fm

Similar documents
14.531~539(08-037).fm

16(1)-3(국문)(p.40-45).fm

10(3)-12.fm

605.fm

304.fm

untitled

9(3)-4(p ).fm

10(3)-10.fm

10(3)-09.fm

DBPIA-NURIMEDIA

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할


012임수진

서론 34 2

50(1)-09.fm

82.fm

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

1..

12(3) 10.fm

11(5)-12(09-10)p fm

10(3)-02.fm

(Microsoft PowerPoint - S13-3_\261\350\273\363\307\366 [\310\243\310\257 \270\360\265\345])

16(2)-7(p ).fm

50(5)-07.fm

12.077~081(A12_이종국).fm

<35BFCFBCBA2E687770>

69-1(p.1-27).fm

416.fm

49(6)-06.fm

15.101~109(174-하천방재).fm

< DC1A4C3A5B5BFC7E22E666D>

fm

590호(01-11)

09È«¼®¿µ 5~152s

14(4)-14(심고문2).fm

17.393~400(11-033).fm

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

12(2)-04.fm

歯1.PDF

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

82-01.fm

untitled

12(4) 10.fm

14(4) 09.fm

한국성인에서초기황반변성질환과 연관된위험요인연구


歯5-2-13(전미희외).PDF

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II)

27(5A)-07(5806).fm

23(2) 71.fm

15(2)-07.fm

14(2) 02.fm


歯14.양돈규.hwp

07.051~058(345).fm

10(1)-08.fm

Lumbar spine

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

31(3B)-07(7055).fm

11(1)-15.fm

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

07.045~051(D04_신상욱).fm

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

06.177~184(10-079).fm

19(1) 02.fm

8(3)-15(p ).fm


Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

8(2)-4(p ).fm

26(3D)-17.fm

<30312DC0CCC7E2B9FC2E666D>

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

fm

황지웅


다이어트마침표_1부 :24 PM 페이지2 BMI지수의 진실 비만을 측정하는 대표적인 방법 가운데 하나가 BMI 지수다. BMI(Body Mass Index, 체질량지수)란 키와 몸무게를 이용하여 지방의 양을 추정하는 비만 측정법이다. 몸무게를 키의

<31325FB1E8B0E6BCBA2E687770>

<30332DB9E8B0E6BCAE2E666D>

hwp

May 10~ Hotel Inter-Burgo Exco, Daegu Plenary lectures From metabolic syndrome to diabetes Meta-inflammation responsible for the progression fr

#Ȳ¿ë¼®

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

21(4)-02.fm

11(5)-7(09-37)p fm

8(3)-01.fm

82-02.fm

,......

16(5)-06(58).fm

부속

18211.fm

YI Ggodme : The Lives and Diseases of Females during the Latter Half of the Joseon Dynasty as Reconstructed with Cases in Yeoksi Manpil (Stray Notes w

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu


32(4B)-04(7455).fm

김범수

16(1)-9(국문)(p.46-51).fm

29(4)-07(김봉채).fm

DBPIA-NURIMEDIA

?

51(2)-09.fm

Transcription:

w Vol. 9, No. 1 October 2009 pp. 52-58» w w» y ½ Á x*á Á w w ƒ w š w Comparison of Accuracy of Body Composition Analyzer using Bioelectrical Impedance Analysis Moon Chul Kim, Jee Hyun Kang *, Young Seok Kang and ByungYeon Yu Department of Family Medicine, College of Medicine, Konyang University Abstract: Background: Various body composition analysis instruments using bioelectrical impedance analysis (BIA) have been used widely in clinical setting. However, few studies have examined the accuracy of these instruments. Methods: To compare the accuracy of percent body fat (PBF) and visceral fat areas (VFA) measured by two body composition analysis instruments using BIA [InBody720 (Biospace, Korea) and X-scan plus (Jawon Medical, Korea)] against PBF by dual-energy x-ray absortiometry (DXA), VFA by abdominal computed tomogram (CT), 100 adults (male 55, female 45) who visited a health examination center were enrolled in this study. Results: The coefficient of correlation in PBF measured by Inbody720 and X-scan plus based on DXA were 0.922 and 0.897 respectively, and there was statistically significant difference between these correlation coefficients (p<0.001). The coefficient of correlation in visceral fat area (VFA) measured by Inbody720 and X-scan plus based on the abdominal CT were 0.599 and 0.485 respectively, and these difference of correlation coefficients did not reach the statistical significance (p = 0.26). In the analysis of agreement using Bland-Altman plot, the limits of agreement in value of BPF based on DXA were 0.3±3.2% in Inbody720 and 1.1±3.8% in X-scan plusii. Moreover, the limits of agreement in value of VFA based on CT were 11.8±59.9 cm 2 in Inbody720 and 2.0±73.2 cm 2 in X-scan plus II. Conclusion: Although both BIA instruments compared favorably with DXA, the correlation coefficient in PBF measured by Inbody720 was statistically higher than those measured by X-scan plus II in this study group. Keywords: Bioelectrical impedance analysis, Dual energy X-ray absortiometry, Computer tomography, Body composition analysis, Visceral fat area. w» w ù (kg/m 2 )ƒ ƒ š, t (1-3). ù ü v w k, š» yw w d v (4,5). w w p, ü ƒ», y x sƒw ü d w (6-14). d w» w (Dual energy X-ray absortiometry, DXA),, e *Corresponding Author: Email: jeehyunkang@yahoo.co.kr Tel: +82-42-600-8808; Fax: +82-42-600-9095, d, y y, q, ful d (Computer tomography, CT),»œ w. d w wš f v w rw š.» w (Bioelectrical Impedance Analysis, BIA) wš ƒ w, rwš w s š, DXA CT» BIA d e y w ƒ (15-16). BIA w»ƒ ü q š, BIA»» y w (17) Inbody3.0 nbody-1 w w ƒ.,, d InBody720 (Biospace, Korea) X-scan plusii (Jawon Medical, Korea)ƒ DXA» w e ùkü, š» ü d w ü CT» y w ƒ» w w.

» w w» y 53 1. 2007 w w l w 20~64 û 100 w š, w š v w. -ks wz» 23 kg/cm 2 š, šx, š x x y, y (18). 2. 1) d d ww w y w d. 8 œ k k z ƒ š k w 0.1 cm, 0.1 kg¾ d w, (kg) (meter) ù w. x v ƒ r ü k 25Ê30 cm š ³ jš, s ò WHO «w w w 0.1 cm ¾ d w (3). 2) d» w w d w š, ƒ» InBody720 (Biospace, Korea) X-scan plusii (Jawon Medical, Korea) w. DXA lunar Prodigy (Lunar co., Madison, USA) w l ó¾ z w.» w w» d w,. ù,,,» w z v ƒ d t e k, q rš š ww»» ü mw ü. 3) ü d ü d ful d (CT, SOMATOM Plus4, Siemens, Gemany) InBody720 (Biospace, Korea), š X- scan plusii (Jawon Medical, Korea) w ww. CT w ü d v ƒ k q š, 4 5 z w Housfield Unit 30~ 190 w d w w z w.» d w ü d w. 3. m Independent t-test w p ƒ w. ü d ƒ w» w paired t-test ww. DXA BIA w d e, š CT BIA d w ü Pearson w w š txw. Medcalc m v comparison of correlation coefficient w. e w» w DEX CT» Bland-Altman plots w, d e x w s³±t r w. m v SPSS for window V 12.0 (SPSS Inc., USA) Medcalc software V8.2 (Mariakerke, Belgium) w, 0.05 w. 1. p 28 l 65 ¾ s³ 46.05± 8.87 š, 100 û ƒ 55 (55%), ƒ 45 (45%). û ƒƒ 26.8±2.1(kg/cm 2 ), 25.1Û2.2(kg/cm 2 ), û ü, x,, w y. de d d e Table 1. Table 1. General characteristics and body composition of the study subjects. Variable Male (N = 55) Female (N = 45) Mean±SD Mean±SD p-value * Age (years) 45.3±9.2 47.0±8.5 0.343 Height (cm) 170.0±5.8 155.9±6.7 < 0.001 Weight (kg) 77.5±8.9 61.1±7.6 < 0.001 Waist (cm) 90.3±6.2 84.0±6.6 < 0.001 BMI (kg/cm 2 ) 26.8±2.1 25.1±2.2 < 0.001 VFA-CT (cm 2 ) 119.8±39.1 86.0±26.7 < 0.001 VFA-Inbody (cm 2 ) 128.7±23.0 101.3±21.5 < 0.001 VFA-X-scan (cm 2 ) 128.1±29.8 80.3±21.9 < 0.001 PBF-DXA (%) 26.1±4.4 34.4±3.8 < 0.001 PBF-Inbody (%) 26.7±4.3 35.0±4.1 < 0.001 PBF-X-scan (%) 25.9±3.4 32.1±3.4 < 0.001 BFM-DXA (kg) 20.6±5.2 21.4±3.7 0.418 BFM-Inbody (kg) 21.0±4.7 21.7±3.6 0.402 BFM-X-scan (kg) 20.1±4.0 19.7±3.2 0.575 LBM-DXA (kg) 54.8±5.3 38.3±5.1 < 0.001 LBM-Inbody (kg) 54.0±5.8 38.2±5.3 < 0.001 LBM-X-scan (kg) 52.2±6.8 38.2±5.0 < 0.001 BMI: body mass index, DXA: dual energy X-ray absortiometry, VFA-CT: visceral fat area measured by computer tomography, VFA-I: visceral fat area measured by Inbody720, VFA-X: visceral fat area measured by X-scan plus II, PDF: percent body fat, BFM: body fat mass, LBM: lean body mass. * by Independent t-test.

54 ½ Á xá Á Table 2. Mean differences of the measured by Dual energy X-ray absorptiometry, Inbody and X-scan plus II according to variable. Body composition Variable Percent body fat (%) Body fat mass (kg) Lean body mass (kg) Mean±S.D p-value Mean±S.D p-value Mean±S.D p-value DXA-Inbody 0.6±2.3 0.012 0.3±1.7 0.038 0.4±1.7 0.014 DXA-X-scan 1.2±2.7 < 0.001 1.1±2.0 < 0.001 1.4±3.2 < 0.001 DXA: dual energy X-ray absortiometry. All differences are statistically significant in p-value <0.05 by paired t-test. 2. s³ DXA Inbody720 d w s³ ƒ 0.6± 2.3% (p =0.012), š DXA X-scan plusii d w s³ ƒ 1.2±2.7% (p<0.001) ùkûš, DXA Inbody720 d w s³ ƒ 0.3±1.7 kg (p =0.038), š DXA X-scan plus d w s³ ƒ 1.1±2.0 kg (p<0.001), DXA Inbody720 d w s³ ƒ 0.4±1.7 kg (p =0.014), š DXA X-scan plusii d w s³ ƒ 1.4±3.2 kg (p<0.001). Inbody720 X-scan plusii s³ DXA d w w ƒ (Table 2). 3. ü s³ ü CT BIA»» d ƒ ƒƒ w ƒ» w paired t-test ww. Inbody720 CT d w ü s³ 11.7±30.5 cm (p<0.001) w ƒ 2 ù, X- scan plusii CT d w ü s³ 2.0± 37.3 cm 2 (p=0.591), w ƒ (Table 3). 4. DXA BIA»» d w,, DXA Inbody720 d w (r = 0.922, p<0.001), (r = 0.932, p<0.001), (r = 0.985, p<0.001) w. w, DXA X-scan plusii d w (r = 0.897, p<0.001), (r = 0.910, p<0.001), (r = 0.943, p<0.001) w ƒ ùk û (Fig. 1). Table 3. Mean differences of the measured by Computer tomography, Inbody720 and X-scan plus II according to abdominal fat area. Visceral fat area (cm 2 ) Variable Mean±S.D p-value CT-Inbody 11.7±30.5 < 0.001 CT-X-scan 2.0±37.3 0.591 CT: Computer tomography. All differences are statistically significant in p-value <0.05 by paired t-test. 5. ü CT BIA»» d w ü ü CT Inbody720 d w ü (r = 0.599, p<0.001) w (Fig. 2A), ü CT X-scan plusii d w ü (r = 0.485, p<0.001) w (Fig. 2B). 6. ƒ BIA d Inbody720 X-scan plus d d DXA d d w ƒ w w ƒ ù(ƒƒ p<0.001, p<0.001), w (p = 0.31). ƒ BIA CT d ü m w (p =0.26). 7. DXA» BIA»» d w d e e DXA» d,, x w Inbody720 0.3±3.2%, 0.6±4.6 kg, 0.4±3.3 kg š, X-scan plusii ƒƒ 1.1±3.8%, 1.2±5.2 kg, 1.4±6.4 kg x w ƒ Inbody w (Fig. 3). 8. ü CT BIA»» d w ü e ü CT» ü d e ƒ» w Bland- Altman plots e w, Inbody720 x w 11.8±59.9 cm 2 š, X-scan plusii x w 2.0±73.2 cm 2 Inbody w (Fig. 4). š y y ù ƒw, 2005 ù 31.8%(û 35.2%, 28.3%) ùkû (19,20). ü vw ü, p ü

» w w» y 55 Fig. 1. Scatter plot of the body composition as measured by Dual energy X-ray absorptiometry, Inbody720 and X-scan plusii. Fig. 2. Scatter plot of the visceral fat area as measured by Computer tomography, Inbody720 and X-scan plusii.

56 ½ Á xá Á Fig. 3. Bland-Altman plot showing the mean value and the error allowance limits of the difference between body composotion by Dual energy X-ray absorptiometry and by Inbody720 and X-scan plusii. Fig. 4. Bland-Altman plot showing the mean value and the error allowance limits of the difference between visceral fat area measured by abdominal fat CT and by Inbody720 and X-scan plusii.

» w w» y 57 ew ü 2x, šx, y w w w š. DXA ƒ X- n k, X- d w z dw, ù,,, y w r k (21). CT d w» d w ü d w» w š (22,23).» w w p» w dw, w» w w w. m wù y 5 mx ƒ w ƒ v d wš, v ù w œ w w. e š ƒ wš»» rw ƒ, l, {p l, š. w InBody720 X-scan plus 1~1000 KHz q, 4 w BIA»» ü t d» z ƒ w. ƒ BIA d w,, DXA d w w ù, Inbody720 d ƒ X-scan plusii d w. w Inbody720 y ƒ X-scan plus II» j ƒ ù (r = 0.922 vs. r = 0.897), Inbody720 DXA», X-scan plus II (Isotope dilution)»» w ƒ ù ƒ. (17) Bland-Altman plots w DXA BIA e w, ƒƒ s³ x w ƒ 1.24±5.82%, 0.98±3.99 kg, 0.45± 4.23 kg šw š, DXA BIA ƒ j y. BIA»»,, d Inbody720(ƒƒ 0.3±3.2%, 0.6±4.6 kg, 0.4±3.3 kg) X-scan plusii(ƒƒ 1.1±3.8%, 1.2±5.2 kg, 1.4±6.4 kg) s³ x w ƒ. CT BIA ü d w (r = 0.652) (r = 0.24) ƒ, w (InBody720 r = 0.599, X-scan plusii r = 0.485) (24,25). ü w CT Inbody4.0 d w ü paired t-test w, w s³ ƒ(12.2±49.0 cm 2 ) ƒ ƒw ƒ f š šw (24). Inbody720 d ü CT d ü w ƒ ù( 11.7±30.5 cm 2, p<0.001), X-scan plusii d w ü CT d w w ƒ ( 2.0±73.2 cm 2, p = 0.591). ù X-scan plusii d w ü Inbody720 d w ü w s³ ƒ, w Inbody720 X-scan plusii w ƒ. w w w ü w û 100 w» yw w, BIA»ù, w š w w., DXA» ƒ» y w ƒ BIA»» d DXA d ù Inbody720 d X-scan plus II d w w ƒ (r = 0.922 vs. r = 0.897). BIA»» d ü CT d w ü ƒ û r, ü BIA w ƒ (r = 0.599 vs. r = 0.485). wz w w» BIA y w ƒ ƒ v w. š x 1. Welborn TA, Knuiman MW, Vu HT. Body mass index and alternatuive indices of obesity in relation to height, triceps skinfold and subsequent mortality: the Busselton health stuty. Int J Obes Relat Metab Disord 2000; 24: 108-115. 2. Strain GW, Zumoff B. The relationship of weight-height indicies of obesity to body fat content. J Am Coll Nutr 1992; 11: 715-718. 3. WHO. Report of a WHO Consultation on obesity: Preventing and managing, the global epidemic. Geneva: 1999. 4. Blackman MB. Obesity. Principle of ambulatory medicine. 4 th ed. 1994: 1102-1109. 5. Larsson B, Svardsudd K, Welin L, Wilhhenlmsen L, Bjorntorp P, Tibblin G. Abdominal adipose tissue distribution, obesity and risk of cardiovascular disease and death: a 13 year follow up of participants in the study of men born in 1913. Br Med J 1984; 288: 1401-1404. 6. Fuiioka S, Matsuzawa Y, Tokunaga K, Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 1987; 36 :54-59. 7. Nakajima T, Fujioka S, Tokunaga K, Matsuzawa Y, Tarui S.

58 ½ Á xá Á Correlation of intraabdominal fat accumulation and left ventricular performance in obesity. Am J Cardiol 1989; 64: 369-373. 8. Kanai H, Matsuzawa Y, Katoni K, Keno K, Kobatake T, Nagai Y. Close observation of intra-abdominal fat accumulation to hypertension in obese women. Hypertension in obese women. Hypertension 1990; 16 :484-490. 9. Ferranini E, Barrett EJ, Bevilacqua S, Defronzo RA. Effects of fatty acids on glucose production and utilization in man. J Clin Invest 1983; 72: 1737-1747. 10. Boden G. Fatty acids on insulin resistance. Diabetes Care 1996; 19: 394-395. 11. Svedberg J, Bjortorp P, Smith U, Lonroth P, Smith U, Lonroth P. Free-fatty acid inhibition of insulin binding, degradation and action in isolated rat hepatocyte. Diabetes 1990; 39: 570-574. 12. Bevilacqua S, Bonadonna R, Buzzigoli G, Boni C, Ciociaro D, Maccari F, Giorico MA, Ferranini E. Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects. Metabolism 1990; 36: 570-574. 13. Lewis GP, Steiner G. Acute effects of insulin in the control of LVDV production in humans: implications for the insulinresistance state. Diabetes Care 1996; 19: 390-393. 14. Garg A. Insulin resistance in the pathogenesis of dyslipidemia. Diabetes Care 1996; 19: 387-389. 15. ½x, x.» w» x k. w wz 2002; 11: 389-397. 16., ½,, y, y, x. w d w. w wz 2002; 11: 150-157. 17.,, y», ½, w, ½. d» d sƒ. wz 2006; 6: 79-87. 18. Inoue S, Zimmet P, Caterson I, Chunming C, Ikeda Y, Khalid AK. The Asia-Pacific perspective:redefining obesity and its treatment. Melbourne: Health Communication; 2000. 19.. š. 2005. 20. Poston WC 2d, Foreyt JP, Borrell L, Haddock CK. Challenges in obesity management. South Med J 1998; 91: 710-720. 21. Prior BM, Cureton KJ, Modlesty CM, Evans EM, Sloniger MA, Ssunders M. In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry. J Appl Physiol 1997; 83: 623-630. 22. Nakamura T, Tokunaga K, Shimomura I. Contribution of visceral fat accumulation to the development of coronary artery in non-obese men. Atherosclerosis 1994; 107: 239-246. 23. Tokunaga K, Matsuzawa Y, Ishikawa K, Tarui S. A novel technique for the determination of body fat by computed tomography. Int J Obes 1983; 7: 437-445. 24., x, ½,.» InBody 4.0 x w ü x sƒ y. ƒ wz 2006; 27: 904-910. 25.,, y, y, ½.» w ful d w. d. wz. 2006; 7: 225-237.