KOREAN J. FOOD SCI. TECHNOL. Vol. 41, No. 3, pp. 339~344 (2009) p ƒœt polycyclic aromatic hydrocarbons w Áûx Á½ xá w * w tœw Lotus» t The Korean Society of Food Science and Technology Determination of Polycyclic Aromatic Hydrocarbons in Processed Chestnut Products Ilwon Seo, Hejung Nam, Dong-Hyuk Kim, and Han-Seung Shin* Department of food Science and Technology and Institute of Lotus Functional Food Ingredient, Dongguk University Abstract Concentrations of polycyclic aromatic hydrocarbon (PAH) in processed chestnut products were determined by HPLC/FLD. The methodology involved procedures of sonication with water, extraction with hexane, and clean-up on a Sep-pak florisil cartridge. The PAH limits of detection (LOD) and limits of quantitation (LOQ) ranged from 0.012 to 0.382 µg/kg and from 0.042 to 1.273 µg/kg, respectively. The coefficients of variation for intra- and inter-day assays were 0.02-4.48% and 0.37-9.83%, respectively, and the accuracies were 81.95-125.44% and 79.89-116.53%, respectively. The overall recoveries for eight PAHs spiked into the processed chestnut products ranged from 87.83 to 100.56%. As a result, PAH contents were not detected in the processed chestnut products. Key words: polycyclic aromatic hydrocarbon, processed chestnuts, benzo[a]pyrene t w š w š. y w ky PAHs(polycyclic aromatic hydrocarbons) ü ùkü. PAHs w,,» mw m,,» y ù t š ƒ, t» w t w z, w ƒ, ƒœ mw ƒ w t w (1-3) w t (4). t w PAHs k y,, š ƒ w w š (3,5). EPA(Environmental Protection Agency) PAHs 16 w (6), IPCS(International Programme on Chemical Safety) EPA 16 PAHs x š 17 PAHs w 33 PAHs w. 15 PAHs(benzo[a]anthracene, cyclopenta[cd]pyrene, chrysene, 5-methylchrysene, benzo[b]fluoranthene, benzo[j]fluoranthene, benzo [k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-c,d]pyrene, dibenzo[ah] *Corresponding author: Han-Seung Shin, Department of Food Science and Technology, Dongguk University, Seoul 100-715, Korea Tel: 82-2-2260-8590 Fax: 82-2-2260-8740 E-mail: spartan@dongguk.edu Received January 2, 2009; revised February 20, 2009; accepted February 22, 2009 anthracene, benzo[g,h,i]perylene, dibenzo[a,l]pyrene, dibenzo[a,e] pyrene, dibenzo[a,i]pyrene, dibenzo[a,h]pyrene) j x (7).» (International Agency for Research on Cancer, IARC) 4 w wš PAHs yw w group 2A(benzo[a]pyrene, dibenzo[a,h] anthracene) ƒ group 2B(benzo[a] anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3- c,d]pyrene) š (8). yw PAHs w sƒ t» (Toxic Equivalency Factors, TEFs) w sƒw x PAHs yw ƒ Benzo[a]pyrene» (TEF=1) wš (9-12). PAHs w x ƒ w wš. k t mw w PAHs 3µg/day w, PAHs 1.4 µg/day wwš (13), ù t mw w 1 PAHs 9.27 µg/kg, v 2.02 µg/kg. w k 2001 l t t ü m ƒœt,, q ƒœt, w PAHs k w l t w PAHs (14-17). ù w ù š. Ë Ë k ü. w t ƒœw» w ù»y t. sww ù w š w û (18) t ƒ ƒ» ƒœ 339
340 w t wz 41 «3y (2009) š. w,, ƒœt š ù w w. w ƒœ w (19) t e w w (20) w yw p (21), w yw y(22) š. ¾ ƒœt w yw p w p, t w w ƒœt ƒœ PAHs w w. x m ƒœt PAHs w» w w. ƒœt m t 6, t 1 x p w w. ƒœt 24 w z w w. ƒœt š Ë q v t þ w eys m p ³ s (Fig. 1). t PAHs t benzo[a]anthracene(baa), chrysene(cry), benzo[b]fluoranthene(bbf), benzo[k]fluoranthene(bkf), benzo[a] pyrene(bap), dibenzo[a,h]anthracene(daha), benzo[g,h,i]perylene (BghiP), indeno[1,2,3-c,d]pyrene(icdp) 8 w Fig. 2 ùkü. ü t 3-methylcholanthrene(Supelco, Bellefonte, PA, USA) w, w n-hexane, dichloromethane, acetonitrile, N,N-dimethylformamide, water HPLC (Burdick & Jackson, Muskegon, MI, USA)p w. ep Sep-pak florisil cartridge(waters, Milford, MA, USA) w w. Fig. 1. Flow diagram of chestnut product process. Fig. 2. Structure of 8 polycyclic aromatic hydrocarbons.
PAHs t 8 PAHs t ƒƒ acetonitrile w 1,000 µg/ kg w. w yww PAHs y w t 500 µg/kg w. w 0.25, 0.5, 1, 5, 10, 20, 50, 100 µg/kg yw t w. 24 w w 5g w 100 ml 90 q w.» x 100 ml ü t (3-methylcholanthrene) 30 µg/ kg 1mL ƒw homogenizer 5 ³ y w 30 q w. ³ y»(i) š z 10 ew d w. d ƒ ù š, k z 1 ew.»(i) x d»(ii)»š û d x 50 ml š 2z w k w z x d w» (II) ww. ww x d 50 ml wš, x d y ùp 15 g w k w z 40 o C w w 2mL w. Sep-pak florisil cartridge dichloromethane 10 ml n-hexane 20 ml 2-3 k z w. ep 1 ml/min ƒw ƒœt polycyclic aromatic hydrocarbons w 341 Table 1. Condition for HPLC/FLD analysis of PAHs in processed chestnut products Instrument Column Mobile phase Dionex P680 series HPLC Supelcosil LC-PAH Column (25 cm 4.6 mm) Gradient method Acetonitrile Water 0 min 80 20 27 min 100 0 33 min 100 0 37 min 100 0 39 min 80 20 Excitation (nm) Emission (nm) Wavelength 0-21 min 254 390 21-38 min 254 420 38-45 min 269 498 Flow rate 0.8 ml/min Injection vol. 20 µl. n-hexane 10 ml n-hexane:dichloromethane(3:1) 8 ml ƒƒ k z 40 o C w ƒ w ú ü z acetonitrile 1mL wš, 0.45 µm membrane filter w x w. Fig. 3. HPLC/FLD chromatograms of 8PAHs for standard (A) and spiked sample (B). BaA, benzo[a]anthracene; CRY, chrysene; BbF, benzo[b]fluoranthene; BkF, benzo[k]fluoranthene; BaP, benzo[a]pyrene; DahA, dibenzo[a;h]anthracene; IS, Internal standard; 3- methylcholanthrene; BghiP, benzo[g,h,i]perylene; IcdP, indeno[1,2,3-c,d]pyrene
342 w t wz 41 «3y (2009)»» PAHs w»» Dionex P680 pump w HPLC(P680, Dionex, Sunnyvale, CA, USA) w š, fluorescence detector(waters) mw xÿ w. f LC-PAH column(25 cm 4.6 mm, ID. particle size 5 µm, Supelco, Bellefonte, PA, USA) w š»» Table 1 ù kü. k w» w w, w,, y w sƒw. ƒ w w (LOD) ƒ w w (LOQ) w. w (LOD)=3.3 σ/s (1) w (LOQ)=10 σ/s (2) σ r s³t r S»» s³ Table 2. Limits of detection (LOD), limits of quantification (LOQ) and recovery of each PAH in processed chestnut products PAHs Recovery (%) CV (%) LOD (µg/kg) LOQ (µg/kg) BaA 93.87 0.97 0.012 0.042 CRY 94.94 2.67 0.021 0.071 BbF 93.26 2.01 0.023 0.078 BkF 90.90 3.41 0.032 0.108 BaP 87.83 2.04 0.024 0.080 DahA 88.35 0.60 0.312 1.052 BghiP 92.09 3.76 0.382 1.273 IcdP 100.56 2.75 0.240 0.802 BaA, benzo[a]anthracene; CRY, chrysene; BbF, benzo[b]fluoranthene; BkF, benzo[k]fluoranthene; BaP, benzo[a]pyrene; DahA, dibenzo[a,h] anthracene; IS, Internal standard; 3-methylcholanthrene; BghiP, benzo [g,h,i]perylene; IcdP, indeno[1,2,3-c,d]pyrene w. PAHs t w vj ƒ Fig. 4. Linearity of the standard calibration curve of PAHs.
w l (R 2 ) w mw. z PAHs t spikingw z x w vj PAHs t w vj mw w. w 3ƒ PAHs t w ü y, y d w. š 8 PAHs t œ ƒwš, e z HPLC/FLD w j m ü t (3-methylcholanthrene) spikingw z j m Fig. 3. PAHs BaA, CRY, BbF, BkF, BaP, DahA, BghiP, IcdP. w vj, ü t yw. t z,, y» w wš, w. w w w» w SPE ww. Table 3. Accuracy and precision for the determination of PAHs Concentration (µg/kg) ƒœt polycyclic aromatic hydrocarbons w 343 Intraday (n=3) w w ƒƒ PAH w w (LOD) w (LOQ) Table 2 ùkü. w 0.012-0.382 µg/kg. BghiPƒ 0.382 µg/kg ƒ ù, w w. w 0.042-1.273 µg/kg š, BghiPƒ 1.273 µg/kg ƒ w w. z ƒƒ PAH w z (Recovery,%) t r (CV, %) Table 2 ùkü. œ PAHs ywt 50 µg/ kg ƒw 3z x ww s³z 87.83-100.56% š, t r 0.60-3.76% EU(European union) w 80-120% w w. w 8 PAH ywt 0.25-100 µg/kg w HPLC/FLD mw w (Fig. 4). t X, vj Y w w. ƒƒ PAH w ùk Interday (n=3) Accuracy (%) 1) CV (%) 2) Accuracy (%) CV (%) 0.25 82.33±2.08 2.53 88.22±6.78 7.68 BaA 10 104.50±0.45 0.43 103.20±1.97 1.91 50 95.64±1.75 1.75 96.70±1.79 1.85 0.25 87.57±3.48 3.98 94.35±7.85 8.32 CRY 10 100.14±0.25 0.25 99.89±0.37 0.37 50 96.94±4.48 4.48 97.73±2.97 2.97 0.25 125.44±4.20 3.35 116.53±11.45 9.83 BbF 10 99.95±0.38 0.38 99.59±1.79 1.80 50 96.36±1.73 1.80 97.08±1.84 1.90 0.25 113.63±2.04 1.79 108.35±6.03 5.56 BkF 10 102.10±3.49 3.41 101.11±2.47 2.44 50 95.39±1.93 2.02 97.19±2.44 2.51 0.25 93.32±3.92 3.67 94.76±5.51 5.82 BaP 10 104.69±0.02 0.02 103.38±1.47 1.42 50 96.62±4.33 4.48 98.53±3.48 3.54 1 119.38±1.89 1.58 114.51±6.58 5.75 DahA 10 101.70±2.22 2.18 99.68±3.03 3.04 50 96.59±1.34 1.39 99.07±3.66 3.70 1 93.61±4.00 4.28 96.10±3.88 4.04 BghiP 10 94.98±0.56 0.59 95.49±0.82 0.86 50 88.33±2.84 3.22 90.41±2.92 3.23 1 81.95±2.72 3.32 79.89±2.97 3.71 IcdP 10 96.13±3.09 3.21 96.82±2.41 2.48 50 110.29±3.34 3.03 111.55±3.29 2.95 1) Accuracy(%)=[1-(mean concentration measured-concentration spiked)/concentration spiked] 100 2) CV(Coefficient of variation, %)=(S.D./mean) 100 BaA, benzo[a]anthracene; CRY, chrysene; BbF, benzo[b]fluoranthene; BkF, benzo[k]fluoranthene; BaP, benzo[a]pyrene; DahA, dibenzo[a,h] anthracene; IS, Internal standard; 3-methylcholanthrene; BghiP, benzo[g,h,i]perylene; IcdP, indeno[1,2,3-c,d]pyrene
344 w t wz 41 «3y (2009) ü (R 2 ) 0.997-0.999 yw ùkü. y 8PAHs t 0.25, 10, 50 µg/kg HPLC/FLD w j m mw ü y, y w (Table 3). y (Accuracy, %) 85-115%( w, 80-120%) ü š, (Precision, %) t r (CV, %)ƒ15%( w, 20%) ü w. w 3 ww w ü y 81.95-125.44% š, 0.02-4.48% ùkû. š 3 ww w y 79.89-116.53% š, 0.37-9.83% ùkû. l PAHs y w w. ƒœt PAHs w k mw m š ƒœt 7 w. y» w ü t ƒw z d w, z 98.21% w w. ƒœt PAHsƒ ù w w š,. w ƒœt q PAHsƒ š ƒ ù, Ë w v þ, ³ PAHs ww dw š w ƒ v w. x ƒœt PAHs w w» w. ƒœt m š 7 w q e z HPLC/FLD w w. 8 PAH Á w w. PAHs d w (R 2 )ƒ 0.997 yw ùkþ, w 0.012-0.382 µg/kg, w 0.042-1.273 µg/kg w w. PAHs œ z d w s³z 87.83-100.56% š, t r 0.60-3.76% ùkû. ü, y ƒƒ 81.95-125.44%, 79.89-116.53% š, 0.02-4.48%, 0.37-9.83%., ƒœt w PAHs ù w w ùkûš,. x 1. Dabestani R, Lvanov IN, A comparison of physical, spectroscopic photophysical properties of polycyclic aromatic hydrocarbons. Photochem. Photobiol. 70: 10-34 (1999) 2. Vo-Dinh T, Fetzer J, Campiglia AD. Monitoring and characterization of polyaromatic compounds in the environment. Talanta 47: 943-969 (1998) 3. Tilgner DJ, Daun H. Polycyclic aromatic hydrocarbons in smoked foods. Residue Rev. 27: 19-41 (1969) 4. Kluska M. Soil contamination with polycyclic aromatic hydrocarbons in the vicinity of the ring road in Siedlce city. Pol. J. Environ. Stud. 12: 309-313 (2003) 5. Gunther FA, Buzzetti F. Occurrence, isolation and identification of polynuclear hydrocarbons as residues. Residue Rev. 23: 90-113 (1965) 6. U.S. EPA. U.S. EPA method 610-polycyclic aromatic hydrocarbons. Methods for organic chemical analysis of municipal and industrial wastewater. U.S. Environmental Protection Agency. Washington, DC, USA. (1984) 7. Official Journal of the European Union. Setting maximum levels for certain contaminants in foodstuffs. Commission Regulation. 19, December (2006) 8. IARC. IARC Monographs on the evaluation of carcinogenic risks to humans. Suppl. 7. International Agency for Research on Cancer, Lyon, France (1987) 9. WHO. Recommendations for the revision of guidelines for predicting dietary intake of pesticide residues. In report of a FAO/ WHO consultation (WHO/FNU/FOS), World Health Organization, Geneva, Switzerland. (1995) 10. Douglass JS, Tennant DR. Estimations of dietary intake of food chemicals. pp. 195-218. In: Food Chemical Risk Analysis. Tennant DR (ed), Blackie Academic and Professional. Chapman and Hall, London, UK (1997) 11. Tasi PJ, Shieh HY, Lee WJ, Lai SO. Health-risk assessment for workers exposed to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry. Sci. Total Environ. 278: 137-150 (2001) 12. Nisbet ICT, Lagoy PK. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharm. 16: 290-300 (1992) 13. Houessou JK, Benac C, Delteil C, Camel V. Determination of polycyclic aromatic hydrocarbons in coffee brew using solidphase extraction. J. Agr. Food Chem. 53: 871-879 (2005) 14. Chung SY, Sho YS, Park SK, Lee EJ, Suh JH, Choi WJ, Kim JS, Kim MH, Kwon KS, Lee JO, Kim HY, Lee CW. Concentrations of polycyclic aromatic hydrocarbons in vegetable oils and fats. Korean J. Food Sci. Technol. 36: 668-691 (2004) 15. Hu SJ, Kim MH, Oh NS, Ha J, Choi KS, Kwon KS. Levels of polycyclic aromatic hydrocarbons in fish, shellfish and their processed products. Korean J. Food Sci. Technol. 37: 866-872 (2005) 16. Hu SJ, Oh NS, Kim SY, Lee HM. Determining of polycyclic aromatic hydrocarbons in domestic vegetables and fruits. Anal. Sci. Technol. 19: 415-421 (2006) 17. Kim HY, Chung SY, Sho YS, Park SS, Lee EJ, Suh JH, Lee YD, Choi WJ, Kim JS, Eom JY, Park HO, Jin MS, Kim DS, Ha SC, Lee JO. Concentration of polycyclic aromatic hydrocarbons in cereals, pulses, potatoes and their products. Korean J. Food Sci. Technol. 37: 537-541 (2005) 18. Kim SK, Jeon YJ, Kim YT, Lee BJ, Kang OJ. Physicochemical and texture properties of chestnut starches. J. Korean Soc. Food Nutr. 24: 594-600 (1995) 19. Suh KS, Han PJ, Lee SJ. Studies on the processing of chestnut, Part 1. Trials on the raw material adaptability for processing and colored products development. Korean J. Food Sci. Technol. 6: 98-108 (1974) 20. Kim JH, Jeong JW, Kweon KH. Quality effects of various pretreatment methods on the properties of peeled chestnut during storage. Korean J. Food Preserv. 14: 462-468 (2007) 21. Park HH, Lee KH, Kim SK. Effect of heat-moisture treatments on physico-chemical properties of chestnut starch. Korean J. Food Sci. Technol. 18: 437-442 (1986) 22. Kim YD, Choi OJ, Shin KH, Cho IK. Physicochemical properties of chestnut starch according to the processing method. J. Korean Soc. Food Nutr. 35: 366-372 (2006)