16(4)-08(55).fm

Similar documents
한 fm

12.077~081(A12_이종국).fm

< DC1A4C3A5B5BFC7E22E666D>

16(5)-03(56).fm

untitled

14.531~539(08-037).fm

16(5)-04(61).fm

16(5)-06(58).fm

10.063~070(B04_윤성식).fm

10(3)-09.fm

304.fm

10(3)-12.fm

11(5)-12(09-10)p fm

605.fm

10(3)-02.fm

416.fm

19(1) 02.fm

17.393~400(11-033).fm

10(3)-10.fm

41(6)-09(김창일).fm

69-1(p.1-27).fm

untitled

82-01.fm

fm

3.fm

(163번 이희수).fm

03.fm

82.fm

DBPIA-NURIMEDIA

50(1)-09.fm

18211.fm

14.fm

64.fm

<30332DB9E8B0E6BCAE2E666D>

fm

07.051~058(345).fm

12(3) 10.fm

15.101~109(174-하천방재).fm

16(2)-7(p ).fm

32(4B)-04(7455).fm

07.045~051(D04_신상욱).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

04-46(1)-06(조현태).fm

26(2)-04(손정국).fm

51(4)-13.fm

fm

10(1)-08.fm

16(1)-3(국문)(p.40-45).fm

93.fm

50(5)-07.fm

18(3)-10(33).fm

( )-113.fm

83.fm

15.fm

한 fm

23(2) 71.fm

( )-94.fm

50(4)-10.fm

85.fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

14(4) 09.fm

11(1)-15.fm

27(5A)-07(5806).fm

(2)-02(최경자).fm

17(3)-00(282).fm

( )-101.fm

83-07.fm

18103.fm

한 fm

한 fm

87.fm

202.fm

31(3B)-07(7055).fm

43(5)-1.fm

89.fm

17(1)-08(06).fm

<30312DC0CCC7E2B9FC2E666D>

( )-123.fm

9(3)-4(p ).fm

fm

( )-83.fm

( )45.fm

untitled

4.fm

8(3)-15(p ).fm

17(4)-04(41).fm

12(2)-04.fm

84-07.fm

49(6)-06.fm

( )-84.fm

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

untitled

14(2) 02.fm

16(6)-06(08(77)).fm

27(5A)-13(5735).fm

51(2)-09.fm

25(6)-12(조윤아).fm

26(3D)-17.fm

83-06.fm

50(6)-09.fm

Transcription:

DOI: 10.4150/KPMI.2009.16.4.291 ù Fe 73 yw w x q p ½ Á½ Á Á * w ù lœw Electomagnetic Wave Absoption Popeties of Fe 73 -Based Nanocystalline Soft Magnetic Powde Composite Mixed with Chacoal Powde Sun-I Kim, Mi-Rae Kim, Keun Yong Sohn and Won-Wook Pak* Depatment of Nano System Engineeing, Inje Univesity, 607 Obang-dong Gimhae, Gyungnam, 621-749 Republic of Koea (Received July 3, 2009; Revised July 22, 2009; Accepted August 5, 2009) Abstact The electomagnetic wave absoption sheets wee fabicated by mixing of Fe 73 nanocystalline soft magnetic powde, chacoal powde and polyme based binde. The complex pemittivity, complex pemeability, and scatteing paamete have been measued using a netwok analyze in the fequency ange of 10 MHz~10 GHz. The esults showed that complex pemittivity of sheets was lagely dependent on the fequency and the amount of chacoal powde : The pemittivity was impoved up to 100 MHz, howeve the value was deceased above 1 GHz. The powe loss of electomagnetic wave absoption data showed almost the same tendency as the esults of complex pemittivity. Howeve, the complex pemeability was not lagely affected by the fequency, and the values wee deceased with the addition of chacoal powde. Based on the esults, it can be summaized that the addition of chacoal powde was vey effective to impove the EM wave absoption in the fequency ange of 10 MHz~1 GHz. Keywods : Electomagnetic wave absobe, FeSiBNbCu, Chacoal, Complex pemittivity 1.»» w š j» x y š, q ƒwš. w q»» w» q w j ù ü y ù s w s k [1-2].»q w ƒ» ü w œ ³ (KS) w q w t w w t w ³ wš, q ww ³ (EMI, electomagnetic inteface) l q j w q ü (EMS, electomagnetic susceptability)¾ t ³ sw k mwš.»qƒ ü e w»» w»q vw yw» w x q š t q sw. ù q s» ƒ xy ü z j»ƒ qƒ ü t q w w *Coesponding Autho : [Tel : +82-55-320-3872; E-mail : wwpak@inje.ac.k] 291

292 ½ Á½ Á Á. q sw q w q ƒ z. q,, w q y g q w. s k ù p (CNT, Cabon Nanotube), e (Cabon black), ƒw w q ƒ t w [3-6],, p, p š n w q w [7-9]. w w, w ƒ û n ƒ š, w n ƒ û ƒ. w š CNT, ƒ š [10] w šn Fe 73 Si 16 B 7 Nb 3 Cu s ƒ wš ey ƒw q p e w w w. 2. x x þƒ š Fe 73 Si 16 B 7 Nb 3 Cu 1 w, jet mill w q w z» w attition mill w y g. y 270 mesh ƒ» w 54 μm w j» w z 540 C 1 o» û šn ƒ ù w [11-12]. x ù ƒ ƒ ƒ 10 wt%~50 wt% y ball mill w 1 yww. y w yw 40% v ƒw» w 2 yww k z e q» w Ì 1 mm p w. p 100 C» o 1 e z 24 w g. p p Ì ³ w j» w 70 C o (Rolling) p Ì s³ 0.5 mm w. q p n w» w q ü 3 mm/ 7 mm ƒœw z p j ú (netwok analyze), (AgilentCo. N5230A) 2-pot coaxial w d w š, q p p ƒ ƒƒ 5 cm ƒx p j p (mico-stip line) w 10 MHz~10 GHz q S 11 S 21 d w z w sƒw. 3. x š 1 2 ù ƒw w q p q (ε =ε -jε ) p ùkü. 1 ùk ü 100 MHz ƒ ƒ ƒw ƒw ù 100 MHz ƒ w. w w w ùkü x y ƒ š» [13], 2 x w 1 GHz ¾ ƒ Fig. 1. The eal pat of complex pemittivity cuves plotted against fequency fo the Fe-based EM wave absoption sheets mixed with 10~50 wt% chacoal powde in the 10 MHz~10 GHz ange.

ù Fe 73 yw w x q p 293 Fig. 2. The imaginay pat of complex pemittivity cuves plotted against fequency fo the Fe-based EM wave absoption sheets mixed with 10~50 wt% chacoal powde in the 10 MHz~10 GHz ange. ƒw ù š q w x w. 100 MHz ƒ w ùk ü s x [14-15]w, ƒw. w 1 GHz š q q ƒ w j w š p š q w w p [6, 16] ùküš» ƒ. q ü ƒ ƒw pü w w ƒw q w q»»ƒ f q. 3, 4 q n (μ =μ - jμ ) ùkü, Fe ù ƒ ƒ ƒw x n w. Fe ù ƒw pü v wš n ùkü q p n w. w ƒ x n j yw ùkû. x n q ƒ w p Fig. 3. The eal pat (μ ') (a) of complex pemittivity cuves plotted against fequency fo the Fe-based EM wave absoption sheets mixed with 10~50 wt% chacoal powde in the 10 MHz~10 GHz ange. Fig. 4. The imaginay pat of complex pemittivity cuves plotted against fequency fo the Fe-based EM wave absoption sheets mixed with 10~50 wt% chacoal powde in the 10 MHz~10 GHz ange. ùkü ƒ ƒw p» w ùkü. ƒ ƒ x n j yw q. q sƒ Netwok Analyze j p S-paamete d w 5, 6 ùkü. 5 Fe ƒ ƒw ƒ ƒw ùkþ, ƒ ƒw q

294 ½ Á½ Á Á Fig. 5. S 11 of electomagnetic wave absoption sheets mixed with 10~50 wt% chacoal powde in the 10 MHz~10 GHz ange. Fig. 6. S 21 of electomagnetic wave absoption sheets mixed with 10~50 wt% chacoal powde in the 10 MHz~10 GHz ange. p» ƒ ƒw š p t ƒ j w tv¾ (Skin depth)ƒ ƒ w. w w w ƒw t w ƒw ü ƒ q w» w [16]. 6 ƒ ƒw 1 GHz š q p ùkû. ƒ w p q w š q j w ƒ w Fe ù Fig. 7. Powe loss cuve fo the Fe-based nanocystalline soft magnetic powde sheets mixed with 10~50 wt% chacoal powde in the 10 MHz~10 GHz ange. v n w ùkù. q S-paamete mw w, 7 ùkü. 1 GHz w q ƒ w ƒw ù, 1 GHz š q w ƒ ƒw p. x ww, 100 MHz w q n ƒ w ù j s ƒw 1 GHz w q ƒw q. w, 100 MHz q ƒz ƒ ù j ùkû. 1 GHz š q q w j w w q w. 4. Fe 73 ù ƒ 10~50 wt% ƒw xw q x.

ù Fe 73 yw w x q p 295 1.» w q ƒ ƒw 100 MHz w q q p q j w. ù, 1 GHz q x q w j ƒ ƒ k û, q w. 2. ƒ q w š n w. 3. 100 MHz q ƒz ƒ ù j ùkû. š x [1] Taflove, A. and Bodwin, M. E.: IEEE Tans. Micowave Theoy Tech., 23 (1975) 888. [2] Jaupat, S., Kawabata, A., Tokua, H., Bokiewicz, A.: J. Physiol Anthopol, 22 (2003) 61. [3] Abbas, S. M., Chanda, M., Vema, A., Chattejee, R., Goel, T. C.: Composites: Pat A, 37 (2006) 2148. [4] Zhihua, P., Jingcui, P., Yanfeng, P., Yangyu, O., Yantao, N.: Phys. Lett. A, 372 (2008) 3714. [5] Sangawa, V. S., Chikhalika, P. S., Dhokne, R. J., Ubale, A. U. and Mesham, S. D.: Bulletin of Mateials Science, 29 (2006) 413. [6] Moon, K. S., Choi, H. D., Lee, A. K., Cho, K. Y., Yoon, H. G. and Suh, W. S.: J. Appl. Poly. Sci., 77 (2000) 1294. [7] Yoshisa, S., Sato, M., Sugawaa, E. and Shimada, Y.: J. Appl. Phys., 85 (1999) 4636. [8] Hong, S. H., Sohn, K. Y., Pak, W. W., Nam, J. M., Moon, B. G., Song, Y. S.: J. Koean Powde Metallugy Institute, 14 (2007) 261. [9] Min, E. H., Kim, M. S., Koh, J. G.: J. Koean Magnetics Society, 17 (2007) 238. [10] Esawi, A. and Mosi, K., Composites: Pat A, 38 (2007) 646. [11] Yoshizawa, Y., Oguma, S. and Yamauchi, K.: J. Appl. Phys., 64 (1988) 6044. [12] Petzold, J.: J. Magn. Magn. Mate., 242 (2002) 84. [13] Fenske, K. and Misa, D.: Appl. Micowaves Wieless, 12 (2000) 92. [14] Davis, L. C.: J. Appl. Phys., 72 (1992) 1334. [15] Jung, J. C., Jang, Y. G. and Yoon, H. G.: The Koean Society of Industial Application, 5 (2006) 27. [16] Baba, A. A., Lambeti, G., d Amoe, M. and Acieno, D.: Poly. Bull., 57 (2006) 587. [17] Lee, K. S., Yoon, Y. C., Choi, G. B., Kim, S. S. and Lee, J. Y.: J. Koea Electomagnetic Engineeing Society, 16 (2005) 228.