Printed in the Republic of Korea "/"-:5*$"- 4$*&/$& 5&$)/0-0(: Vol. 26, No. 1, 80-85, 2013 http://dx.doi.org/10.5806/ast.2013.26.1.080 Study on the analytical method using GC-MS for the accident preparedness substances Kijoon Kim, Jinseon Lee, Suyeong Lee, Seungryul Hwang, Younghee KimG and Gwangseol Seok Chemicals Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon 404-708, Korea (Received October 26, 2012; Revised December 19, 2012; Accepted February 4, 2013) x ($.4 w š ½» Á Á Áy Á½ Á Ÿ y w yw Abstract: The sixty nine accident preparedness substances (APS) having high probability of chemical accident are controlled under the Toxic Chemicals Control Act (TCCA). Around the world, there has been a growing interest in the analysis of chemical warfare agent (CWAs). When a chemical accident occurs, it is generally required to detect and identify APS. However, the quantitative analytical data remain limited in Korea. In this study, an analytical method using GC/MS for volatile organic chemicals was established and a quantitative analysis method was studied. The calibration curve for 25 chemicals were obtained and 21 chemicals showed higher coefficient of determination (r 2 >0.998). : wyw š w x w» w, GC/MS ƒ w 25 š ww. GC/ MS 69 š yv v (propylene oxide) 21 w (r 2 ) 0.998 š, s (phosgene) 0.994, - p (n-butyl amine) 1 0.987, p (ethylene diamine) 0.958. w GC/MS t w 25 w. x š w ƒ v w y, yw š z y w w q. Key words: accident preparedness substances (APS), GC/MS, quantitative analysis, phosgene, CWAs wyw š ( )Á s w š ƒ ù š ƒ vw ³ ƒ j yw 69 wyw ( 2, 38 ) Corresponding author Phone : +82-(0)32-560-7190 Fax : +82-(0)32-560-2039 E-mail : ksseok@korea.kr 80
Study on the analytical method using GC-MS for the accident preparedness substances 81 š. š 1 4ƒ p ƒ, (1) y, s, ƒ Áyw x, (2) ( ) n, v j, (3) ü m š ƒ, (4) š ƒ p w ƒ v w š. 69 š šál x x j y Ás x, x, ƒ x, x. y Ás x xz(national Fire Protection Agency, NFPA) x y» w j (allyl chloride), j p (acrylonitrile), yyk (carbon disulfide), yv v (propylene oxide) 31 w š, y w ƒw x e yw s w (formaldehyde), s (phosgene) 21, m x y (hydrogen chloride) y (sulfuric acid), k ƒ w p k(nitromethane), y (hydrogen peroxide) 15 w. 2 yw š l w w» w w ƒ v w. x wš yw d w» w GC/MS (gas chromatography mass spectrometry) FT-IR (fourier transform infrared spectrometer) Ÿ, XRD (X-ray diffractometer) { ƒ y. x w k z x 3 š w y sƒ s ƒ w» w w x v w. š w x EPA (Environmental Protection Agency), OSHA (Occupational Safety and Health Administration), NIOSH (National Institute Of Occupational Safety & Health) x ü» œ x», œ x», wyw œ x» ü x». EPA»» w wš x wš, š 33 w x wš. 4-5 OSHA, NIOSH w wš w z p ƒ» w wš. 11-12 OSHA š 16, NIOSH š 13 w wš. ü œ x» œ x, œ x, wyw œ x, œ x, m œ x w y w» w HPLC, AA, GC/MS, GC-FID/FPD/ECD/PID/TCD w. p, ü Á, m, s w» l ƒ w w š, š w w. w x w š. yw š w w» w š v w. yw w» w GC-MSƒ w. 6-10 MSD(mass selective detector) yw š w w ql w y ƒ w y w. w p Kientz Kimm yw (chemical warfare agents, CWAs) w GC/MS w. 6-7 HooiJschuur yw w p GC/MS, LC/MS, GC-GC/MS w w. 8 ü yw šù l w wš w» w š w x v w. š GC/ MS w w w wš, GC/MS ƒ w w sƒw. x t t w» w Table 1 t Sigma-aldrich, Junsei, Osaka l w š, w. wš w p š wš vj e x vw» w dichloromethane (DCM) toluene (TOL) Vol. 26, No. 1, 2013
82 Kijoon Kim, Jinseon Lee, Suyeong Lee, Seungryul Hwang, Younghee KimGand Gwangseol Seok Table 1. Analytical standard materials No. Chemicals Manufacturer Purity Solvent 1 Formaldehyde SIGMA 30% in methanol MET 2 Methanol SIGMA 99.93% TOL 3 Phosgene solution Junsei 20% in toluene TOL 4 Propylene oxide SIGMA 99.70% TOL 5 Acrylonitrile OSAKA 99% TOL 6 Allyl chloride SIGMA 99% TOL 7 Carbon disulfide SIGMA 99% TOL 8 Allyl alcohol SIGMA 99% TOL 9 Methyl vinyl ketone SIGMA 99% TOL 10 Methyl ethyl ketone Junsei 99% TOL 11 Ethyl acetate SIGMA 99.80% TOL 12 Acrylic acid SIGMA 99% TOL 13 Methyl acrylate SIGMA 99% TOL 14 Nenzene Junsei 99.70% DCM 15 Toluene Junsei 99.50% DCM 16 Phenol SIGMA 99% DCM 17 Benzyl chloride SIGMA 99% DCM 18 m-cresol SIGMA 98% DCM 19 Nitrobenzene SIGMA 99.70% DCM 20 p-nitrotoluene SIGMA 98% DCM w š, methanol sw t methanol (MET) w w. t v wš w» ƒw t w. GC v 1 µl» w š, û level 1 l level 5¾ t w. t y w» w t (duplicate standard solution) w ƒƒ w š, t r s³ 10% ü ùk û. ñ -13.3 o C -23.7 o C û y (vinyl chloride) y p(methyl chloride) t ƒ (100 ppm, Rigas, Korea) w t ƒ w z 100 µl v» k GC/ MS w w. š t w GC/MS (Agilent 6890/5973)ƒ š, f DB-5MS (30 m, 0.25 mm, 0.25 µm)ƒ. GC/MS Table 2. Analytical parameters of laboratory GC/MS Parameters Injector condition Column flow Oven program Conditions Split ratio - 10:1 Temperature - 230 o C Injection Volume - 1 µl (liquid) 1 ml/min Rate ( o C/min) Temp.( o C) Time (min) 35 5 5 80 0 10 300 0 Table 2 š, t Auto-sampler w 1 µl w. Scan mode 20~200 amu ƒ t rp y wš, ƒ k w k (Selected Ion Monitoring, SIM) w. (retention time) eš k w e kw (Table 3). š š 69 p š wš yw Analytical Science & Technology
Study on the analytical method using GC-MS for the accident preparedness substances 83 Table 3. Quantum ion of chemical substances Chemicals Q.ion (1) Q.ion (2) Chemicals Q.ion (1) Q.ion (2) Formaldehyde 29 30 Ethyl acetate 61 43 Methanol 31 32 Acrylic acid 72 27 Phosgene 63 65 Methyl acrylate 55 85 Propylene oxide 58 28 Benzene 78 77 Acrylonitrile 53 26 Toluene 91 92 Allyl chloride 41 39 Phenol 94 66 Carbon disulfide 76 44 Benzyl Chloride 91 126 Allyl alcohol 57 31 m-cresol 108 107 Methyl vinyl ketone 55 43 Nitrobenzene 77 123 Methyl ethyl ketone 29 72 p-nitrotoluene 91 137 l w 28 w w. š 26 w w š, 2 ƒ w w. s w (formaldehyde) k (methanol) š ò û (retention time, RT) 2.539 2.731 š, jš ò q -ù p m (pnitrotoluene) 20.14. GC» w 20 š w ƒ Table 4. š 20 17 (r 2 )ƒ 0.999 w. j (acrylic acid) s w (formaldehyde) (r 2 ) 0.998 ùkûš, s (phosgene) 0.994 ùkû. Fig. 1 20 š w v ƒ ùkù. Fig. 1 š sw w 7 w p ùkü»»ƒ. 20 š s w»» (slope) ƒ (113) w Table 4. Calibration equation and correlation of determination by laboratory GC/MS Chemicals Slope (a) Constant (b) r 2 M.W. B.P.( o C) Formaldehyde 113 36,845 0.998 30.0-19.5 Methanol 6,124 347,982 0.999 32.0 64.7 Phosgene 1,841 37,179 0.994 98.9 179.0 Propylene oxide 5,078 500,142 0.999 58.1 34.2 Acrylonitrile 10,899 1,694,910 0.999 53.1 77.3 Allyl chloride 6,221 173,770 0.999 76.5 45.0 Carbon disulfide 4,202 257,843 0.999 76.1 46.5 Allyl alcohol 12,999 234,386 0.999 58.1 96.0 Methyl vinyl ketone 1,924 ( ) 201,582 0.999 70.1 81.4 Methyl ethyl ketone 3,440 146,321 0.999 72.1 79.6 Ethyl acetate 2,572 891,090 0.999 88.1 77.0 Acrylic acid 1,642 570,029 0.998 72.1 141.0 Methyl acrylate 2,733 ( ) 80,482 0.999 86.1 80.5 Benzene 5,800 9,795 0.999 78.1 80.1 Toluene 6,188 ( ) 50,939 0.999 92.1 110.6 Phenol 4,246 ( ) 88,749 0.999 94.1 181.8 Benzyl Chloride 5,041 ( ) 107,092 0.999 126.9 179.0 m-cresol 3,663 ( ) 103,629 0.999 108.1 202.0 Nitrobenzene 2,845 ( ) 84,582 0.999 123.1 211.0 p-nitrotoluene 2,407 ( ) 92,636 0.999 137.1 238.0 Vol. 26, No. 1, 2013
84 Kijoon Kim, Jinseon Lee, Suyeong Lee, Seungryul Hwang, Younghee KimGand Gwangseol Seok Fig. 1. Calibration curve for 20 APSs by GC/MS. Fig. 2. Slopes of calibration curve for 20 APSs by GC/MS. ƒ û., g (allyl alcohol)»» ƒ j (12,999) ƒ ƒ j (Fig. 2). r (constant) j ù p (acrylonitrile) 1,694,910 w. j ù p (acrylonitrile) t level 2~5 r ƒ 3%, 3%, 6%, 2% yw, û level 1 12% j r. w, level 3 t (response)» r w rw q. 20 - p (n-butyl amine), p (ethylene diamine), p p (triethyl amine) GC/MS w ƒ 0.987(a=4,143, b=( )1,288,447), 0.958(a=1,376, b= ( )73,138), 0.988(a=32,984, b=2,128,813) û ùkû. w x x GC vj ñ x š, t r ƒ s³ 30% ùkû» q. wz w ƒ y v w q. Analytical Science & Technology
Study on the analytical method using GC-MS for the accident preparedness substances 85 j (acrylic acid), j ù p (acrylonitrile), p l p(ethyl acetate), yv v (propylene oxide) level 1 response ùš r. v level 2 level 3 s pƒ w ù r w rw» ƒ û level 1 s pƒ ù q. w p l p(ethyl acetate) t 25% j r š, j (acrylic acid) level 5ƒ 26.1% r, level 1 17.9% r. j ù p (acrylonitrile) level 1 11.9% r, yv v (propylene oxide) level 2ƒ 10.8% r w e q. ñ -13.3 C o -23.7 C û y o (vinyl chloride) y p(methyl chloride)» k w š, 0.999(a=16,037, b= 2,087) 0.999(a=17,109, b=( )17,570) y. j (acrolein), y (phosphorus trichloride), y (phosphorus oxychloride), s (formic acid), j j (acrylyl chloride), ù p k(nitromethane) GC/MS w ƒ w š ù( x, 2012), y w w x ww w. wz ƒ t y w z GC/MS w y w z. wyw š w x w» w, p GC/MS w w ww. 69 š yv v (propylene oxide) 21 w GC/MS (r 2 ) 0.998 š, s (phosgene) 0.994, - p (n-butyl amine) 1 0.987, p (ethylene diamine) 0.958. w GC/MS 25 w ƒ w. yw š z y w w q. wz GC/MS w ƒ w ƒ v w, š y w (CWAs) w w. w, GC/MS ƒ,, š w ƒ w w. š x 1. y wyw (2010). 2. y, š» (2010). 3. x,, ½, ½», Ÿ, w y wz, 15(1), 27-34 (2012). 4. EPA ORD NHSRC(a), Rapid screening and preliminary identification techniques and methods, EPA/600/ R-10/090 (2010). 5. EPA ORD NHSRC(b), Sample collection information document, EPA/600/R-09/074 (2010). 6. Ch. E. Kientz, J. Chromatogr. A, 814, 1-23 (1998). 7. G. L. Kimm, G. L. Hook and P. A. Smith, J. Chromatogr. A, 971, 185-191 (2002). 8. E. W. J. Hooijschuur, C. E. Kientz and U. A. Th. Brinkman, J. Chromatogr. A, 982, 177-200 (2002). 9. P. A. Smith, C. J. Lepage, M. Lukacs, N. Martin, A. Shufutinsky and P. B. Savage, Int. J. Mass Spectro., 295(3), 113-118 (2010). 10. J. R. Hancock, C. R. Jackson Lepage, C. L. Chenier, D. S. W. Froese and M. J. Lukacs, On-Site Chemical Warfare Agent Identification, Defence R&D Canada. (2007). 11. U. S. Department of Labor, OSHA Analytical Methods. 12. U. S. Department of Healty and Human Services (US DHHS), NIOSH Manual of Analytical Methods (1994). Vol. 26, No. 1, 2013