05.fm

Similar documents
untitled

10(3)-10.fm

10(3)-09.fm

12.077~081(A12_이종국).fm

605.fm

14.531~539(08-037).fm

304.fm

10(3)-12.fm

16(1)-3(국문)(p.40-45).fm

fm

9(3)-4(p ).fm

03.fm

16(5)-06(58).fm

82-01.fm

14.fm

16(5)-03(56).fm

16(5)-04(61).fm

10.063~070(B04_윤성식).fm

50(1)-09.fm

10(3)-02.fm

fm

64.fm

69-1(p.1-27).fm

11(5)-12(09-10)p fm

12(2)-04.fm

15.101~109(174-하천방재).fm

< DC1A4C3A5B5BFC7E22E666D>

(163번 이희수).fm

19(1) 02.fm

38(6)-01.fm

416.fm

50(5)-07.fm

<30312DC0CCC7E2B9FC2E666D>

93.fm

<30332DB9E8B0E6BCAE2E666D>

27(5A)-07(5806).fm

143.fm

12(3) 10.fm

17.393~400(11-033).fm

82.fm

49(6)-06.fm

07.051~058(345).fm

( )-94.fm

12(4) 10.fm

untitled

83.fm

11(4)-03(김태림).fm

DBPIA-NURIMEDIA

10(1)-08.fm

4.fm

14(4) 09.fm

04-46(1)-06(조현태).fm

3.fm

( )45.fm

50(6)-03.fm

31(3B)-07(7055).fm

<B0F8C1A4C0CCBFEB5FB0A1C0CCB5E5B6F3C0CE28BFF8BABB2920BCF6C1A42E687770>

fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

50(4)-10.fm

57.fm

04.fm

( )-83.fm

fm

202.fm

( )-113.fm

<312D303128C1B6BAB4BFC1292E666D>

27(5A)-15(5868).fm

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

16(4)-05.fm

16(6)-06(08(77)).fm

26(3D)-17.fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

19(5)-04[57].fm

한 fm

44(1)-01(이기안).fm

415.fm

18211.fm

16(2)-7(p ).fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

51(2)-09.fm

15(2)-07.fm

DBPIA-NURIMEDIA

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

14(2) 02.fm

11(1)-15.fm

18(3)-10(33).fm

27(5A)-13(5735).fm

02-47(2)-08(조현태).fm

06.177~184(10-079).fm

( )-123.fm

51(4)-13.fm

62.fm

17(1)-08(06).fm

untitled

DBPIA-NURIMEDIA

07.045~051(D04_신상욱).fm


13.fm

Transcription:

270 w œwz 29«6y (2009. 12) y xk r w ** 'F.O4w y xk e.o4 w Á½ k * Á½ w w v œw l Morphology and Segregation of Sulfide Inclusions in Cast Steels (II) (Influence of [Mn/S] Ratios on the Morphology of Sulfide Inclusions in Fe-Mn-S Alloys) Heung-Il Park, Ji-Tae Kim*, and Woo-Yeol Kim Department of materials processing engineering, Graduate school, Pukyung National University, Busan, 608-739, Korea *Samyoung M-Tek Co., Ltd., Kyungnam, 637-941, Korea Abstract After casting button-type small ingots of ternary Fe-Mn-S alloys which had three different Mn/S ratios (1, 5 and 70) in a vacuum arc furnace, the effect of the ratio on the sulfide formation was investigated. In case of the Mn/S ratio of 1, if alloy composition was located in an iron-rich corner on a Fe-Mn-S ternary phase diagram, only duplex MnS-FeS sulfide films were observed in the grain boundary. If the alloy composition was located in the miscibility gap area of the phase diagram, primary globular dendritic sulfides and dendritic sulfide slags were generated within the grain and tubular monotectic sulfides were also detected in the grain boundary. When the Mn/S ratio was 5, if the alloy composition was in the iron-rich corner, only bead-like sulfides were generated. On the other hand, if the composition was in the miscibility gap area, globular dendritic sulfides and dendritic sulfide slags were generated in the form of primary sulfide inclusions and rod-like eutectic sulfides were observed in the grain boundary. Especially, if the contents of Mn and S increased more in the miscibility gap area of the phase diagram, primary globular sulfides containing iron intrusions were observed. In case of Mn/S ratio of 70, if the contents of Mn and S was decreased in the Fe corner of the phase diagram, only bead-like sulfides were observed in the grain boundary. Despite the composition was outside the miscibility gap area of the phase diagram, if the contents of Mn and S increased, clusters of fine sulfide particles as well as fine spherical primary monophase sulfides were observed in the grain boundary. Key words : Fe-Mn-S alloys, Sulfide inclusions and morphology, Mn/S ratios. (Received November 8, 2009 ; Accepted December 8, 2009) 1. y» w ƒ y xk, r w ù œ w w [1-8]. Sims [9,10] y xk w Type I y Type III ƒx y Type II v y» { ww š w. y(s) w w (Mn) ƒ FeS y š š MnS y w y z ƒ [11,12]. Mn š w w w, Mn ƒ, [Mn/S] w w [13-16]. E. T. Turkdogan [14] š vw [Mn/ S] ƒ 3.0 w, H. Nakata [16] [Mn 3 /S] ƒ 1.5 wƒ š w z w š š w. Fe-FeS[17], Fe-Mn-S Fe-C-Mn-S w y xk wš, x t y r [18] š w wwš. [Mn/S] ƒ t x ù š w r [Mn/S] yƒ ¼, [Mn/S] ƒ w Mn S w ƒ w y xk š w» w x». w [Mn/S] ƒ 1, 5 70 ƒƒ r Mn S w y k E-mail : castpark@pknu.ac.kr

y xk r w (II) (Fe-Mn-S w y xk e Mn/S w)- et al. 271 Fe-Mn-S w x wš, w y xk e [Mn/S] w w. 2. x 2.1 r 5g, 12-13 mm, 7-8 mm j» x œ j w (Vacuum arc furnace, 220V, 60Hz, 30kW) þ»q w w.»q y (99.9%) (99.9%), š Fe- 39wt.%S w s w wš j ww t r w. r r yw» w x 3z ww. Table 1 x r [Mn/S] yw ùkü. r [Mn/S] ƒƒ 1, 5 70 3ƒ ù. Mn ys š S ys [Mn/S] ƒ 1 r Mn/S w (wt.%) ƒƒ 0.7/0.7 (IA) 1.4/1.4 (IIA) 2ƒ. [Mn/S] ƒ 5 r Mn S w j s ƒw, Mn/S w (wt.%) ƒƒ 0.7/0.14 (IB), 1.4/0.28 (IIB), 3.5/ 0.7 (IIIA) 7.0/1.4 (IIIB) 4ƒ. š Mn y s jš S ys [Mn/S] ƒ 70 r Mn/S w (wt.%) ƒƒ 0.7/0.01 (IC), 1.4/0.02 (IIC), 3.5/ 0.05 (IIIC) 7.0/0.10 (IIID) 4ƒ. 2.2 y x r wš qw w. k, ù k y w r w Ÿwx x (SEM) y xk w. y s y w EPMA w w. y e r 5-6 mm m w. Fig. 1 x x x e ùkü. 3. x š 3.1 y xk x y p k š ü y y (primary sulfide inclusions), š š y 2 y (secondary sulfide inclusions) w Table 1. Chemical compositions of Fe-Mn-S alloy specimens used for morphological study of sulfide inclusions. [Mn/S] ratios 1 5 70 (Mn/S)wt.% [IA] 0.7/0.7 [IB] 0.7/0.14 [IC] 0.7/0.01 [IIA] 1.4/1.4 [IIB] 1.4/0.28 [IIC] 1.4/0.02 - [IIIA] 3.5/0.70 [IIIC] 3.5/0.05 - [IIIB] 7.0/1.4 [IIID] 7.0/0.10 Fig. 1. (a) shape and (b) dimensions of a button-type small steel ingot produced by vacuum arc melting system. The dark circle in Fig. 1b indicates a metallographic examination point of specimens.. Fig. 2 t y ùkü. Fig. 2a(IIID), Fig. 2b(IIA), Fig. 2c(IIIA) Fig. 2d(IIIB) Fig. 2f(IIIB ) ù k w Ÿwx. š Fig. 2e Fig. 2d(IIIB) w r y w x (SEM). Fig. 2a [Mn/S] ƒ 70 IIID. j» 5 µm w y, y EPMA 7.8%Fe-57.1%Mn-35.1%S(at.%). Fig. 2b [Mn/S] ƒ 1 IIA. j» 10-20 µm š y, y yw 8.2%Fe-40.9%Mn- 50.9%S(at.%). Fig. 2c [Mn/S] ƒ 5 IIIA. lù p j» 10-20 µm š y, y yw 2.6%Fe-49.1%Mn-48.3%S(at.%). Fig. 2a, Fig. 2b Fig. 2c y xk j» œm. l y, FeSƒ š š Mn(Fe)S y. Fig. 2d [Mn/S] ƒ 5 IIIB. (ring shape) y lù p. y yw 2.0%Fe- 47.8%Mn-50.1%S(at.%). Fig. 2f Fig. 2d w IIIB r. yw 2.0%Fe-46.8%Mn-51.2%S(at.%), Fig. 2d y yw w Mn(Fe)S y y. l š y š w ù e w. y x y IIA, IIIA IIIB. Fig. 2e Fig. 2d y y k SEM. Fig. 2d y» Fe. š Fig. 2f y Fe. Fe-MnS k [19,20] 1610 o C š

272 Journal of the Korean FoundrymenÌs Society Vol. 29, No. 6, 2009 Fig. 2. Typical as-cast microstructures and morphology of the primary sulfide inclusions; (a) fine spherical mono-phase sulfides in IIID, (b) globular dendritic sulfides in IIA, (c) globular dendritic sulfides enveloped in austenitic shell in IIIA, (d) globular dendritic sulfides contain iron intrusion in IIIB and (f) dendritic sulfide slags contain iron droplets in IIIB specimen, nital etched optical micrographs. Fig. 2 (e) shows a sulfuric acid deep-etched scanning electron micrograph of Fig. 2d. r Fe y (L M ) S y (Ls) œ w. wr y ƒ r [L M + Ls L M + Ls + MnS(solid)] 1610-1580 C o šw» wš Feƒ. r y šw ùš Feƒ Fig. 2e enw Fig. 2d y xk šw. w Fe enx Bigelow [19] š. wr Fig. 2f y Feƒ w w r y š Fe y enw Feƒ y s k e». 3.2 2 y xk Sims [9,10] y xk Type I, v Type II, š ƒx Type III y w. Fig. 3 2 y Fig. 3a, Fig. 3b v, Fig. 3d Type II w š, Fig. 3c Type I w. Fig. 3 x Fe-Mn-S w t 2 y xk, ù k w SEM. Fig. 3a [Mn/S] ƒ 5 IB SEM. w y. y yw 45.3%Fe-19.1%Mn-35.6%S(at.%). Fig.

y xk r w (II) (Fe-Mn-S w y xk e Mn/S w)- et al. 273 Fig. 3. Typical as-cast morphology of the secondary sulfide inclusions; (a) bead or chain-like sulfides in IB, (b) sulfide films or networks in IA, (c) clusters of fine sulfide particles in IIIC and (d) rod-like eutectic sulfides in IIIB specimen, nital deep-etched scanning electron micrographs. Fig. 4. Typical as-cast morphology of the secondary sulfide inclusions; (a) duplex MnS-FeS sulfide films in IA and (b) ring-like small sulfides in IIA specimen, sulfuric acid-etched optical micrographs. Fig. 4(c and d) show tubular monotectic sulfides observed in C area of Fig. 4b, nital deep-etched scanning electron micrographs.

274 w œwz 29«6y (2009. 12) Fig. 5. Effects of [Mn/S] ratios on the morphological changes of (a) primary and (b) secondary sulfide inclusions in Fe-Mn-S alloy specimens. 3b [Mn/S] ƒ 1 IA SEM. x v q y xk. Fig. 3c [Mn/S] ƒ 70 IIIC SEM. w y s, yw 56.7%Fe-22.7%Mn-20.6%S(at.%). Fig. 3d [Mn/S] ƒ 5 IIIB SEM, y yw 64.9%Fe-15.6%Mn-19.5%S(at.%). Bigelow [19] y Fe-MnS w œ w. Fig. 4a Fig. 4b ƒƒ [Mn/S] ƒ 1 IA IIA y y w Ÿwx. Fig. 4a IA v y A t w w z B t w 2. EPMA A yw 42.5%Fe- 6.5%Mn-51.1S(at.%) š B yw 40.1%Fe-15.8% Mn-44.1%S(at.%), A B Mn w 2. y MnS FeS š Mn(Fe)S y œ w MnS-FeS 2 y y. 2 y Mn w» Sƒ w IA IIA. Fredriksson [21] 2 y FeS š w MnS y (Q-phase) šw, Biglow [19] y x y xk

y xk r w (II) (Fe-Mn-S w y xk e Mn/S w)- et al. 275 (degenerate rod morphology) [Mn/S] ƒ w v ùkù š w. wr IIA (Fig. 4b) MnS-FeS 2 y wì C t w š y. y yw 34.1%Fe-51.3%Mn-14.5%(at.%), 2 y Mn w {. wr Fig. 4c Fig. 4d š y SEM. ù k š y w Fe k, Ÿwx š y 3-5 µm w q v ùq y y. [Mn/S] ƒ 1 IIA Mn S w, Mn S r ƒƒ. Fe-MnS k Lm MnS-FeS 2 y x wš, MnSƒ Ls r r y [20]. 3.3 y xk e [Mn/S] w Fig. 5 Fe-Mn-S 3 sx k [19,22] Fe. k Mn S œ r, š x r [Mn/S] ƒ. Fig. 5a Fig. 5b [Mn/S] Mn S w w ƒƒ w r 2 y xk Fe-Mn-S 3 sx k ùkü. Fig. 5a Fe-Mn-S 3 sx k œ (miscibility gap, Lm +Ls) ƒ w, [Mn/S] 1 IIA, [Mn/S] 5 IIIA IIIB Mn(Fe)S š y ƒ. Fe-MnS[19,20] k Mn w ƒw Feƒ (Lm) Sƒ (Ls) 2 x ƒ w. œ w y e w y j ew. wr Fe-Mn-S 3 sx k Fe, Mn S w û w [Mn/S] ƒ 1 IA, [Mn/S] ƒ 5 IB IIB, [Mn/S] ƒ 70 IC IIC y. ù [Mn/S] ƒ 70 w IIIC IIID Fe-Mn-S 3 sx k œ ù Mn S w w y. Fig. 5b x 2 y xk Fe- Mn-S 3 sx k ùkü. [Mn/S] ƒ 1 IA IIA r, FeS MnS 2 v y, p Fe-Mn-S 3 sx k œ w w IIA MnS-FeS 2 v y r y. [Mn/S] ƒ 5 IB IIB, [Mn/S] ƒ 70 IC IIC, Fe-Mn-S 3 sx k Fe Mn S w û w y. wr [Mn/S] ƒ 5, œ Mn S w IIIA IIIB w œ y. p [Mn/S] ƒ 70 r Mn w S w û Fe-Mn-S 3 sx k œ ù IIIC IIID w ˆ y ƒ. Table 2 x t y xk p k w. y (Fig. 2a), š y (Fig. 2b), lù p š y (Fig. 2c,d), Feƒ en y (Fig. 2d) Fe y (Fig. 2f) y. wr y (Fig. 3a), v y (Fig. 3b), s y (Fig. 3c), œ y (Fig. 3d), v FeS- MnS 2 y (Fig. 4a,b), š q v ùq ƒ r y (Fig. 4c,d) 2 y. 4. œ j [Mn/S] ƒ ƒƒ 1, 5 70 Fe-Mn-S Table 2. Morphological classification of sulfide inclusions observed in Fe-Mn-S alloy specimens. Groups Morphological classification Reference figures Specimens Fine spherical sulfides Fig. 2a IIIC, IIID Globular dendritic sulfides Fig. 2b IIA, IIIA, IIIB Primary sulfide inclusions Globular dendritic sulfides enveloped in austenitic shell Fig. 2c,d IIIA, IIIB Globular dendritic sulfides contains iron intrusion Fig. 2d,e IIIB Dendritic sulfide slags contain iron droplets Fig. 2f IIA, IIIA, IIIB Bead or chain-like sulfides Fig. 3a IB, IIB, IC, IIC Sulfide films or networks Fig. 3b IA, IIA Secondary sulfide inclusions Clusters of fine sulfide particles Fig. 3c IIIC, IIID Rod-like eutectic sulfides Fig. 3d IIIA, IIIB Duplex MnS-FeS sulfide films Fig. 4a,b IA, IIA Tubular monotectic sulfides Fig. 4c,d IIA

276 Journal of the Korean FoundrymenÌs Society Vol. 29, No. 6, 2009 3 w x wš, [Mn/S] ƒ y xk e w w. 1) y p k ü y 2 y w. y y, š y, Fe ƒ en y y ƒ. š 2 y y, v y, w ˆ y, v FeS-MnS 2 y, œ y r y. 2) [Mn/S] ƒ 1 r w Fe-Mn-S 3 s x k Fe w MnS-FeS 2 v y. r w Fe- Mn-S 3 sx k œ w y y ƒ š, MnS-FeS 2 v y wì r y. 3) [Mn/S] ƒ 5 r w Fe-Mn-S 3 s x k Fe w y. wr r w Fe-Mn-S 3 sx k œ w y y ƒ y š, œ y. p Fe-Mn-S 3 sx k œ Mn S w ƒw Feƒ en y. 4) [Mn/S] ƒ 70 r, Fe-Mn-S 3 sx k Fe Mn S w û r y. wr Fe- Mn-S 3 sx k œ ù Mn Sƒ ƒw w y wì w ˆ y ƒ. 2007 w (PS- 2007-0012000200702200) w. š x [1] J. K. Brimacombe and K. Sopimachi, "Crack formation in the continuous casting of steel", Metallurgical transactions B, Vol.8B (1977) 489-505 [2] C. L. Briant and S. K. Banerji, "Intergranular failure in steel: the role of grain-boundary composition", International metals reviews, No.4 (1978) 164-199 [3] A. Chojecki, I. Telejko and T. Bogacz, "Influence of chemical composition on the hot tearing formation of cast steel", Theoretical and applied fracture mechanics, Vol.27 (1997) 99-105 [4] ASM Handbook, Vol. 6 (1997) 88-106 "Cracking phenomena associated with welding" [5] A. Chojecki, I. Telejko and P. Kozelsky, "Influence of calcium on cracking of steel during the welding or casting process", Theoretical and applied fracture mechanics, Vol.31 (1999) 41-46 [6] L. H. Van Vlack, O. K. Riegger and R. J. Warrick, "Sulfide inclusions in steel", The University of michigan reserch institute, UMRI project report, (1958) [7] W. Dahl, H. Hengstenberg and G. Dueren, "Conditions for the occurance of the various types of sulphide inclusions", Stahl und Eisen, Vol. 86, No. 13 (1966) 782-795 [8] G. Wranglen, "Review article on the influence of sulphide inclusions on the corrodibility of Fe and steel", Corrosion Science, Vol.9 (1969) 585-602 [9] C. E. Sims, F. B. Dahle, Effect of Aluminum on the Properties of Medium Carbon Cast steel,transactions of the American Foundrymen's Association, Vol.46 (1938) 65-132 [10] C. E. Sims, H. A. Saller and F. W. Boulger, "Effects of various deoxidizers on the structures of sulphide inclusions", Transactions, American Foundry Society, 57 (1949) 233-248 [11] C. E. Sims, The nonmetallic constituents of steel", Transactions of the metallurgical society of AIME, Vol.215 (1959) 367-392 [12] E. T. Turkdogan, S. Lgnatowicz and J. pearson, "The solubility of sulphur in iron and iron manganese alloys", J. of iron and steel institute, (1955) 349-354 [13] G. S. Mann and L. H. Van Vlack, "FeS-MnS relationships in the presence of excess iron", Metallurgical transactions B, Vol.7B (1976) 469-475 [14] E. T. Turkdogan, "Fundmentals of steelmaking", The institute of materials, (1996) 307 [15] G. A. Teledo, Influence of sulfur and Mn/S ratio on the hot ductility of steels during continuous casting", Steel research, Vol.64, No.6 (1993) 292-299 [16] H. Nakata and H. Yasunaka, "Effect of sulfur and manganese on hot ductility of steels at high temperature", Transactions ISIJ, Vol. 26 (1986) B-98 [17] H. I. Park, J. T. Kim and S. G. Kim "Morphology and segregation of sulfide inclusions in cast steels (I); A fabrication of Fe-FeS alloys and the observation of their sulfide morphology." J. of the Korean Foundrymen's Society, Vol.29, No.5 (2009) 220-224 [18] H. I. Park et al, "A case study on the solidification behavior and defects of heavy steel castings", J. of the Korean Foundrymen's Society, Vol.26, No.2 (2006) 57-62 [19] L. K. Biglow and M. C. Flemings, "Sulfide inclusions in steel", Metallurgical Trans. Vol. 6B (1975) 275-283 [20] K. Oikawa, et al., "The control of morphology of MnS inclusions in steel during solidification", ISIJ International, Vol.35, No.4 (1995) 402-408 [21] H. Fredriksson and Hillert, "On the Formation of Manganese Sulfides Inclusions In Steel, Scandinavian Journal of Metallurgy, 2 (1973) 125-145 [22] H. Wentrup, "Die Bildung von Eissenschuessen im Stahl", Technische Mitteilung Krupp, Vol.5 (1937) 131-152