1-32(1)-01(신경순).fm

Similar documents
605.fm

10(3)-02.fm

304.fm

10(3)-09.fm

12.077~081(A12_이종국).fm

10(3)-10.fm

< DC1A4C3A5B5BFC7E22E666D>

9(3)-4(p ).fm

50(1)-09.fm

14.531~539(08-037).fm

10(3)-12.fm

untitled

12(3) 10.fm

69-1(p.1-27).fm

433대지05박창용

82-01.fm

untitled

<30332DB9E8B0E6BCAE2E666D>

19(1) 02.fm

14.fm

50(5)-07.fm

03이경미(237~248)ok

DBPIA-NURIMEDIA

<312D303128C1B6BAB4BFC1292E666D>

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

fm

12(2)-04.fm

82.fm

19(4)-12(40).fm

hwp

11(5)-12(09-10)p fm

07.051~058(345).fm

16(1)-3(국문)(p.40-45).fm

29(4)-07(김봉채).fm

10(1)-08.fm

10.063~070(B04_윤성식).fm

8(2)-4(p ).fm

49(6)-06.fm

17.393~400(11-033).fm

83-07.fm

<30312DC0CCC7E2B9FC2E666D>

03-서연옥.hwp

02À±¼ø¿Á

12(4) 10.fm

012임수진

8(3)-01.fm

16(2)-7(p ).fm

202.fm

09È«¼®¿µ 5~152s

14(2) 02.fm

01À̽ÂÈ£A9-832š

93-09.fm

416.fm

( )-123.fm

11(1)-15.fm

15(2)-07.fm

27(5A)-07(5806).fm

(2)-02(최경자).fm

50(4)-10.fm

14(4) 09.fm

15.101~109(174-하천방재).fm

19(4)-09(27).fm

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

50(6)-03.fm

( )-83.fm

32(4B)-04(7455).fm

93.fm

82-02.fm

51(4)-13.fm

3-15(3)-05(이주희).fm

139~144 ¿À°ø¾àħ

31(3B)-07(7055).fm

fm

19(4)-07(43).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

07.045~051(D04_신상욱).fm

4.fm

41(6)-09(김창일).fm

82-08.fm

23(2) 71.fm

11(2)-03(김수옥).fm

16(5)-04(61).fm

01.01~08(유왕진).fm

580 이재철ㆍ김대현 , Aanderaa Weather Station P Q ADCP 4 m,. P Q 84 m 124 m. ADCP. ADCP (Sea-Bird Electronics, 2000), inverse barometric effect

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

415.fm

7(4)-07.fm

DBPIA-NURIMEDIA

04-46(1)-06(조현태).fm

16(5)-06(58).fm

» t d» y w š q, w d» y ƒ ƒ w tree-ring t w d» y ƒ w š w. w tree-ring t mw»z y p q w š w. Tree-ring t mw, 500» ƒ wš p w» ƒ, y»z p wš»»z y. ù tree-ring

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

8(3)-15(p ).fm

38(6)-01.fm

Lumbar spine

<30312D303720B9DAC1A4BCF62E666D>

04김호걸(39~50)ok

83.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

51(2)-06.fm

Transcription:

Vol. 32(1):1-13 DOI: 10.4217/OPR.2010.32.1.001 Ocean and Polar Research March 2010 Article ûwÿ «v jm p yá * Áx ¼Á t Á½x Áy w w ûw (656-830) û 391 Distribution Characteristics and Community Structure of Phytoplankton in the Different Water Masses During Early Summer of Southern Sea of Korea Seung Ho Baek, Kyoungsoon Shin *, Bonggil Hyun, Pung-Guk Jang, Hyun-Su Kim, and Ok-Myung Hwang South Sea Research Institute, KORDI Geoje 656-830, Korea Abstract : To assess short-term variation of summer phytoplankton community structure in different water masses, phytoplankton and environmental factors were monitored from 31 stations on and off the southern coasts of Korea, from June 18 to June 20 2009. According to multidimensional scaling (MDS) and cluster analysis based on phytoplankton community data from each station, the southern sea was divided into two groups. The first group included stations in the south-eastern region of Jeju Island, which is strongly influenced by the Kuroshio warm current. The second group located along the coastal region of the southern sea, which was mainly comprised of Bacillariophyceae and Crytophyceae. Of these stations, St. 13 and 28 formed a temperature front caused by different hydrological conditions. In particular, nutrients and Chl.a concentrations in these two stations were significantly higher compared to those in the other stations. This indicates that phytoplankton population and subsequent microalgal growth under high nutrient concentrations vary in different water masses. Our results support the theory that phytoplankton community structure in the southern sea of Korea can be influenced on a short-term scale by different water masses and currents. Key words : phytoplankton community structure, canonical correspondence analysis (CCA), cluster analysis, multidimensional scaling (MDS), southern sea of Korea 1. w k v jm» w e w, w y y œ sp yw. v jm x sp q w w *Corresponding author. E-mail : ksshin@kordi.re.kr wwš mw ( ) q w w. ù ûwÿ w 1990 ¾ w yw y k w w p w šƒ š(œ 1971; ½ 1982; 1988), 1990 z v jm sp w ww ƒ š ( 1990; 1990; 1993;

2 Baek, S. H. et al. 2003; ½ 2008). ûwÿ w i ù yw ù,, ûw«w w w w ƒ x, ƒ (front) x v jm w (Yang and Kim 1990; 1998; 1998). y w (ocean front) x jš, x e ƒ» w v jm w w sw y j w (Han et al. 1989; ½ 1998; 2003). ûw Ÿ «v jm ûw (Shim and Park 1984; ½ 2003), ûw w ( 2003; 2008), ûw ( 1998), wwx( œ 1985; Shon et al. 2008), ( 1990; ½ 2008) ù, ù w wwx sww ûw, Ÿ w Ÿ ww w k. w s w y p w w š m w» w p sƒw w. wwx sww ûw Ÿ «v jm s sp q wš ƒ x x k MDS (Multidimensional Scaling) Cluster ww. w v jm sp w e y y w» w CCA(Canonical Correspondence Analysis) ww v jm p wwš w. 2. w w ûw» (St. 1) w ü w (St. 2-3), wwx w ¾ (St. 4-8), ûw w (St. 9-14), w Ÿ (St. 15-23), Ÿ ƒ (St. 24-31) 31 ûwÿ «w, 2009 6 18 20 td w (Fig. 1).» w v jm s q w» w. ƒ, t sww, ü l. Fig. 1. Location of study sites in southern sea of Korea.

Phytoplankton Assemblage Characteristics in Southern Sea of Korea 3 td 1000-3000 ml GF/Fvl(47 mm Whatman glass fiber filters) w, vl chlorophyll-a(chl.a) d w 15 ml p þ w š, w 50 ml p š þ w w. v jm w 500 ml td 500 ml š š (Lugol) 1%ƒ š w. Chl.a 90% m š 24 þ w z xÿd»(turner Designs 10-AU Fluorometer) w (Parsons et al. 1984).»(Lachat Quick-chen 8000 auto-analyzer Lachat, Milwaukee, WI) w d w. w t (CSK standard solution, Wako Pure Chemical industries, Osaka), + (NO 3 +NO 2 ), (NH 4 ) (PO 3 4 ), ³ (SiO 3 ) ƒƒ w (Parsons et al. 1984). v jm x q w» w 500 ml v 20 ml k z 100-300 µl w 200 w. p Ÿwx w š, 10 µm w r wù r š, r (Crytophyceae) wù r. v jm x x k Shannon-Wiener (H', species diversity index) ³ (J') PRIMER version 5 w w. w v jm» w ƒ xw v jm k Bray-Curtis w š, PRIMER version 5 w Cluster, MDS w (Clarke and Warwick 2001; 2008). w k v jm y w ƒ CANOCO 4.5 software w CCA(Canonical Correspondence Analysis) ww. 3. y y 6» ww 31 ûwÿ «17.2 o C(St. 28) š 23.0 o C(St.10) 5.8 o C š, s³ 21.01±1.4 o C ùkû. 32.98 PSU(St. 12) š 34.37 PSU (St. 7) w š, s³ 33.49±0.36 PSU (Fig. 2). 1 wwx 5¾ ƒw ù, wwx û ww ùkû (St. 6-12). 13 w w p x y w. z Ÿ ww 14 23 x ù. Ÿ d û ww 28 w w x ùkûš, z 29 l w w. wwx ù ûw 33 PSU z j. w w 13 28 w p w. p w w» w T-S diagram Cluster ww (Fig. 3).» ûw Fig. 2. Horizontal distribution changes of temperature and salinity in southern sea of Korea, from June 18 to June 20 2009. Gray areas indicate night periods during the sampling cruise. St. 13 and 28, indicated by arrowheads, are strongly influenced by different water masses.

4 Baek, S. H. et al. Fig. 3. A T-S diagram (a) showing the relationship between temperature (T), salinity (S) and density. St. 13 and 28, indicated by arrows, are strongly influenced by different water masses. Gray areas are indicated based on cluster analyses. Joint plots of sites association analyses obtained by cluster analyses (b), using a data set of surface temperature and salinity during the study period in southern sea. Ÿ w p j 3w. š (>22 o C), š (>34 PSU) (7, 8, 9, 10). (<33.5 PSU)ƒ œ (>19, <22 o C) x œ. (>33.5, <34 PSU) (<19.5 o C) ƒ x œ ƒƒ. ƒ ³ ƒ š, + ùkû (Fig. 4a, 4b). ³ (St. 1) 22.87 µm še» w š, 2 Ÿ (St. 24) 5µM z ù, z (St. 27-31) w (Fig. 4a). + še 28 4.59 µm š, (St. 27-30) Ÿ 18 21. w y ùkü (Fig. 4b). w 1 2.76 µm še» w ù, 30 w ƒ¾ û ƒ (Fig. 4c).

Phytoplankton Assemblage Characteristics in Southern Sea of Korea 5 Fig. 4. Horizontal distribution changes of silicate (a), nitrate + nitrite (b), ammonia (c) and phosphate (d) in southern sea from June 18 to June 20 2009. Gray areas indicate night periods during the sampling cruise. St. 13 and 28, indicated by arrowheads, are strongly influenced by different water masses. ùkü 28 0.38 µm še» w š, û (St. 27, 29). w, (St. 30, 31) ùkü. p ww x Ÿ 2 26 0.1 µm z û. v jm s ƒ Chl.a s y Fig. 5 ùkþ. Chl.a (2.36 mg m ) 3 28 š, w w (Fig. 5a). w Ÿ 20 23 š, ƒ ùkûš, 1. v jm x Chl.a y w w (Fig. 5b).» td xw v jm 111, ³ (Bacillariophyceae)ƒ 2 30 57, r (Dinophyceae)ƒ 6 21 43, ³ r (Chrysophyceae)ƒ 1 1 4, ù (Euglenophyceae) 1 2 2, v (Raphidophyceae) 1 1 3 ùkû. r (Crytophyceae) wù crytomonads. v jm r, w 1, 28, 30, 31 ƒ x 13 ³ x v jm 50% ùk

6 Baek, S. H. et al. Fig. 5. Horizontal distribution changes of Chl.a (a) and standing crop (b) in the southern sea from June 18 to June 20 2009. Gray areas indicate night periods during the sampling cruise. St. 13 and 28, indicated by arrowheads, are strongly influenced by different water masses. Fig. 6. Horizontal distribution changes of phytoplankton abundance (upper), and relative contribution (lower) in the southern sea from June 18 to June 20 2009.

Phytoplankton Assemblage Characteristics in Southern Sea of Korea 7 Fig. 7. Horizontal distribution changes of number of observed species (a), Shannon-Wiener diversity indices (H') (b) and evenness (J') (c) in southern sea of Korea from June 18 to June 20 2009. Gray areas indicate night periods during the sampling cruise. St. 13 and 28, indicated by arrowheads, are strongly influenced by different water masses. ü (Fig. 6). wwx w û v jm š, r ƒ w. r Ÿ w Ÿ û w ù kû. ³ r, ù, v x ûš û. x Shannon-Wiener v jm x ùkû ù, ³. x ƒ wš p ùkù ³ ƒ û w (Fig. 7).» ³ Chaetoceros curvisetus, Chaetoceros socialis, Letocylindrus danicus, Pseudo-nitzschia delicatissima, Skeletonema costatum š, r Ceratium fusus, Gyrodinium spirale, Heterocapsa niei, Heterocapsa tirquetra xw. š 5-10 µm j» ƒ r Ÿ w.» xw v jm k Cluster MSD w Fig. 8 ù kü. v jm x x yw ù, j 2 w. 1 wwx w š, 2 Ÿ ƒƒ. 4. š ù ûw w td š š p ƒ ù (Tsushima Warm Current Water) ƒ ûw ƒ ù ƒ¾ w w x, w v jm sw ( 1990; Kang et al. 2002; 2003). Seung (1992) w wx wwx ù

8 Baek, S. H. et al. ù ûw w e. s(t-s diagram) p j 3 w. 1 ù w w wx w (St. 6-8) û w (St. 10-12, 17, 18). 2 ûw w w p. 1 2 p ƒ (St. 13 St. 28 z ) 3 ù. ûw 9 12 ww ù, w w w š(fig. 1, 2), w w û. w, ƒ ƒ¾ 13 w w, w (St. 14, 15, 16) û ùkûš, w w 33.5 PSU z w.» (St. 12) 2 o C x w w w yw ƒ x w ( ) w š w ( 2003; 2003).» p 28, š ( +, )ƒ.» ƒ œ 2ƒ dw., w y w ü yw ƒ. w y w x w, 28 ƒ y w œ š q w». p 28 24.4 kg m 3» ƒ š, ( ) w p (Fig. 3, 4). 28 w yw ƒ š q. ù w w y w x yw q w» w z w d w ƒ v w. v jm w p x, j» ùkù. w v jm wš(riley 1942; Cushing 1989), w d w d t w Ÿd œ v jm x û (Joint et al. 1986; Baek et al. 2009). w ùw x v jm(micro and nano size) x (Smayda and Reynolds 2001), v jm(pico size) w (Johnson and Sieburth 1979; Furuya et al. 2003; 2005). p v jm sp. p 2 w w x j» ³ ƒ x, 1 w s ƒ û. wr, wwx û ww x w š, r x. Furuya CHEMTAX» w w (Furuya et al. 2003), û w d x 6 td v jm û. Prochlorophytes, Chrysophytes, Prymnesiophytes, Chlorophytes xw š, Chl.a 24-63% Prochlorophytesƒ w. ù w w wwx û w Chl.a ƒ 0.1-0.2 mg m 3 û š, w Furuya et al. (2003) û w w» w. (2005) û» l w w, 5 10 3µm w Chl.a ƒ v jm 32-78% wš, Picocyanobacteria Synechococcusƒ w. wwx û 8 3 µm w j» Chl.a 45% w ( œ ). ³ w w ƒ¾ ùkü v jm w š, û ƒ w v jm w š. s 2 r ƒ r ³ r w k w (Hill 1991). s p ù w 2 w (St. 14-27) r w w. Ÿ w mw Ÿ s w yƒ mw w m w w w w v jm x œ ( 1984; 2003). Weng et al. (2007) w, Pearl River Estuary r Cryptomonas

Phytoplankton Assemblage Characteristics in Southern Sea of Korea 9 sp. n l (phosphorus) (iron) w w. s mw ƒ w w ƒ j. (2000) š w, yy r w š, Chroomonas spp., Cryptomonas spp., Rhodomonas spp. ùkû. p ql ³ew ù, jš ù z xw. Ÿ w (St. 18-21) Shannon-Wiener (H': 0.3 w) ³ (J': 0.3 w)ƒ û. r ƒ xw q, (2000) š ew. w w r ³ew w ƒƒ yw z w, ³ ( r sy ƒ j) r ( r sy ƒ û ƒ û y ƒ w) v jm wš w (Smayda 1997; Baek et al. 2008b). ûwÿ «v jm s s» w Cluster MDS ww. w ww s s p ƒ mw. ww x Yd w d ³ w (Fig. 9 ). p v jm sp Cluster (Group 1). 1 w š Áš w i» ù w w v jm x û. v jm û w š, û ƒ w k xw. j»ƒ r ƒ xw š d w ƒ w e. v jm sp j 2 ù, p Fig. 8. Joint plots of sites association analyses obtained by cluster (a) and non-metric multidimensional scaling (MDS) (b) ordination analyses, using a data set of the surface species abundances during the study period in southern sea of Korea.

10 Baek, S. H. et al. Fig. 9. Score plot by principal component analysis (PCA) based on phytoplankton communities of all stations during the study period. Ÿ ù. w Ÿ X d, X d ƒƒ ew (Fig. 8). X d Ÿ r Cryptomonas sp.ƒ xw œ. w Cryptomonas sp. Ÿ s mw. X d ew ³ ƒ x w. ƒ, r ³ ƒ w w ³ ƒ w ƒ w (Smayda 1997). ³ w s s Fig. 10. Relationship between nutrient, temperature, salinity and phytoplankton community composition by canonical correspondence analysis (CCA). Effect of population development on each group species (a: dominant diatom group, b: Crytophyceae, Euglenophyceae and Chrysophyceae, c: dominant dinoflagellate group) was assessed.

Phytoplankton Assemblage Characteristics in Southern Sea of Korea 11 w ù(turner 1984; Welschmeyer and Lohrenzen 1985), œ ( yw ƒ ) w ³ s s w ƒ w» w ƒ ü s d x v w. w w 13 ƒ x œ v jm (St. 12, 14) x e. yw ƒ w (St. 28) w sw, p x ƒ yw w d ƒ td y yw» v jm x w s. 1 w û i w x š x w v jm x û., 2 w Ÿ w ³ r ƒ z w xw š, w ƒ¾ w w( N, P). v jm 111 xw ù, û xw š, p CCA w. ƒ x w ƒ ey k ƒ d y ƒ x w (diagram) y w y r m w. ³ w CCA r (Fig. 10A), 27, 28, 29 xw Pseudo-nitzschia spp., Chaetoceros spp. w ewš š,, (+) ƒ x ( ) ƒ x. 30 31 xw Skeletonema spp.( Skeletonema costatum) Leptocylindrus spp.( Leptocylindris danicus) w w wwš, ( ). Skeletonema costatum Ÿ Ÿ» w sw ù w xwš, w w (Han et al. 1992, 1994). Leptocylindrus danicus ûw w x š( 1976; Kang et al. 1999), m w w ( 2008). S. costatumƒ x w ƒ x š, w ew. ³ r, ù, r w CCA r (Fig. 10b), r w xw š, 14 22 p ù y w ùkù. ³ r ³ ƒ š, ù + û (+) w. r xw w CCA Prorocentrum spp. Heterocapsa spp.ƒ w ew š, ³ x w (Fig. 10c). ³ ƒ 2 w w, r vƒ ³. Ceratium spp. Scrippsiella spp. (+) ùkü. Ceratium Ceratium fususƒ Ÿ üd(st. 23) (St. 1) w. Ceratium fusus w w w ù (Baek et al. 2008a), w sy ƒ r w û, w w w y w bloom x w (Baek et al. 2008b). r û» ƒ w. sy ƒ û»» w» ƒ. 5. ûw Ÿ w w v jm s q w» w 2009 6 18 l 20 31 x ww, v jm 111 xw. s v jm k m w, w ûw Ÿ w j 2 ù. Group 1 w i w x w v jm x û., Group 2 w w ³ r ƒ xw. ew 13 ew 28 w Á š w š,

12 Baek, S. H. et al. Chl.a ƒ w ùkû. ûw Ÿ w v jm sp p w w q. w w ks w w( wwx) e w (PE98445)»z yƒ ûw«w k e w» sƒ» (PM55400) w. Ì w. š x œ (1971) w ûw w. w w wz 6:25-36 ½» (1982) w ûw. w w wz 17:74-84 ½x,, (2008) w t Ornithocercus r x w w ùy. w w wz Õ Ö 13:303-307 z,,, ½x, w (2005) x, Flow Cytometer, HPLC k w d» v jm. Ocean and Polar Res 27:397-417 ³, x, (1998) w w ûw v j m». Algae 13:123-133, (1990) w ûw v jm s p. w w 23:208-214 y,, w, jie m g (2008) w ƒ v jm e wsƒ. Algae 23:277-288», ½, (2000) yy» v jm k. w wz 33:109-118 x,, y (1984) Ÿ v jm w. w w wz 19:172-186, ½ x, y¼ (1998) w û, w w w xw. w wz 31:695-706 Ÿ, y (1976) y w 2. v jm y. w w wz 11:34-38 y (1993) w v jm». w. w š 17:33-56 y, ½ (2003) û w v jm œ sp. y wz 21:8-17 y,, y, y (2003) w v j m œ s r. y wz 21:132-141, š, x (1990) w v jm k. w wz 5:159-171,, ½,, ½w³, (2003) ûw v jm» y. Algae 18:49-58, «, y (2008) 2000-2007 m w v jm x. Algae 23:53-61 ³, ³ (1988) ù x y. w wz 21:297-306 s, œ (1985) wwx v jm». w wz 18:74-83 z, ½ (1998) w ûw ù e ù, e w. w wz 31:226-244 Baek SH, Shimode S, Han MS, Kikuchi T (2008a) Population development of the dinoflagellates Ceratium furca and Ceratium fusus in Iwa Harbor, Sagami Bay, Japan. Ocean Sci J 43:49-59 Baek SH, Shimode S, Han MS, Kikuchi T (2008b) Growth of dinoflagellates, Certium furca and Ceratium fusus in Sagami Bay, Japan: the role of nutrients. Harmful Algae 7:729-739 Baek SH, Shimode S, Kim HC, Han MS, Kikuchi T (2009) Strong bottom-up effects on phytoplankton community caused by a rainfall during spring and summer in Sagami Bay, Japan. J Mar Syst 75:253-264 Clarke KR, Warwick RM (2001) Change in Marine Communities: An approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth, pp 179 Cushing DH (1989) A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J Plankton Res 11:1-13 Furuya K, Hayashi M, Yabushita Y, Ishikawa A (2003) Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep-Sea Res II 50:367-387 Han MS, Furuya K, Nemoto T (1989) Phytoplankton distribution in frontal region of Tokyo Bay, in November 1985. J Oceanogr Soc Japan 45:301-309 Han MS, Furuya K, Nemoto T (1992) Species-specific productivity of Skeletonema costatum in the inner part of Tokyo Bay. Mar Ecol Prog Ser 79:267-273 Han MS, Kim OK, Jeon JK (1994) Changes in phytoplankton communities in the two different hydrological condition of semi-enclosed Chinhae Bay Korea. Bull Plankton Soc Japan 41:43-55

Phytoplankton Assemblage Characteristics in Southern Sea of Korea 13 Hill DRA (1991) A revised circumscription of Crytomonas (Crytophyceae) based on examination of Australian strains. Phycologia 30:170-188 Johnson PW Sieburth JM (1979) Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24:928-935 Joint IR, Owens NJP, Pomroy AJ (1986) Seasonal production of phytosynthetic picoplankton and nanoplankton in the Celtic Sea. Mar Ecol Prog Ser 28:251-258 Kang YJ, Ko TH, Lee JA, Lee JB, Chung IK (1999) The community dynamices of phytoplankton and distribution of dinoflgellate cysts in Tongyoung Bay, Korea. Algae 14:43-54 Kang YS, Kim HG, Lim WA, Lee CK, Lee SG, Kim SY (2002) An unusual environment and Cochlodinium polykrikodes blooms in 1995 in the Seouth Sea of Korea. J Oceanogr Soc Korea 37:212-223 Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, pp 173 Riley GA (1942) The relationship of vertical turbulence and spring diatom flowering. J Mar Res 5:67-87 Seung YH (1992) Water masses and circulations around Korean peninsula. J Oceanogr Soc Korea 27:324-331 Shim JH, Park YC (1984) Community structure and spatial distribution of phytoplankton in the southwestern sea of Korea in early summer. J Oceanol Soc Korea 19:68-81 Shon DH, Shin KS, Jang PG, Kim YO, Chang M, Kim WS (2008) Effect of thermal stratification and mixing on phytoplankton community structure in the western channel of the Korea Strait. Ocean and Polar Res 30:261-275 Smayda TJ (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanog 42:1137-1153 Smayda TJ, Reynolds CS (2001) Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J Plankton Res 23:447-461 Turner JT (1984) Zooplankton feeding ecology: contents of fecal pellets of the copepods Eucalanus pilaetus and Paracalanus quasimodo from continental shelf waters of the Gulf of Mexico. Mar Ecol Prog Ser 15:27-46 Weng HX, Qin YC, Sun XW, Dong HL, Chen XH (2007) Iron and phosphorus effects on the growth of Cryptomonas sp.(crytophyceae) and their availability in sediments from the Pearl River Estuary, China. Estuar Coatal Shelf Sci 73:501-509 Welschmeyer NA, Lohrenzen CJ (1985) Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyre. Limnol Oceanogr 30:1-21 Yang HS, Kim SS (1990) A study on sea water and ocean current in the sea adjacent to Korea peninsula. Bull. Korea Fish Soc 23:417-424 Received Aug. 20, 2009 Revised Dec. 3, 2009 Accepted Jan. 20, 2010