1N HCl, 0.2M ph 1.5, 3.0, 6.0 10 37 1 2 5 Griess 30 HCl 1 naphthylamine 1 sulfanilic acid 1 1 0.4 15 azo 520nm microplate reader Griess 0.4 Nitrite scavenging ability 1 A C B
8 Journal of Pharmacopuncture 13 3 2010 9 100 A : NaNO2 Griess B : NaNO2 Griess C : NaNO2 87.69 DPPH 100 67.1 49.4 Moon 26.58 26.27 5.58 III 1 2 phenol hydroxyl Table.1 500 5.679 L 10.884 L 35.859 L Lim 32.05 23.76, 4.22, 24.641 2. DPPH radical 3. Superoxide dismutase(sod) SOD superoxide O 2- superoxide phytochamical SOD superoxide superoxide SOD 125 250 500 1 6.66 20.55 35.42 40.16 44.33 1 50.87 Na 50 37.49 42.75 60 34.77 superoxide superoxide free radical free radical DPPH 1,1-diphenyl-2-picrylh- ydrazyl radical DPPH radical Fig.1 250 500 1 10.43 13.60 36.82 Ascorbic acid 1mM 4. ABTS radical ABTS, DPPH radical free radical. free radical. DPPH ph ABTS ph ABTS
9 Miller 1993 2,2 -azinobis 3-ethyl-benzothiaziline -6-sulfonate, ABTS radidal cation ABTS ABTS 600-750nm ABTS H-donor ABTS ABTS ABTS free radical Fig.3 ABTS free radical trolox 100 90.2 Rice-Evans Kim 62.5 125 250 500 1 7.3 11.7 14.6 36.6 59.3 84.7 Kim 1 10 50 7.0 81.7 91.8 84.7 1 50.87 amine nitrosamine hemoglobin methemoglobin methemoglobin nitrosamine ph 1.5, 3.0, 6.0 Fig.4 ph 1.5 250 500 1000 20.45 25.8 27.45 45.2 ph 3.0 14.2 17.1 21.3 28.8 ph 6.0 9.5 10.2 8.5 11.3 100 ph 1.2, ph 6.0 64.0 38.0 1.5 400~1000 19.3 52.8 500~1000 ph 1.2 17.24 44.24 Kim 20 IV 5. Nitrite radical Nitric oxide NO synthase NOS L-araginine NO chonodrocyte synoviocyte nitrite nitrate nitrite 1. 500 1 5.679 L 10.88 4 L 35.859 L 2. 250 500 1 10.43 13.60 36.82 3. SOD 125 250 500 1 6.66 20.55 35.42 40.16
10 Journal of Pharmacopuncture 13 3 2010 9 44.33 4. ABTS free radical 62.5 125 250 500 1 7.3 11.7 14.6 36.6 59.3 84.7 5. ph 1.5 250 500 1000 20.45 25.8 27.45 45.2 ph 3.0 14.2 17.1 21.3 28.8 ph 6.0 9.5 10.2 8.5 11.3 V 1. Kim SN. Study on genetic analysis and extract cytotoxicity of Scolopenda subspinipes mulitilans L. Koch. MS Thesis. Wonkwang University. 2005;37. 2. 1991;665. 3. Ro KW, Shim SD, Kim YC, Chin YW. Acase of a centipede bite. Korean J Dermatol. 2005;43:678-680. 4. Choi JS. Studies on the purification, characterization and structure of antibiotics from Centipeds Scolopendra subspinipes multilans L. Koch. MS Thesis. Hanyang University. 1997;59. 5. 1975 ; 6(3) : 137-142. 6. 1 1975;3(0):67-71. 7. 1977;5:20-27. 8. Oh CY, Deung MN, Kang BS, Shin MY, Lee JC. Medicinal Animal Science. Uisungdang, Seoul, Korea. 2002;217-220. 9. 21 1995;5:193-210. 10. 2002;4(3):47-57. 11. Choi HK, So KS, Koh KH, Park SY, Kim SN, Lee JD, Won KS, Moon HC and Kim SC. The clinical study of Scolopendrid aquphamacopuncture on HIVD of lumbar spine by follow up. The Journal of Korean Acupunture & Moxibustion Society. 2003;20(3). 12. Sohng IS, Kim DH. Anti-convulsion Activity of Scolopendra. Bull.K.H.Pharma.Sci. 1996;24:91~93. 13. Dewanto V, Wu X, Adonm KK, Liu PH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem. 2002;50:3010~3014. 14. Dietz BM, Kang YH, Liu G, Eggler AL, Yao P, Chadwick LR, Pauli GF, Famsworth NR, Mesecar AD, van Breemen RB, and Bolton JL. Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem Res Toxicol. 2005;18:1296-1305. 15. Bae RN, Lee SK. Factors affecting browing and its control methods in chopped garlic. J. Korean Soc. Hort. Sci. 1990;31:213-218. 16. Jo KS, Kim HK, Ha JH, Park MH, Shin HS. Flavor compounds and storage stability of essential oil from garlic distillation. Korean J. Food Sci. Technol. 1990;22:50-55. 17. Marklund S, Marklund G. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem.
11 1974;47:469-474. 18. Venden Berg R, Haenen GR, Van den Berg H, Bast A. Applicability of an improved Trolox equivalent anti-oxidant capacity (TEAC) assay for evaluation of anti-oxidant capacity measurements of mixture. Food Chem. 1999;66:511-517. 19. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. Inhubutuon of nitrosamine formation by nondialyzable melanoidins. Agr. Biol. Chem. 1987;51:1333-1338. 20. Madsen HL, Andersen CM, Jorgensen LV. Radical scavenging by dietary flavonoids. Eur Food Technol. 2000;211:240-246. 21. Madsen HL, Nielsen BR, Bertelsen G, Skibsted LH. Screen of antioxidative activity of spices. Food Chem. 1996;57:331-377. 22. Kim HJ, Jun BS, Kim SK, Cha JY, Cho YS. polyphenolic compound content and antioxidative activities by extract from seed, sprout and flower of safflower. J. Korean Soc. Food Sic. Nutr. 2000;29:1127-1132. 23. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim NY and Chung IM. Comparison of SOD activity and phenolic compound contents in various Korean medicinal plants. Korean J. Medicinal Crop Sci. 2004;12:191-202. 24. Choi CH, Song ES, Kim JS, Kang MH, Antioxidative activites of castanea crenta Flos. methanol extracts. Korean J. Food sci. Techol. 2003;35:1216-1220. 25. Kyung Ae Lee and Hae Young Chung. The biological activity of deer antler ectract in vitro. Korean J. Food & Nutr. 2007;20(2):114-119. 26. Moon JS, Kim SJ, and Park YM. Activities of antioxidation and alcohol dehydrogenase inhibition of methanol extracts from some medical herb. Korean J. Food Preserv. 2004;11:201-206. 27. Kuramoto T. Development and application of food materials from extract such as SOD. Upto data Food Process. 1992;27:22-23. 28. Na GM, Han HS, Ye SH and Kim HK. Pjysiological Activity of Medicinal Plant Ectraxts. Korean Jornal of food Preservation. 2004;11(3):388-393. 29. Chung IM, Kim HK and Ahn JK. Screening of Korean medicinal and food plants with antioxidant activity. Korean J. Med. Crop Sci. 1998;6:311-322. 30. Yoo KM, Kim DO, Lee CY. Evaluation of different methods of antioxidant measurement. Food Sci Biotechnol. 2007;16:177-182. 31. NJ. Miller, C Rice-Evans, MJ. Davies, V. Copinaththan and A. Milner. A novel method for measuring anti-oxidant capacity and its application to monitoring the antioxidant status in premature neonants. Clicical Science. 1993;26:265-277. 32. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1993;20:933-956. 33. Kim JE, Joo SI, Seo JH, and Lee SP. Antioxidant and -Glucosidase Inhibitory effect of Tartary Buckwheat extract Obtained by the Treatment of Different Solvents and Enzymes. Korean J. Soc Food Sci Nutr. 2009;38(8):989-995. 34. Kim YE, Yang JW, Lee CH and Kwon EK. ABTS Radical Scavenging and Anti-Tumor Effects of Tricholoma matasutake Sing. (Pine Mushroom). Korean J. Soc Food Sci Nutr. 2009;38:(5)555-560. 35. Ding AH, Nathan CF, Stuhr DJ. Realease of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J. Immunol. 1988;141:2407-2412. 36. Park SJ, Song SW, Seong DH, Park DS, Kim SS, Gou JY, Ahn JH, Yoon WB, Lee HY. Biological Activities in the extract of Fermented Codonopsis lanceolata. J. Korean Soc Food Sci
12 Journal of Pharmacopuncture 13 3 2010 9 Nutr. 2009;38(8):983-988. 37. Lee KA and Chung HY. The Biological Activity of Deer Antler Extract in vitro. Korean J. Food & Nutr. 2007;20(2);114-119. 38. Lee YS. Antioxidative and Physiological Activity of Ectracts of Angelica dahurica Leaves. Korean J. Food Preserv. 2007;14(1):78-86. 39. Kim SM, Cho YS and Sung SL. The antioxidant ability and nitrate scavenging ability of plant extract. Korean J. Food Sci. Technol. 2001;33:623-632. 40. 2010;13(2):5-12 Table 1. Contents of total polyphenol by Scolopendrid samples ( /L) Scolopendrid Pharmacopuncture ( / ) 500 1000 U.D Total polyphenol content 5.679 0.04 10.884 0.021 35.859 0.007 The values represent the Mean SD for triplicate experiments. Fig. 2. SOD-like activity scavenging of Scolopendrid The values represent the mean SD for triplicate experiments. p 0.05. U.D : Undiluted Fig. 1. DPPH radical scavenging activity by Scolopendrid The values represent the mean SD for triplicate experiments. p 0.05. As : Ascorbic acid 1mM.
13 Fig. 3. ABTS radical scavenging activity of Scolopendrid The values represent the mean SD for triplicate experiments. p 0.05. U.D : Undiluted Fig. 4. Nitrite scavenging activity of Hominis Scolopendrid The values represent the mean SD for triplicate experiments. p 0.05. U.D : Undiluted