41.6(17) fm

Similar documents
14.531~539(08-037).fm

γ

10(3)-09.fm

16(1)-3(국문)(p.40-45).fm

10(3)-12.fm

< DC1A4C3A5B5BFC7E22E666D>

605.fm

9(3)-4(p ).fm

304.fm

16(2)-7(p ).fm

untitled

69-1(p.1-27).fm

12.077~081(A12_이종국).fm

50(1)-09.fm

11(5)-12(09-10)p fm

416.fm

10(3)-10.fm

hwp

DBPIA-NURIMEDIA

19(1) 02.fm

<30312DC0CCC7E2B9FC2E666D>

12(2)-04.fm

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

139~144 ¿À°ø¾àħ

07.051~058(345).fm

10(1)-08.fm

82.fm

<30332DB9E8B0E6BCAE2E666D>


15.101~109(174-하천방재).fm

10(3)-02.fm

82-01.fm


<312D303128C1B6BAB4BFC1292E666D>

8(2)-4(p ).fm

Lumbar spine

untitled

14.fm

16(5)-06(58).fm

17.393~400(11-033).fm

Overview -ingredient - mechanism 2. Biomarker 3. In vitro study 4. In vivo study 5. Human study 6. 기능성 인정서 7.기준규격 인정서

012임수진

노인정신의학회보14-1호

(2)-02(최경자).fm

26(3D)-17.fm

DBPIA-NURIMEDIA

101.fm

50(5)-07.fm

51(4)-13.fm

12(3) 10.fm

415.fm

84-01.fm

32(4B)-04(7455).fm

fm

03-서연옥.hwp

<30382EC0C7C7D0B0ADC1C22E687770>

fm

11(1)-15.fm

12(4) 10.fm

untitled

14(4) 09.fm

서론 34 2

93.fm

2 한국유가공기술과학회지제 32 권제 1 호 (2014), (Lee et al., 2009; Mitchell et al., 1986)., (Lee et al., 2009; Tsukamoto and Towner, 1984; Lieber, 1991)..,..,

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

202.fm

50(6)-09.fm

19(2)-02.fm

DBPIA-NURIMEDIA


84-07.fm

untitled

14(4)-14(심고문2).fm

01.01~08(유왕진).fm

82-02.fm

50(4)-10.fm

49(6)-06.fm

27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

15(2)-07.fm

fm

14(2) 02.fm

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

07.045~051(D04_신상욱).fm

93-09.fm

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

°ø±â¾Ð±â±â

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

43(2)-10(단보)023(p ).fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

09-감마선(dh)

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

전체 목차 1. 주류 일반 2. 기능성 3. 숙취 4. 주세법 5. 주류 일반 상식 6. 우리술 즐기기

개최요강

DBPIA-NURIMEDIA

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

21(4)-02.fm

16(5)-04(61).fm

이 발명을 지원한 국가연구개발사업 과제고유번호 KGM 부처명 교육과학기술부 연구관리전문기관 연구사업명 전북분원운영사업 연구과제명 저탄소 녹생성장을 위한 바이오매스/에너지 개발 주관기관 한국생명공학연구원 연구기간 2009년 01월 01일 ~ 2009년 12월

04-46(1)-06(조현태).fm

7(4)-07.fm

Transcription:

KOREAN J. FOOD SCI. TECHNOL. Vol. 41, No. 6, pp. 706~711 (2009) The Korean Society of Food Science and Technology g w w š w ƒ» yz ÁÁÁw 1 Áx³* ww tw, 1 w t Protective Effects of Branched-chain Amino Acid (BCAA)-enriched Corn Gluten Hydrolysates on Ethanol-induced Hepatic Injury in Rats Yong Il Chung, In Young Bae, Ji Yeon Lee, Hyang Sook Chun 1, and Hyeon Gyu Lee* Department of Food and Nutrition, Hanyang University 1 Food Safety Research Center, Korea Food Research Institute Abstract Hepatoprotective effects of corn gluten hydrolysates (CGH) were investigated in rats orally treated with ethanol (30%(v/v), 3 g/kg body weight/day) for 4 weeks. Six-week old Sprague-Dawley male rats were divided into four dietary groups: normal diet (N), alcohol diet (E), E+CGH 1% diet (CGH-1%), and E+CGH 3% diet (CGH-3%). Body weights and liver indices were not significantly different among the four groups. However, food intakes were lower in the CGH groups than in the normal group (p<0.05). The administration of CGH significantly reduced serum alkaline phosphatase activity by 30% compared to the alcohol diet group. Among the antioxidative enzymes assessed, catalase activity was significantly decreased by 79% in the CGH diet groups compared to the alcohol diet group. In comparison to the alcohol-treated group, aldehyde dehydrogenase activity was increased by 20%, while microsomal ethanol oxidizing system activity was decreased by 20% in the CGH-treated groups. Furthermore, the area under the curve of the blood acetaldehyde concentration versus time profile after the administration of ethanol was significantly lower for the CGH rats than for the ethanol or asparaginic acid treated groups. Thus, CGH seems to offer beneficial effects by protecting against ethanol-induced hepatotoxicity by improving the acetaldehyde-related metabolizing system. Key words: corn gluten hydrolysates, ethanol-induced hepatic injury, alcohol metabolism g w ü ƒjù»k. ü k pwù f xw (1). w, k w z šx, k w,» e ƒ (2-4). ü g pw y alcohol dehydrogenase(adh)ƒ wš, pw aldehyde dehydrogenase(aldh) w lp y(5,6). g microsomal ethanol oxidizing system(meos) w pw ƒwš, w pw 4-8 y w g y š (7-9). *Corresponding author: Hyeon Gyu Lee, Department of Food and Nutrition, Hanyang University, Seoul 133-791, Korea Tel: 82-2-2220-1202 Fax: 82-2-2292-1226 E-mail: hyeonlee@hanyang.ac.kr Received June 17, 2009; revised August 10, 2009; accepted August 10, 2009 w y wù wš ü superoxide dismutase(sod), glutathione peroxidase(gpx), catalase wy z w y (2,10,11). p, ü wy z catalase g y w šš ù, k w š p w (5). t ü w ƒ w (lipoprotein) w ü x w g w w (12). p, ù l w ƒ š, ƒw w y(, v,, y w z) š w ƒwš (13,14). rk w w wš(15), g g wz ADH ALDH y x g wj zƒ (16). w, tyœ rte rk qw, g, g l, x w z ùkü(17). g w rk z Yamaguchi (18,19) k šx w û r k ww œw z w. 706

ù rkƒ l ƒw(corn gluten hydrolysates, CGH) g yz g wy w š. CGH g w yz mwš, CGH ƒ w g n» k zy y w. l ƒw l ()gvdg(incheon, Korea) wš, ƒw w Celluclast TM (Trichoderma reesei, 700 U/g), Alkalase TM( Bacillus licheniformis, 2.4 U/g), Flavourzyme TM (Aspergillus oryzae, 1,000 U/g) Novozymes (Begsvaerd, Denmark) t w. l ƒw l 125 C o 8 z, Celluclast ( w TM 0.5% (w/w)) ƒw 50 o C, ph 5.0 2 w. l ƒw 20% xk g(a. oryzae wš w ) z w ww., A. oryzae 30 C 2 o wš, ƒ 20%(w/w), 5%(w/w)ƒ ƒ w 45 C o w.» yw z( Alkalase TM Flavourzyme ) w TM 0.5%(w/ w) ƒw z, 45 C 72 ƒw o w. w œ mw ƒw (Pilot filter press, Jeil Co., Daegu, Korea), (Rotary vacuum evaporator system N- 11, Eyela, Tokyo, Japan), k(pilot electrodialysis Acilyzer 02, Astom Corp., Tokyo, Japan) e z, y(pilot» KL-8, Seo Gang Engineering Co., Chungnam, Korea) w w. w l ƒw 5.0%, 62.5%, ky 26.5%, 0.0%, z 6.0% š, BCAA w 40.7%(valine 7.6%, isoleucine 9.8%, leucine 9.57%) wš. x e g w w yz 200 g ü 6 Spargue-Dawley f (Central Lab., Animal Inc., Seoul, Korea)w (Samyang Co., Seoul, Korea) 1 k z ù w 4 (n=10) ù w., (N), k n (E), k CGH ƒw x (CGH-1% CGH-3%) ù 4 w. g n 30% k (kg) 3g k w w ( 9:00-10:00) 1z n w. 50%(w/v) s n w eƒ g w wš, AIN-93G(Dyets Inc., Bethlehem, PA, USA) œ w. x» w w, y ww(23 o C, 55%) 12»(08:00-20:00) w. wr, x g e CGH kw x 16 œ k w 0.5% carboxymethyl celluiose(cmc) xkk asparginic acid ƒw yz 707 CGH z w., (kg) 1g n wš, 30 z 30% k (3 g/kg body weight) n z 0, 0.5, 1, 3, 6, 9 hr x(0.5 ml) w. e 4 w 12 k z l g xw x 4 o C, 3,000 rpm 15 w x w z 70 o C w x ü yw t w. x w z ww w wš w z, sw 100 g» ywš, 70 o C w z w. w 0.25 M sucrose (5 mm Tris, 0.5 mm EDTA; ph 7.2) 4 ml ƒw ³yk 4 o C, 700 g 15 w. 4 o C, 12,000 g 15 w mg z wš, 4 o C, 48,000 g 1 šw m j z w ¾ 70 o C w. mg z GPX, SOD ALDH, m ADH, j MEOS y d ƒƒ w. zy d x alkaline phosphatase(alp), aspartate aminotransferase (GOT), alanine aminotransferase(gpt) y Reitman-Frankel (20) kit(asan Pharm, Seoul, Korea) w w. ü SOD y Winterbourn (21) xw xanthine xanthine oxidase w ferricytochrome C y ww dw, cytochrome C y 50% ww 1unit tw. Catalase y Johansson-Hakan (22) w 550 nm Ÿ dw z, formaldehyde t w tšl y w. GPX y Flohe (23) w w Ÿ y 365 nm 30 3 dw unit y ùkü. ADH ALDHy Lebsack (24) Shin (25) w 340 nm NADH t dw. ü malondialdehyde(mda) y t wù MDA w ³yw 33 mm ferrous sulphate-ascorbate ƒw 37 o C 30 g. 2 volume 10% TCA š, 100 o C 10 k, þƒw 532 nm Ÿ dw. x k pw - š w k n z xw xl 4 o C, 3,000 rpm 15 w w x ü k pw w kit(roche Korea Co. Ltd., Seoul, Korea) w w., 3 ml NAD x 100 µl yww 20 o C 5 k z 340 nm Ÿ dw k w w. p w 3mL NAD x 200 µl ywwš 3 ew z 340 nm dw Ÿ,

708 w twz 41 «6y (2009) Table 1. Weight gain, food intake, and liver weight in rats treated with 30% ethanol containing corn gluten hydrolysates Group Body weight gain (g/4 wk) Food intake (g/day) Liver weight (g/100 g b.w.) Normal NS135.92±10.88 NS1) 21.14±1.45 a2) NS18.23±1.32 NS Ethanol 139.84±20.85 20.58±2.00 ab 18.05±1.39 CGH-1% 131.38±13.18 19.08±1.79 b 16.76±1.36 CGH-3% 136.33±16.46 19.43±1.68 b 17.22±1.00 1) Not significant. 2) Means with different letters in a column were significantly different at p<0.05. w kz 50 µl yww 20 C 3 o k z dw Ÿ l w. k x kw k pw - šw (area under the blood concentration-time curve: AUC) w w., x k pw 0 l 9 ¾ dw š wš, l Õ œ w x¾ (AUC 09 hr ) w. m x Statistical Package for the Social Science(SPSS, Version 12.0, 2004, SPSS Inc., Chicago, IL, USA) w ƒ x s³ tr wš, (Analysis of variance; ANOVA) z Duncan s multiple range test w 0.05 w ƒ x w. š ƒ, y g x f w 4 e ƒ, y Table 1. ƒ ù, CGH 1% 3% w x û.» z Lee Chyun(12) w,»y w ùkù x (26,27). w w w» w 100 g y w w., k w g w x ùkù. x yw t g x» z w CGH z x ALP, GOT GPT y y mw w(fig. 1). g n x ALP y 20% ƒw, CGH w 30% w. ALP,,, k, ALP ƒ y s s y w t (28). g n wì CGH œ w ALP z k z» k (p<0.05). ù 1% 3% CGH. Fig. 1, GOT GPT y g n CGH y. GOT GPT Fig. 1. Plasma biochemical parameters for liver function in rats treated with 30% ethanol containing corn gluten hydrolysates. ALP, alkaline phosphatase; GOT, aspartate aminotransferase; GPT, alanine aminotransferase. ù wš, x m w, y p w y x ƒw (29-32). z s wƒ n w x» t. ù x CGH GOT GPT y ƒƒ ùkù w» (12) w. w

ƒw yz 709 Table 2. Antioxidative enzyme activities and malondialdehyde level in rats treated with 30% ethanol containing corn gluten hydrolysates Group SOD 1) GPX 2) Catalase MDA 3) (U/min/mg protein) (µmol/mg protein) (nmol/g tissue) Normal NS2.82±0.70 NS4) NS197.11±45.22 NS 141.80±21.14 b NS1.66±0.62 NS Ethanol 2.97±0.86 189.42±83.89 191.34±50.71 a 1.45±0.35 CGH-1% 2.85±0.29 155.42±53.00 152.44±35.93 b 1.31±0.34 CGH-3% 2.70±0.62 147.97±67.10 151.16±28.93 b 1.36±0.35 1) Superoxide dismutase, 2) Glutathione peroxidase, 3) Malondialdehyde. 4) Not significant. CGH g w GOT GPT y ALP y w. x wy z y y Table 2, CGH w x SOD GPX y MDA g n e. ù catalase zy g n w CGH 79%¾ w. ü wy z SOD catalase ü wy l» w z, SOD superoxide radical w hydrogen peroxide yjš, catalase w y (33-35). Kim (36) k n w ü SOD,, ƒ š š, w z y š w., Aykac (37) k nƒ catalase y y j w š w. p, Lee Chyun(12) ƒ catalase SOD y wš w. g» zz CGH z wy y z catalase w. g z y 4 g nw w» CGH e ADH, ALDH MEOS y r Fig. 2. g n w ADH y ù, ALDH y g n w CGH 20% ƒw. ALDH ü x» w y-y w z,,»,, x, x w xw w(38). ethanol ADH w acetaldehyde yš, s aldehyde ALDH w acetic acid y (39). w CGH g w z alcohol 1 ww ADH 2 aldehyde w ALDH y w z q. ü MEOS w 10-25% g ƒ, g n mj P-450 w y s MEOS y wš, ƒ MEOS g y NADPH w û w (40). Lieber(41) w MEOS û Km e ƒ ADH Kmeƒ x g ƒ y ƒš šw. g MEOS y ƒ mj P-450 Fig. 2. Effect of corn gluten hydrolysates on hepatic alcohol metabolizing enzyme activity in 30% ethanol treated-rats. ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; MEOS, microsomal ethanol oxidizing system. y w w (42). x MEOS y g n w ƒ, Kishimoto (43) Koivula Lindros(44) š w. p, 3%

710 w twz 41 «6y (2009) Fig. 3. Time dependent changes of blood alcohol and acetaldehyde concentration after administration of ethanol in rats. CGH w g nw w ü MEOS y 20% CGHƒ MEOS y w z. g n ƒ MEOS y CGH w CGH g yz»w. g n x g CGH 30% k nw xw x ethanol acetaldehyde w Fig. 3. g x ethanol y ƒ. ù acetaldehyde CGH n 30 zl wƒ 9 x. w acetaldehyde y š w yw,, asparaginic acid, CGH ƒƒ 953, 1,009, 380 mg hr/dl CGH w. p, w zw asparaginic acid, w. CGH g w g y acetaldehyde w g w» w w ƒ. l ƒw(corn gluten hydrolysates, CGH) g» yz w z., 4 ww g nw w jš, x yw» t(alp, GOT, GPT), s ü wy z(sod, GPX, catalase) y (MDA) g z(adh, ALDH, MEOS) y w. w g ethanol acetaldehyde w z w. g y w k n CGH z, w CGH w. g ƒ x ALP y CGH e 30% w, GOT GPT y y. g ü wy catalase zy g n w CGH 79%¾ w. ADH y ù, ALDH y g n w CGH 20% ƒw. p, CGH MEOSy w w 3% CGH w g n w 20%¾ y w. g z n x ethanol ƒ. ù acetaldehyde CGH n w wš, š w yw, 60% w z., CGH g ALDH MEOS y w ü g w» yz wì ethanol acetaldehyde ü j» y ƒ w. x 1. Ramchandani VA, Bosron WF, Li TK. Research advances in ethanol metabolism. Pathol. Biol. 49: 676-682 (2001) 2. Lee EH, Chyun JH. Effect of β-carotene supplementation on lipid peroxide levels and antioxidative enzyme artivities in alcoholic fatty liver rats. Korean J. Nutr. 38: 289-296 (2005) 3. Cha YS, Sachan DS. Acetyl carnitine-mediated inhibition of ethanol oxidation in hepatocytes. Alcohol 12: 289-294 (1995) 4. Rouach H, Clement M, Ofanelli MT, Janvier B, Nordmann J, Nordmann R. Hepatic lipid peroxidation and mitochondrial susceptibility to peroxidative attacks during ethanol inhalation and withdrawal. Biochem. Biophys. Acta 753: 439-444 (1983) 5. Peters TJ. Ethanol metabolism. Brit. Med. Bull. 38: 17-20 (1982) 6. Pikkarainen PH, Salaspuro MP, Lieber CS. A method for the determination of free acetaldehyde in plasma. Alcohol. Clin. Exp. Res. 3: 259-261 (1979) 7. Umulis DM, Gurmen NM, Singh P, Fogler HS. A physiologically based model for ethanol and acetaldehyde metabolism in human beings. Alcohol 35: 3-12 (2005) 8. Lieber CS. Relationships between nutrition, alcohol use, and liver disease. Alcohol Res. Health 27: 220-231 (2003) 9. Jung BS. Metabolic effects of alcohol. Korean J. Food Nutr. 4: 207-211 (1991) 10. Rouach H, Clement M, Ofanelli MT, Janvier B, Nordmann J, Nordmann R. Hepatic lipid peroxidation and mitochondrial susceptibility to peroxidative attacks during ethanol inhalation and withdrawal. Biochem. Biophys. Acta. 753: 439-444 (1983) 11. Moncade C, Torres V, Varghese G, Albano E, Israsel Y. Ethanolderived immuno reactive species formed by radical mechanisms.

ƒw yz 711 Mol. Pharmacol. 46: 786-791 (1994) 12. Lee EH, Chyun JH. Effect of chongkukjang intake on lipid metabolism and liver function in ethanol consumed rats. Korean J. Nutr. 40: 684-692 (2007) 13. Terpstra AHM, Hermus AJJ, West CE. Dietary protein and cholesterol metabolism in rabbits and rats. pp. 19-49 In: Current Topics in Nutrition and Disease: Animal and Vegetable Proteins in Lipid Metabolism. Alan RLiss-Inc. New York, NY, USA (1983) 14. Lee HM, Chang UJ. Effect of corn peptide on lipid metabolism in rats. Korean J. Diet. Culture 16: 416-422 (2001) 15. Blomstrand E, Hassmen P, Ekblom B, Newsholme EA. Administration of branched-chain amino acids during sustained exerciseeffects on performance and on plasma concentration of some amino acids. Euro. J. Appl. Physiol. 63: 58-88 (1991) 16. Wagenmakers AJM. Muscle amino acid metabolism at rest and during exercise: Role in human physiology and metabolism. Exerc. Sport Sci. Rev. 26: 287-314 (1998) 17. Nihon Shokuhin Kako Co., Ltd. Peptino. pp. 1-6. In: Corn Peptide. Nihon Shokuhin Kako Co., Ltd. Tokyo, Japan (1992) 18. Yamaguchi M, Takada M, Nozaki O, Ito M, Furukawa Y. Preparation of corn peptide from corn gluten meal and its administration effect on alcohol metabolism in stroke-prone spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 42: 219-231 (1996) 19. Yamaguchi M, Nishikiori F, Ito M, Furukawa Y. The effect of corn peptide ingestion on facilitating alcohol metabolism in healthy men. Biosci. Biotech. Biochem. 61: 1474-1481 (1997) 20. Reitman S, Frankel SA. Colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pãruvic transminase. Am. J. Clin. Pathol. 28: 56-63 (1957) 21. Winterbourn CC, Hawkins RE, Brian M, Carrell RW. The estimation of red cell superoxide dismutase activity. J. Lab. Clin. Med. 85: 337-341 (1975) 22. Johansson LH, Hakan BLA. A spectrophotometric methods for determination of catalase activity in small tissue samples. Anal. Biochem. 174: 331-336 (1998) 23. Flohe L, Gunzler WA. Assays of glutathione peroxidase. Method Enzymol. 105: 114-121 (1984) 24. Lebsack ME, Petersen DR, Collins AC, Anderson AD. Preferential inhibition of the low Km aldehyde dehydrogenase activity by pargyline. Biochem. Pharmacol. 26: 1151-1154 (1977) 25. Shin KH, Han YN, Chung HS, Lim SS, Lee SH, Shin CS. Effects of high molecular weight fractions of aloe spp. in alcohol metabolism. Korean J. Pharmacol. 29: 120-124 (1998) 26. Mitchell GV, Jenkins MY, Grundel E. Protein efficiency ratios and net protein ratios of selected protein foods. Plant Food Hum. Nutr. 39: 53-58 (1989) 27. Choi YS, Lee SY. Cholesterol-lowing effects of soybean products (curd or curd residue) in rats. J. Korean Soc. Food Sci. Nutr. 22: 673-677 (1993) 28. Park WD, Hwang JS, Hur JW, Ahn SH, Park SK, Kwak CS. Activities of α-d-mannosidase and β-d-mannosidase in patients with liver diseases. Korean J. Gastroenterol. 33: 211-221 (1999) 29. Achliya GS, Wadodkar SG, Dorle AK. Evaluation of hepatoprotective effect of Amalkadi Ghrita against carbon tetrachlorideinduced hepatic damage in rats. J. Ethnopharmacol. 90: 229-232 (2004) 30. Camandola S, Aragno M, Cutrin JC, Tamagno E, Danni O, Chiarpotto E, Parola M, Leonarduzzi G, Biasi F, Poli G. Liver AP-I activation due to carbon tetrachloride is potentiated by 1,2- dibromoethane but is inhibited by a tocopherol or gadolinium chloride. Free Radical Bio. Med. 26: 1108-1116 (1999) 31. Gilani AH, Janbaz KH, Akhtar MS. Selective protective effect of an extract from Fumaria parviflora on paracetamol-induced hepatotoxicity. Gen. Pharmacol. 27: 979-983 (1996) 32. Shin MK, Han SH, Park SH. Effect of soybean powder on lipid metabolism and enzyme activities in induced hyperlipidemic rats. J. East Asian Soc. Dietary Life 16: 165-173 (2006) 33. Halliwell B, Gutteridge MC. Free Radicals in Biology and Medicine. Oxford University Press, Oxford, UK. pp. 166-170 (1985) 34. Aebi H. Methods of Enzymatic Analysis. Academic Press, New York, NY, USA. pp. 673-684 (1974) 35. Halliwell B. Free radical, antioxidant and human disease: Curiosity cause, or consequence? Lancet 344: 721-728 (1994) 36. Kim MJ, Park EM, Lee MK, Cho SY. Effect of methionine and selenium levels on alcohol metabolic enzyme system in rats. J. Korean Soc. Food Sci. Nutr. 26: 319-326 (1997) 37. Aykac G, Usual M, Yalcin AS, Kocak-Toker N, Sivas A, Oz H. The effect of chronic ethanol ingestion in hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology 36: 71-76 (1985) 38. Kanh BH, Son HY, Lee HS, Song SW. Reference values of hematology and serum chemistry in ktc: Sprague-Dawley rats. Korean J. Lab. Anim. Sci. 11: 141-145 (1995) 39. Seitz HK, Simanowski UA, Garzon FT, Ridout JM, Peters TJ, Koch A, Berger MR, Einecke H, Maiwald M. Possible role of acetaldehyde in ethanol related rectal cocarcinogenesis in the rat. Gastroenterology 98: 406-413 (1990) 40. Teschke R, Moreno F, Petrides AS. Hepatic microsomal ethanol oxidizing system (MEOS): Respective roles of ethanol and carbohydrats for the enhanced activity after chronic alcohol consumption. Biochem. Pharmacol. 30: 1745-1751 (1981) 41. Lieber CS. The influence of alcohol on nutritional status. Nutr. Res. 46: 241-254 (1988) 42. Ohnishi K, Lieber CS. Reconstitution of the microsomal ethanoloxidizing system. Qualitative and quantitative changes of cytochrome P-450 after chronic ethanol consumption. J. Biol. Chem. 252: 7124-7131 (1977) 43. Kishimoto R, Fujiwara I, Kitayama S, Goda K, Nakata Y. Changes in hepatic enzymes activities related to ethanol metabolism in mice following chronic ethanol administration. J. Nutr. Sci. Vitaminol. 41: 527-543 (1995) 44. Koivula T, Lindros KO. Effect of long-term ethanol treatment on aldehyde and alcohol dehydrogenase activities in rat liver. Biochem. Pharmacol. 24: 1937-1942 (1975)