14 (06-04-수정).hwp

Similar documents
제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

μ

Journal of Life Science 2011, Vol. 21. No μ μ

Statistical Data of Dementia.

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

139~144 ¿À°ø¾àħ

hwp

한약재품질표준화연구사업단 작약 ( 芍藥 ) Paeoniae Radix 생약연구과

03-서연옥.hwp

가자미식해의제조공정최적화 37., (Choi et al., 200).. 재료 재료및방법 (Verasper Jordan et Gilbert;, ), (, ), (, ) (, )., (, ), (, ), (, ), (, ), (, ), (, ). 가자미식해제조 (round

Lumbar spine

개최요강

한약재품질표준화연구사업단 금은화 ( 金銀花 ) Lonicerae Flos 생약연구과

12 (09-42-수정).hwp

DBPIA-NURIMEDIA


- 1 -

07 (02-39-수정).hwp

untitled

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

인문사회과학기술융합학회

DBPIA-NURIMEDIA

γ

07 (02-08-OK).hwp

19 (01-35-OK).hwp

10(3)-10.fm

<343420C1A4C3B62DC8BFB8F020C1BEB7F9BFCD20B9DFC8BFC1B6B0C7BFA120B5FBB8A52E687770>


달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

14 (12-09-수정).hwp

한약재품질표준화연구사업단 고삼 ( 苦參 ) Sophorae Radix 생약연구과


DBPIA-NURIMEDIA

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

Korean Journal of Microbiology (2016) Vol. 52, No. 1, pp pissn DOI eissn Copyright

untitled

(....).hwp

27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

12.077~081(A12_이종국).fm

14.531~539(08-037).fm

jaeryomading review.pdf

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

Subject : 귀사의 일익번창하심을 진심으로 기원합니다.

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

012임수진

<C7D1BDC4BFAC20B1E8B5BFBCF6B9DABBE7B4D4676C75636F20C3D6C1BE5B315D2E687770>

09È«¼®¿µ 5~152s

42.1(20) fm

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

433대지05박창용

09-감마선(dh)

- 1 -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

주관기관 냄새환경학회 국립환경과학원

목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적

03이경미(237~248)ok

한약재품질표준화연구사업단 맥문동 ( 麥門冬 ) Liriopis Tuber 생약연구과

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

46(6)완결.indd

- 1 -

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

< C6AFC1FD28B1C7C7F5C1DF292E687770>

10(3)-12.fm

27 2, * ** 3, 3,. B ,.,,,. 3,.,,,,..,. :,, : 2009/09/03 : 2009/09/21 : 2009/09/30 * ICAD (Institute for Children Ability

45-5(04) fm

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

노인정신의학회보14-1호

<B4D9BDC3BEB4C0AFB1E2C8ADC7D02D34C6C72D35BCE2C3D6C1BE28B1B3BBE7292E687770>

fm

DBPIA-NURIMEDIA

(72) 발명자 이승원 강원도 고성군 죽왕면 오호리 정동호 강원도 고성군 죽왕면 오호리 이호생 강원도 고성군 죽왕면 오호리 이 발명을 지원한 국가연구개발사업 과제고유번호 PMS235A 부처명 국토해양부 연구사업명 해양자원개발 연구과제명

김재원 이신호 노홍균 홍주헌 박창수 윤광섭 ABSTRACT This study was performed to determine the effects of pretreatment (NT: non-treatment, BTS: boiling treatment with 3%

(....).hwp

歯140김광락.PDF

(......).hwp

-, BSF BSF. - BSF BSF ( ),,. BSF -,,,. - BSF, BSF -, rrna, BSF.

DBPIA-NURIMEDIA

°ø±â¾Ð±â±â

???춍??숏

歯1.PDF

03-2ƯÁý -14š

141(26) () ( ( ) () () () ) 2) 1932 ()()3) 2 1) ( ) ( ) () () () 4) ( ) 5) 6) ) ) ( ) () 42 () )


10 (11-26-수정).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

(

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

08-KH ( ).hwp

51(2)-06.fm

Vol. 25, No. 2(2012) 천안신고배의품질특성및이를이용한동결건조배스낵제품개발 325 투압처리당용액의농도와침지시간이증가함에따라높아지는경향을보였다고보고되어있다 (Kim 등 2011). 이와같은과일의가공에서많이이용되는건조는상변화를일으키는열량과질량이동이동시에발생하는

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

???? 1

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

Transcription:

J Korean Soc Food Sci Nutr 한국식품영양과학회지 44(9), 1347~1355(20) http://dx.doi.org/10.3746/jkfn.20.44.9.1347 동결농축참외와인의품질특성과휘발성향기성분 황희영 1 황인욱 2 정신교 1 1 경북대학교식품공학부 2 경북대학교식품생물산업연구소 Quality Characteristics and Volatile Flavor Compounds of Oriental Melon Wine Using Freeze Concentration Hee-Young Hwang 1, In-Wook Hwang 2, and Shin-Kyo Chung 1 1 School of Food Science and Biotechnology and 2 Food and Bio-industry Research Institute, Kyungpook National University ABSTRACT In this study, the physicochemical properties, antioxidant capacities, and volatile flavor compounds of oriental melon wine prepared by freeze concentration after heat treatment (HA), ascorbic acid treatment (AAT), and heat and ascorbic acid treatment (HAAT) were investigated. During fermentation period, the melon wine by HAAT showed greater reduction of soluble solids and reducing sugar contents compared to other treatments. In addition, the melon wine treated with HAAT also showed a higher L value and lower browning index compared to other treatments. After aging, free sugar including fructose, and organic acids including citric acid, succinic acid, and malic acid were detected in all samples. For antioxidant activities and contents, HAAT treated wine showed greater antioxidant activities and total phenolic contents than those of others. In GC/MS analysis, a total of 33 volatile flavor compounds were identified. In the principal component analysis of volatile flavor compounds, principal components 1 and 2 represented 88.% of the whole date distribution and showed opposite tendencies. Taken together, HAAT enhanced the antioxidant activities and sensory properties of oriental melon wine. Moreover, freeze concentration gave the different volatile flavor characteristics in oriental melon wine. Key words: oriental melon wine, freeze concentration, volatile flavor compound, principal component analysis, browning inhibition 서 아이스와인은 -7~12 C의추운날씨까지포도를수확하지않고남겨둔뒤포도가부분적으로동결이되면압착한포도착즙액을발효시켜와인을제조하기때문에포도의유리수가이온결정으로되어단맛이강하며향이풍부하다 (1). 이러한특징으로최근아이스와인의소비가증가하고있으며, 이에대한연구가활발히진행되고있다. 또한포도뿐만아니라사과 (2), 토마토 (3) 등을원료로한다양한아이스와인이개발되고있다. 아이스와인은외부환경에많은영향을받기때문에인위적인농축과정이필요하며현재까지가장효율적으로이용되고있는방법이동결농축방법이다 (2). 동결농축방법은용액을동결시킨후해동시키면순수한얼음결정보다당분이먼저해동되는원리를이용한방법 Received 2 June 20; Accepted 21 July 20 Corresponding author: Shin-Kyo Chung, School of Food Science and Biotechnology, Kyungpook National University, Daegu 466, Korea E-mail: kchung@knu.ac.kr, Phone: +82-53-950-5778 론 으로다른농축방법에비해휘발성향기성분과페놀성화합물들의열에의한손상을최소화할수있다 (4). 그러나동결농축과정에서착즙, 동결농축, 발효및숙성과정중갈변현상이촉진될수있으며당의함량증가로인한캬라멜반응, 마이야르반응등의비효소적갈변과 polyphenol oxidase(ppo) 활성에의한효소적갈변등이일어날수있으므로갈변을억제하는적절한처리가요구된다 (5). 이러한갈변현상은와인제조나보관시관능적특성및영양학적품질을저하시키기때문에이를방지하는것은매우중요하다. 일반적으로와인제조시갈변을억제하는방법으로는아스코르브산, 열처리, polyvinylpolypyrrolidone (PVPP) 처리등의방법이있다 (6-8). 아스코르브산은가공품의갈변억제를위해사용하는대표적인유기산으로퀴논생성을억제하여갈변저해에효과적이며녹차 (9), 사탕수수주스 (10) 등의제조에아스코르브산처리가갈변억제에미치는효과가연구된바있다. 또한열처리는갈변효소인 PPO 등을불활성화시킴으로써갈변을억제시키며다양한화학적변화에생리활성물질을증가시킨다 (11,12). 본연구에서는참외와인의품질향상을위해발효전참외

1348 황희영 황인욱 정신교 농축액에열수처리및아스코르브산처리를도입하고그에따른참외와인의갈변억제효과와이화학적특성및휘발성향기성분을조사하였기에보고하는바이다. 재료및방법실험재료및시약본실험에사용한참외 (Cucumis melo var. makuwa) 는경북성주군에서 2014년 7월경에수확한오복품종을사용하였으며, 효모는 Saccharomyces cerevisiae Fermivin dry yeast를와인킷코리아 (Chungnam, Korea) 에서구매하여사용하였다. 실험에사용된 ascorbic acid, dinitrosalicylic acid(dns), Folin-Ciocalteu's reagent, 1,1-diphenyl-2-picrylhydrazyl(DPPH), sodium acetate, ferric chloride, potassium ferricyanide, 2,4,6-tris(2-pyridyl)-1,3,5-triazine(TPTZ), 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid, gallic acid, glucose, (±)catechin, potassium metabisulfite(k 2S 2O 5) 는 Sigma- Aldrich Co.(St. Louis, MO, USA) 의제품을사용하였다. 동결농축참외와인제조동결농축참외와인제조는참외를마쇄, 착즙하여참외착즙액을제조한후 potassium metabisulfite를 200 ppm 첨가하고 -20 C 냉동고에서동결농축기 (Model SVC looh, Savant Instruments Inc., Hicksville, NY, USA) 를사용하여최종당도가 28 Brix가되도록동결농축하였다. 동결농축참외와인제조시열수처리및아스코르브산처리에따른갈변억제효과를조사하기위해열수처리와아스코르브산처리는발효전실시하였다. 열수처리는참외농축액대비끓는물 2%(v/v) 를고루살포하여처리하였으며, 아스코르브산처리는참외농축액대비 1%(w/v) 첨가하였다. 열수 / 아스코르브산병용처리는위와같은방법으로열수처리후아스코르브산을처리하여 4가지처리구 (CON, control; HT, heat treatment; AAT, ascorbic acid treatment; HAAT, heat and ascorbic acid treatment) 를제조하였다. 대조구는열수처리와아스코르브산처리를모두하지않은처리구로하였으며, 이후 S. cerevisiae Fermivin dry yeast를 % 비활성접종하여 20 C에서알코올발효를진행하였다. 모든처리구에서가용성고형분및환원당함량변화가나타나지않는시점에발효를종료하고이화학적특성및항산화능, 휘발성향기성분을분석하였다. 이화학적특성가용성고형분함량은굴절당도계 (N-1E, Atago, Tokyo, Japan) 를이용하여측정하였으며, 환원당함량은 DNS 비색법 (13) 으로측정하였다. 즉시료 0. ml에 DNS 시약 0.5 ml를넣고 water bath에서 5분간중탕한후, 증류수 3.5 ml를첨가한뒤 550 nm 파장에서흡광도를측정 (UV 1601, Shimadzu, Kyoto, Japan) 하여 glucose equivalents(ge) g/100 ml로나타내었다. 적정산도는 AOAC 방법 (14) 에따라 0.1 N NaOH로적정하여 citric acid 함량으로나타내었으며, ph는 ph meter(mettler Toledo MP220, Mettler Toledo Co., Greifensee, Switzerland) 를이용하여측정하였다. 색차측정은시료를일정용기에담은후표준백색판 (L=97.79, a=-0.38, b=2.05) 으로보정된 Hunter 색차계 (CM-70d, Minolta Co., Osaka, Japan) 를사용하여 10회반복하여측정후평균값을명도 (L, lightness), 적색도 (a, redness), 황색도 (b, yellowness) 로나타내었으며, 갈변도는갈색색소측정범위인 420 nm 파장에서흡광도를측정하여 O.D 값으로나타내었다. 알코올함량은국세청주류면허지원센터주류분석규정 () 에따라상징액 100 ml에증류수 30 ml를첨가하여증류한뒤 70 ml의증류액을받아증류수 30 ml를채워주정계로측정한값을 Gay-Lussac 표를이용해 C 온도로보정하여환산하였다. 참외와인시료의유리당및유기산분석을위한전처리과정으로시료를원심분리후 0.45 μm membrane filter로여과하였으며, HPLC(Agilent Technologies series 1260 system, Agilent Technologies, Palo Alto, CA, USA) 로분석하였다. 유리당분석은 Zorbax-carbohydrate analysis column(4.6 mm 0 mm, 5 μm, Agilent Technologies) 을사용하였으며, acetonitrile/water(75/25%, v/v) 를이동상으로하여유속은 1.4 ml/min으로 RI detector에의해분석하였다 (16). 유기산분석은 Aminex HPX-87H column(7.5 300 mm, 9 m, Bio-Rad, Hercules, CA, USA) 을사용하였으며, 5 mm sulfuric acid를이동상으로하여유속은 0.6 ml/min으로 UV detector에의해분석하였다 (16). DPPH 라디칼소거활성은 Blois(17) 의방법에따라측정하였다. 시료 20 μl와 100 μm DPPH 용액 980 μl를넣고암실에서 30분방치한다음 520 nm에서흡광도를측정하여 Trolox equivalents(te) μm로나타내었다. FRAP 활성은 Benzie와 Strain(18) 의방법을변용하여측정하였다. 반응용액은 acetate buffer(ph 3.6, 300 mm), 10 mm TPTZ, 20 mm FeCl 3 6H 2O를 10:1:1 비율로혼합하여 37 C를유지하면서, 시료 25 μl에반응용액 175 μl를혼합한뒤암실에서 30분간방치한후 590 mm에서흡광도를측정하여 Trolox equivalents(te) μm로나타내었다. 총페놀성화합물함량은 Folin-Ciocalteu 방법 (19) 을변용하여측정하였다. 즉시료 50 μl에 2 N Folin-Ciocalteu 시약 25 μl를넣은다음, 20% Na 2CO 3 0 μl를가하여 분동안실온에서방치하고 725 nm에서흡광도를측정하여 gallic acid equivalents(gae) mg/l로나타내었다. 총플라보노이드함량은 Zhishen 등 (20) 의방법을변용하여측정하였다. 시료 70 μl에 50% EtOH 430 μl를넣고 5% sodium nitrite 50 μl를혼합한뒤실온에서 5분간방치후, 10% aluminum nitrate 50 μl를넣고실온에서 5분반응시킨다음 1 N NaOH 500 μl 가한후 510 nm에서흡광도를

참외와인의품질특성과휘발성향기성분 1349 측정하여 catechin equivalents(ce) mg/l 로나타내었다. 30 휘발성향기성분분석참외와인의휘발성향기성분분석은 solid phase microextraction(spme) 을이용한 head-space 분석법을이용하였다. 향기성분분석시료는 head-space vial(20 mm, PTFE/silicon septum, magnetic cap) 에 5 ml를넣고 NaCl 을 25% 첨가하여밀봉한다음 50 C에서 20분간교반하여시료와 headspace의휘발성성분이평형을이루게한다음 SPME fiber(50/30μm DVB/CAR/PDMS, Supelco, Bellefonte, PA, USA) 를주입하여 40분간휘발성향기성분을흡착시켜 GC/MS(Agilent Technologies 7890A GC system/5975c inert XL MSD with triple-axis detector) 로분석하였다 (21). GC/MS 분석조건은 column은 DB-WAX (30 m 0.25 mm, 0.25 μm, J&W Scientific, Folsom, CA, USA) 를사용하였고, oven의온도는 40 C에서 20분간유지한다음 2 C/min의속도로 220 C까지상승시킨후 240 C까지 20 C/min의속도로상승시켜 240 C에서 5분간머물렀다. Carrier gas의유속은 1 ml/min(he) 으로유지하였으며, injector의온도는 240 C, split ratio 20:1로분석하였다. GC/MS로분리되어동정된휘발성향기성분은 Wiley and NIST Mass Spectral Search Program(version 2.0, FairCom Co., MO, USA) 을통해분석하였다. 통계처리모든실험결과는 3회반복하여실시하였고그결과값을평균과표준편차로표시하고 (mean±sd), SAS program (Version 9.3, Statistical Analysis System, SAS Institute Inc., Cary, NC, USA) 을이용하여분산분석과 Duncan's multiple range test(p<0.05) 를실시하였다. 주성분분석 (principal component analysis, PCA) 을이용하여동정된향기성분을측정변수로, 시료를관측대상으로하여향기성분과주성분 (principal component, PC) 과의연관성을도출하고자하였으며, 통계처리는 SAS program을이용하였다. 결과및고찰전처리한동결농축참외와인의발효중이화학적특성과갈변억제열수처리및아스코르브산처리에따른동결농축참외와인의발효중가용성고형분함량변화는 Fig. 1과같다. 초기가용성고형분함량은 28 Brix였으며모든처리구에서발효 2일차부터급격하게감소하기시작하여발효 4일차이후발효가종료될때까지서서히감소하는경향을보였다. 열수처리구가아스코르브산처리구에비해가용성고형분감소가빠른것으로나타났다. 동결농축참외와인의발효중환원당함량변화는 Fig. 2와같다. 발효전초기환원당 Soluble solid contents (%). 25 20 10 Fig. 1. Soluble solid contents of oriental melon wine with freeze concentration during fermentation depending on pretreatments. CON, control; HT, heat treatment; AAT, ascorbic acid treatment; Reducing sugar contents. (g/100 ml). 20 10 5 0 Fig. 2. Reducing sugar contents of oriental melon wine with freeze concentration during fermentation depending on pretreatments. CON, control; HT, heat treatment; AAT, ascorbic acid treatment; 함량은.42~.70 g/100 ml 범위로유의적인차이가나타나지않았으며, 환원당함량또한가용성고형분변화와유사하게발효 2일차이후급격하게감소하기시작하여이후서서히감소하는경향을보였다. 열수및아스코르브산처리에따른동결농축참외와인의발효중산도변화는 Fig. Titrable acidities (%). 1.5 1.0 0.5 Fig. 3. Titratable acidities of oriental melon wine with freeze concentration during fermentation depending on pretreatments. CON, control; HT, heat treatment; AAT, ascorbic acid treatment;

1350 황희영 황인욱 정신교 4.5 ph. 4.0 Browning index (O.D). 1.5 1.0 3.5 Fig. 4. ph of oriental melon wine with freeze concentration during fermentation depending on pretreatments. CON, control; HT, heat treatment; AAT, ascorbic acid treatment; HAAT, heat and ascorbic acid treatment. 0.5 Fig. 6. Browning index of oriental melon wine with freeze concentration during fermentation depending on pretreatments. CON, control; HT, heat treatment; AAT, ascorbic acid treatment; 3과같다. 산도는초기 0.67~1.02% 범위로아스코르브산처리구에서산도가유의적으로높은것으로나타났으며 (P< 0.05), 모든처리구에서발효 4일차까지증가하다가이후발효가진행됨에따라산도변화가나타나지않는것으로나타났다. 동결농축참외와인의 ph는 Fig. 4에나타내었다. 대조구와열수처리구에서발효 4일차까지감소하다가다시증가하였으며, 아스코르브산처리구에서는발효 2일차까지감소하다다시증가하는것으로나타났다. 동결농축참외와인의발효중알코올함량변화는 Fig. 5와같다. 발효가진행됨에따라알코올함량은발효 2일차이후급격히증가하기시작하여발효 6일차이후에는서서히증가하는경향을보였다. 처리구에따른알코올생성은 12.1~13.4% 범위로아스코르브산처리구에서유의적으로높은함량을보였다 (P<0.05). 발효전열수처리및아스코르브산처리에따른동결농축참외와인의발효중갈변도변화는 Fig. 6과같다. 발효가진행됨에따라모든처리구에서갈변도가상승하는것으로나타났는데, 대조구에서는발효가끝나는 10일차에값이 2배증가하였으나아스코르브산, 열수 / 아스코르브산병용처리구에서는발효 6일차까지유지하다소폭증 Alcohol contents (%). 10 5 0 Fig. 5. Alcohol contents of oriental melon wine with freeze concentration during fermentation depending on pretreatments. CON, control; HT, heat treatment; AAT, ascorbic acid treatment; 가하는것으로나타났다. 아스코르브산은효소적갈변으로인한 quinone을줄여갈변반응을효과적으로억제한다고보고된바있다 (22). 처리구에따른갈변도저해효과는 HAAT> AAT> HT> CON 순으로나타났다. 동결농축참외와인의발효중색차변화는 Fig. 7과같다. L값은대조구와열수처리구가발효가진행됨에따라유의적으로감소되는반면에아스코르브산, 열수 / 아스코르브산병용처리구에서는값이유지되는것으로나타났다. a, b값은대조구와열수처리구에서는발효가진행됨에따라유의적으로증가하여갈변이진행되고있는반면에아스코르브산, 열수 / 아스코르브산병용처리구에서는발효 8일차까지유지하다가이후소폭증가하는것으로나타났으며, 이는아스코르브산처리시녹차의색도변화를억제하였다는연구결과와일치하였다 (9). 숙성에의한동결농축참외와인의이화학적특성의변화와항산화성발효전열수처리및아스코르브산처리에따른동결농축참외와인의이화학적특성은 Table 1과같다. 알코올함량은 12.17~13.43% 범위로 AAT에서함량이가장높았으며가용성고형분함량은 12.2~13.7%, 환원당함량은 0.53~ 0.70 g/100 ml, 적정산도는 0.95~1.08, ph는 4.35~4.46 범위로나타났다. 색차는 L값이 54.34~57.35 범위로아스코르브산처리구에서유의적으로높게나타났으며, a값은 -0.28~-0.55, b값은 16.87~20.6 범위로나타났다. 갈변도는 1.070~1.456 범위로 AAT, HAAT 처리구에서낮은것으로보아숙성후에도아스코르브산이갈변억제효과가지속되고있는것으로나타났다. 동결농축참외와인의유리당및유기산함량은 Table 2 와같다. 유리당은 fructose만 4.60~26.24 g/l 범위로검출되었으며, glucose, sucrose는검출되지않았다. Fructose 함량은대조구에서가장많게나타났으며, 아스코르브산처리구에서유의적으로함량이적었다 (P<0.05). 와인발효과정중효모의당이용성은 sucrose, glucose, fructose 순으

참외와인의품질특성과휘발성향기성분 1351 Lightness (L). Redness (+a). Yellowness (+b). 60 58 56 54 52 50 1.5 0.5-1.5-2.5-0.5 25 5 Fig. 7. Color values of oriental melon wine with freeze concentration during fermentation depending on pretreatments. CON, control; HT, heat treatment; AAT, ascorbic acid treatment; 로이용된다고보고되었으며 (23), 본연구에서도효모의당이용성이 sucrose, glucose, fructose 순으로이용된것으로나타났다. 이는단감와인 (24), 오디와인 (25) 제조시 sucrose, fructose가모두소비되고소량의 fructose만존재하고있다는연구결과와일치하였다. 유기산중 citric acid, malic acid는와인의향과맛에중요한성분으로 citric acid는와인향의신선함을증가시키고 malic acid는신맛을부드럽게만들어준다 (23). 유기산은 citric acid 함량이 6,800.17~7,952.33 mg/l, malic acid가 8.49~395.91 mg/l, succinic acid가 686.18~1,447.91 mg/l 범위로아스코르브산처리구에서모든유기산이유의적으로많게나타났다 (P<0.05). 따라서아스코르브산처리는동결농축참외와인의향과맛을개선시키는데효과적인것으로판단된다. 열수및아스코르브산처리에따른동결농축참외와인의 DPPH 라디칼소거활성및 FRAP 활성결과는 Table 3과같다. DPPH 라디칼소거활성은각각 CON 1,337.33 μm TE, HT 1,341.33 μm TE, AAT 19,920.00 μm TE, HAAT 20,800.00 μm TE로아스코르브산처리구에서활성이매우높게나타났으며, 그중 HAAT 처리구에서활성이가장높았다. FRAP 활성은처리구별각각 CON 1,095.87 μm TE, HT 1,211.87 μm TE, AAT 23,277.33 μm TE, HAAT 24,797.33 μm TE로 DPPH 라디칼소거활성결과와유사하게아스코르브산처리구에서활성이매우높게나타났으며그중 HAAT 처리구에서활성이가장높았다. 아스코르브산과같은항산화제첨가로인한항산화활성증가를시너어지스트 (synergist) 작용이라하는데, 이들시너어지스트의작용은강력한산화촉진제인미량의금속들과킬레이트하여항산화활성을증가시킨다고보고된바있다 (26). 본연구에서아스코르브산처리로인한항산화활성증가는아스코르브산처리가갈변억제의목적뿐만아니라기능성또한증가시키는것으로판단된다. 열수및아스코르브산처리에따른동결농축참외와인의총페놀성화합물및총플라보노이드함량은결과는 Table 3과같다. 총페놀성화합물함량은각각 CON 356.90 mg/ L, HT 347.59 mg/l, AAT 1,109.77 mg/l, HAAT 1,168.39 mg/l로아스코르브산처리구에서유의적으로매우높게함량이많은것으로나타났다. 총플라보노이드함량은 91.81 ~114.86 mg/l 범위로열수및아스코르브산처리에따른차이가나타나지않았다. Table 1. The physicochemical qualities of oriental melon wine treated with freeze concentration after aging during 4 weeks depending on the pretreatments Samples 1) Alcohol content (%) Soluble solid contents (%) Reducing sugar (g/100 ml) Titratable acidity (%) ph Color value L value a value b value Browning index (O.D) CON HT AAT HAAT 12.77±0.23 b2) 12.17±0.35 c 13.43±0.23 a 12.63±0. bc 13.3±0.1 ab 12.2±0.5 c 13.7±0.2 a 12.8±0.3 bc 0.57± b 0.53± b 0.70± a 0.67±0.01 a 0.99±0.01 b 0.95± c 1.08±0.00 a 1.07±0.01 a 4.46±0.01 a 4.45± b 4.35±0.01 b 4.35±0.00 b 54.34± d 54.59±0.13 c 56.93± b 57.35± a -0.28± a -0.55± b -2.43± c -2.52± d 20.6± a 18.57±0.04 c 18.68± b 16.87±0.01 d 1.456± a 1.298±0.01 b 1.163± c 1.070±0.04 d 1) CON, control; HT, heat treatment; AAT, ascorbic acid treatment; 2) Data are shown as mean±sd (n=3). Data with same letters in the same column are not significantly different (P<0.05).

1352 황희영 황인욱 정신교 Table 2. The free sugar and organic acid contents of oriental melon wine treated with freeze concentration depending on the pretreatments Samples 1) Free sugar (g/l) Organic acid (mg/l) Fructose Glucose Sucrose Citric acid Malic acid Succinic acid CON HT AAT HAAT 25.24±2.12 a2).00±4.43 b 7.06±2.88 c 4.60±0.74 c 3) 7,434.01±246.73 c 6,800.17±329.88 d 9,308.97±125.27 a 7,952.33±164.77 b 23.95±12.64 c 8.49±0.06 c 395.91±16.98 a 207.18±23.8 b 686.18±20.65 c 691.65±75.95 c 1,447.91±43.10 a 1,346.23±34.55 b 1) CON, control; HT, heat treatment; AAT, ascorbic acid treatment; 2) Data are shown as mean±sd (n=3). Data with same letters in the same column are not significantly different (P<0.05). 3) : not detected. Table 3. The antioxidant activities and antioxidant contents of oriental melon wine treated with freeze concentration depending on the pretreatments Samples 1) CON HT AAT HAAT DPPH (μm TE) 1,337.33±66.00 c2) 1,341.33±67.21 c 19,920.00±80.00 b 20,800.00±138.56 a FRAP (μm TE) 1,095.87±34.64 c 1,211.87±4.00 c 23,277.33±211.66 b 24,797.33±80.00 a Total phenolic contents (mg/l GAE) 356.90±6.55 b 347.59±7.90 b 1,109.77±85.88 a 1,168.39±29.48 a Total flavonoid contents (mg/l CE) 114.86±5.55 a 91.81±4.64 b 108.47±0.83 a 98.47±4.64 b 1) CON, control; HT, heat treatment; AAT, ascorbic acid treatment, HAAT; heat and ascorbic acid treatment. 2) Data are shown as mean±sd (n=3). Data with same letters in the same column are not significantly different(p<0.05). Table 4. Volatile flavor compounds in oriental melon wine treated with freeze concentration and non-freeze concentration identified by GC/MS (Peak area, %) Peaks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Compounds Acetaldehyde Propanone Ethyl formate Hexamethylcyclotrisiloxane Ethyl acetate 1,1-Diethoxyethane Ethyl alcohol Ethyl butyrate 1-Propanol Isobutyl alcohol Isoamyl acetate Butyl alcohol Decamethylcyclopentasiloxane 3-Penten-2-ol Isopentyl alcohol Ethyl caproate Ethenylbenzene Dodecamethylcyclohexasiloxane Ethyl lactate 1-Hexanol Ethyl octanoate Acetic aicd Tetradecamethyl-cycloheptasiloxane Benzaldehyde Isobutyric acid Ethyl decanoate Ethyl benzoate 2-Methyl-butanoic acid Diethyl succinate Methyl salicylate Phenethyl acetate Phenethyl alcohol Octanoic acid The values were expressed as mean (n=3). 1) : not detected. Non-freeze concentration 1) 0.10 2.84 72.51 0.12 1.02 0.52 0.31 4.82 0.24 0.05 0.22 0.13 0.19 2.24 0.04 0.17 0.13 0.07 0.99 0.07 Oriental melon wine Freeze concentration 0.04 2.01 0.56 76.45 0.10 0.18 0.76 0.23 0.07 5.19 0.56 0.09 0.07 0.85 0.36 0.16 0.08 0.11 0.05 0.52 0.04 Flavor Pungent Raspberry, rum Pineapple Malt whisky, sherry Ethereal Apple Alcohol, pungent Alcohol Banana, pear Fruit Fruit Flower, green Fruity, floral Sour Aromatic, sweet Cheese Fruity, grape Floral Wine, fruit Sweat, cheese

참외와인의품질특성과휘발성향기성분 1353 동결농축참외와인의휘발성향기성분및주성분분석동결및비동결농축참외와인의휘발성향기성분분석결과는 Table 4와같다. 참외와인의향기성분은총 33종이동정되었으며, 항목으로는과일향의주요향기성분으로알려져있는 ester류가 10종으로가장많이동정되었고다음으로 alcohol류 6종, hydrocarbon류 5종, acid류 4종, ketone류 2종, aldehyde류 1종, 기타 5종이동정되었다. Ethyl ester류는와인에서중요한방향족화합물로성숙한과일의맛과향을나타내며품질적인측면에서긍정적으로작용한 다고알려져있다 (27). 비동결농축참외와인의향기성분은총 23종이동정되었으며, 동결농축참외와인은총 29종으로동결농축참외와인에서향기성분이 6종더많이동정된것으로나타났다. 비동결농축와인에서는동결농축와인에서동정된 acetaldehyde, propanone, ethyl formate, ethyl butyrate, butyl alcohol 등의향기성분이동정되지않았다. Ethyl formate는라즈베리의주요향기성분이며, 1,1-diethoxyethane 몰트위스키, ethyl butyrate는사과향, butyl alcohol은과일향을내는향기성분으로보고되어있다 Fig. 8. Principal component analysis (PCA) of volatile flavor compounds in oriental melon wine treated with freeze concentration and non-freeze concentration.

1354 황희영 황인욱 정신교 (28). 따라서동결농축참외와인은비동결농축참외와인에비해더욱풍부한향기성분을함유한것으로판단된다. 비동결농축및동결농축참외와인의향기성분을분석하기위하여검출된향기성분 peak area(%) 값을측정변수로하고 2가지참외와인을대상으로하여주성분분석을실시하여 Fig. 8에나타내었으며 ethyl alcohol 결과는제외하여분석하였다. 두개의주성분이분산의 88.% 를나타내고있었으며, 첫번째주성분 (PC1) 이전체데이터의 66.75%, 두번째주성분 (PC2) 은전체데이터의 21.40% 를대표하고있었다. PC1의오른편, 위쪽으로동결농축참외와인이분포하고있었으며, 반대편 PC2 근처에비동결농축참외와인이분포하고있었다. 전반적으로 PC1은 propanone, ethyl formate, butyl alcohol, isobutyric acid 등과같은향기성분에영향을받은것으로사료되며, PC2는 ethyl lactate, 1-hexanol, methyl salicylate와같은향기성분을나타내는것으로사료된다. 이러한차이는동결농축참외와인과비동결농축참외와인의향기성분조성이다르다는것을보여주며동결농축와인에서동정된향기성분이비동결농축와인에서동정되지않아주성분분석패턴이차이가나는것으로사료된다. 요약본연구는참외착즙액을동결농축하여열수처리및아스코르브산처리후갈변억제에의한이화학적인품질특성과휘발성향기성분을분석하였다. 동결농축공정에의한참외와인은발효과정에서열수처리가아스코르브산처리에비해가용성고형분함량및환원당감소가빠르며, 알코올생성또한빠른것으로나타났다. 갈변도와색차측정결과갈변억제효과가열수 / 아스코르브산병용처리구 > 아스코르브산처리구 > 열수처리구 > 대조구순이었으며, 아스코르브산처리참외와인은숙성후에도갈변억제효과가유지되고있는것으로나타났다. 유리당은 fructose만검출되었으며, 유기산은 citric acid, malic acid, succinic acid 모두아스코르브산처리구에서함량이많게나타났다 (P<0.05). 항산화능은 DPPH 라디칼소거활성, FRAP 활성이아스코르브산처리구에서높았으며, 총페놀성화합물의함량은아스코르브산처리구에서가장높았고, 총플라보노이드함량은대조구에서가장높게나타났다. SPME head-space 법에의한비동결농축및동결농축참외와인의휘발성향기성분분석결과총 33종의향기성분이동정되었으며, ester 류가 10종으로가장많이검출되었다. 동결농축참외와인에서는총 29종의향기성분이동정되었으며, 비동결농축참외와인에서는총 23종이동정된것으로나타났다. 과일향을나타내는 ethyl formate, ethyl butyrate, butyl alcohol 등의향기성분이비동결농축참외와인에서검출되지않은것으로보아동결농축참외와인은비동결농축참외와인에비해과일특유의향과같은다양한향기성분을가지는것 으로나타났다. 본연구에서열수처리및아스코르브산병용처리는동결농축참외와인의갈변억제에효과적이며, 항산화활성을증가시키는것으로나타났다. REFERENCES 1. Jeon EJ, Kim JS. 2014. Fermentation characteristics of ice wines prepared with freeze-dried Muscat Bailey A grapes. Korean J Food Sci Technol 46: 173-179. 2. Choi SH, Beak SY, Yeo SH, Park HD. 2012. Rapid fermentation of freeze-concentrated ice apple wine by a sugar tolerant yeast Saccharomyces cerevisiae SS89. Korean J Food Preserv 19: 413-419. 3. Lee S, Moon HK, Lee SW, Moon JN, Kim DH, Kim GY. 2014. Monitoring of wine quality by using environmentally friendly tomato concentrate and commercial wines. Korean J Food Culture 29: 278-285. 4. Hwang SW, Hong YA, Park HD. 2011. Characteristics of ice wine fermentation of freeze-concentrated Campbell Early grape juice by S. cerevisiae S13 and D8 isolated from Korean grapes. Korean J Food Preserv 18: 811-816. 5. Bae SK, Kim MR. 2002. Effects of sodium metabisulfite and adipic acid on browning of garlic juice concentrate during storage. Korean J Food Cookery Sci 18: 73-80. 6. Koo HN, Yook C, Kim JS. 2006. Browning and its inhibition in fermentation of rice-grape wine. Korean J Food Sci Technol 38: 554-561. 7. Lopez-Toledano A, Mayen M, Merida J, Medina M. 2006. Yeasts used to delay browning in white wine. Food Chem 97: 498-504. 8. Li H, Guo A, Wang H. 2008. Mechanisms of oxidative browning of wine. Food Chem 108: 1-13. 9. Mok C. 2002. Suppression of browning of green tea by extraction with organic acids. Food Eng Prog 6: 2-221. 10. Mao LC, Xu YQ, Que F. 2007. Maintaining the quality of sugarcane juice with blanching and ascorbic acid. Food Chem 104: 740-745. 11. Park JH, Hong SI, Jeong MC, Kim D. 2013. Effect of mild heat and organic acid treatments on the quality of fresh-cut lotus roots. Korean J Food Preserv 20: 23-29. 12. Kim MY, Lee SH, Jang GY, Kim HY, Woo KS, Hwang IG, Lee J, Jeong HS. 2013. Effects of heat treatment on antioxidant activity of hydrolyzed mung beans. Korean J Food Sci Technol 45: 34-39. 13. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426-428. 14. AOAC. 2000. Official methods of analysis. 17th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 942.. NTSTSI. 2005. Manufacturing guideline of takju and yakju. National Tax Service Technical Service Institute, Seoul, Korea. p 195-198. 16. Seong GU, Hwang IW, Chung SK. 2013. Physicochemical components and antioxidant activities of daebong persimmon (Diospyros kaki cv. Hachiya) peel vinegars. Curr Res Agric Life Sci 31: 204-244. 17. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. 18. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 239: 70-76. 19. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenolic and other oxidation substrates and

참외와인의품질특성과휘발성향기성분 1355 antioxidants by means of Folin-Ciocalteu reagents. Methods Enzymol 299: 2-178. 20. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-599. 21. Torrens J, Riu-Aumatell M, López-Tamames E, Buxaderas S. 2004. Volatile compounds of red and white wines by headspace-solid-phase microextraction using different fibers. J Chromatogr Sci 42: 310-316. 22. Gunes G, Lee CY. 1997. Color of minimally processed potatoes as affected by modified atmosphere packaging and antibrowning agents. J Food Sci 62: 572-575. 23. Joo OS, Kang ST, Jeong CH, Lim JW, Park YG, Cho KM. 2011. Manufacturing of the enhances antioxidative wine using a ripe Daebong persimmon (Dispyros kaki L). J Appl Biol Chem 54: 126-134. 24. Cho KM, Lee JB, Kahng GG, Seo WT. 2006. A study on the making of sweet persimmon (Diospyros kaki, T) wine. Korean J Food Sci Technol 38: 785-792. 25. Kim YS, Jeong DY, Shin DH. 2008. Optimum fermentation conditions and fermentation characteristics of mulberry (Morus alba) wine. Korean J Food Sci Technol 40: 63-69. 26. Ahn CK, Han D, Lee YK, Lee YC. 2005. Synergistic effects of catechin or ascorbic acid on antioxidative of hexane and methanol extracts from rosemary, sage, oregano, and ginger. J Korean Soc Food Sci Nutr 34: 586-592. 27. Duarte WF, Dias DR, Oliveira JM, Vilanova M, Teixeira JA, Almeida e Silva JB, Schwan RF. 2010. Raspberry (Rubus idaeus L.) wine: yeast selection, sensory evaluation and instrumental analysis of volatile and other compounds. Food Res Int 43: 2303-2314. 28. Verzera A, Dima G, Tripodi G, Condurso C, Crino P, Romano D, Mazzaglia A, Lanza CM, Restuccia C, Paratore A. 2014. Aroma and sensory quality of honeydew melon fruits (Cucumis melo L. subsp. melo var. inodorus H. Jacq.) in relation to different rootstocks. Sci Hortic 169: 118-124.