국9209.fm

Similar documents
국705.fm

국706.fm

국816.fm

국707.fm

44(3)-16.fm

43(5)-11.fm

한1009.recover.fm

DBPIA-NURIMEDIA

43(4)-08.fm

44(4)-06.fm

06국306.fm

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

국8411.fm

개최요강

44(2)-08.fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

44(5)-10.fm

表紙(化学)

국9409.fm

12.077~081(A12_이종국).fm

82-01.fm

06국305.fm

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

10(3)-06(021).fm

10(3)-02(013).fm

44(2)-06.fm

( )국11110.fm

45(3)-07(박석주).fm

43(6)-07.fm

untitled

14.531~539(08-037).fm

45(3)-15(유승곤).fm

명세서 기술분야 본 발명은 2차 전지로부터 유가( 有 價 ) 금속을 회수하는 방법에 관한 것이며, 상세하게는, 폐( 廢 )리튬 이온 전지 및 리튬 이온 전지의 제조 불량품에 함유되는 코발트를 회수하는 리튬 이온 전지내의 코발트 회수 방법 및 코발트 회수 시스템에 관한

19(1) 02.fm

44(2)-11.fm

44(5)-03.fm

32

°ø±â¾Ð±â±â

45(2)-14.fm

012임수진

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

CERIUM OXIDE Code CeO CeO 2-035A CeO 2-035B CeO REO % CeO 2 /REO % La 2 O 3 /REO %

10(3)-10.fm

14.fm


10(3)-09.fm

패션 전문가 293명 대상 앙케트+전문기자단 선정 Fashionbiz CEO Managing Director Creative Director Independent Designer

Microsoft Word _kor.doc

국8412.fm

<C8B2BCBABCF62DB8D4B0C5B8AEBFCDB0C7B0AD2E687770>

국9308.fm

fm

< C6AFC1FD28B1C7C7F5C1DF292E687770>

82.fm

(72) 발명자 정진기 대전광역시 서구 괴정로 61, 조이빌 401 (괴정동) 김병수 전라북도 군산시 상신3길 19-6 (나운동) 이 발명을 지원한 국가연구개발사업 과제고유번호 GP 부처명 지식경제부 연구사업명 기본사업 연구과제명 도시광석의 유용광물 순환

(72) 발명자 이승원 강원도 고성군 죽왕면 오호리 정동호 강원도 고성군 죽왕면 오호리 이호생 강원도 고성군 죽왕면 오호리 이 발명을 지원한 국가연구개발사업 과제고유번호 PMS235A 부처명 국토해양부 연구사업명 해양자원개발 연구과제명

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

16(3)-08.fm

44(1)-13.fm

Microsoft Word - KSR2012A038.doc

3 x =2y x =-16y 1 4 {0 ;4!;} y=-;4!; y x =y 1 5 5'2 2 (0 0) 4 (3-2) 3 3 x=0 y=0 x=2 y=1 :: 1 4 O x 1 1 -:: y=-:: 4 4 {0 -;2!;} y=;2!; l A y 1

국8410.fm

44(2)-02.fm

Áß2±âÇØ(01~56)

untitled

09È«¼®¿µ 5~152s

LTUR Q X 01 LTUR LTUR K 6 5, 6, 6, 7, 8, 9, 9, 9, 10, b= =: :=8.5 a+b= cm , = =: 7 := a+b+c 0 =1 a+b+

국906.fm

°ø¾÷-01V36pš

43(4)-11.fm

121_중등RPM-1상_01해(01~10)ok

(72) 발명자 김창욱 경기 용인시 기흥구 공세로 , (공세동) 박준석 경기 용인시 기흥구 공세로 , (공세동) - 2 -

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

< DC1A4C3A5B5BFC7E22E666D>

03-서연옥.hwp

26(2)-04(손정국).fm

untitled

DBPIA-NURIMEDIA

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

특허청구의 범위 청구항 1 청구항 2 청구항 3 청구항 4 청구항 5 물과 암모니아수와 헥산 산과 히드라진 수화수용액을 포함하는 환원액을 조정하는 조액( 調 液 )공정과, 질산은 수용액을 상기 환원액에 첨가하여 반응시키는 은 반응공정과, 상기 은 반응공정의 생성물을 회

많이 이용하는 라면,햄버그,과자,탄산음료등은 무서운 병을 유발하고 비만의 원인 식품 이다. 8,등겨에 흘려 보낸 영양을 되 찾을 수 있다. 도정과정에서 등겨에 흘려 보낸 영양 많은 쌀눈과 쌀껍질의 영양을 등겨를 물에 우러나게하여 장시간 물에 담가 두어 영양을 되 찾는다

<5BBEE7BDC42D315DC0DBC7B0B0B3BFE42DC3BBC1D6BDC35FB8B6C1F6B8B7BFACB8F82E687770>

특허청구의 범위 청구항 1 Na-알지네이트(Na-alginate), 합성 제올라이트(synthetic zeolite)와 분말활성탄(powdered activated carbon) 을 혼합하여 2 ~ 6 %의 CaCl 2 용액에서 경화시켜 만들어진 직경 1 ~ 5 mm의

DBPIA-NURIMEDIA

04-46(1)-06(조현태).fm

10(3)-12.fm

책임연구기관

08.hwp

untitled

PDF

10(1)-08.fm

587.eps

본문.PDF

Microsoft Word - KSR2013A320

Microsoft Word - KSR2012A172.doc

슬라이드 제목 없음


달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

DV690-N_KOR_ indd

43(4)-06.fm

Transcription:

Carbon Letters Vol. 9, No. 2 June 2008 pp. 137-144 Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons Jingyu Wu 1, Ikpyo Hong 2, Sei-Min Park 2, Seong-Young Lee 2 and Myung-Soo Kim 1, 1 Department of Chemical Engineering, Myongji University, Yongin, Gyonggi-do 449-728, Korea 2 Carbon Materials Lab, RIST, Pohang, 790-600, Korea e-mail: myungkim@mju.ac.kr (Received May 6, 2008; Accepted June 10, 2008) Abstract The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by HNO 3 and then heat treated at 800 o C were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC. Keywords : EDLC electrode, activated carbon, acid treatment, heat treatment, functional group, electrochemical properties r pt ƒže (EDLC, electric double layer capacitor) n p r l v rq o q sp rr ƒže, ƒže, r ƒ p e~ }l p Farad n p r l v e l r r p q p. r pt ƒže rl v p q e ƒže m r p p rvp rp m l rp rp l v q r p p m rp vp pl p rvp n ~ l v rq q p p [1-4]. r pt ƒže p r v ˆ q rp n p p r r, e, p lž} p p. p rp r pt ƒže r n ˆ q v, p ˆ l rp 1000 ~ 3000 m 2 /gp ˆp ˆ o n. p ˆ p k k p n r l p l rs rs rp q rso p ˆp 10 ~ 50 r n l Ž 10 ~ 100 r l p p [5-7]. trn ƒže p r q l p l rs ˆ n n r q o p rso d. n ˆ r ~ pn r l p r p r q eq pp p r q }n n ƒže p o 20% p r pp p [8]. r pt ƒže p r n ˆ q p r,, v p p p l q l p q l p. p r rn p v k p ˆ p k rs r, v r ~p p rl m } s p p p. l t n n r p l r v pmp d r p p, p rl t rp l r p lk [9-12]. ˆ p rp ˆ r q n r pt ƒže p p r tn n p. p r p ˆ p l k ˆp m sq, p p qnp ˆ p, p r. r pt ƒže p r vp p rp nk o n n ƒže p p eˆ o r r vp rp o pl k. p rp ml rs ˆ p n l p ˆ oq (-COOH, -COH, C=O ) k pv kk p ˆ. p n

138 Jingyu Wu et al. / Carbon Letters Vol. 9, No. 2 (2008) 137-144 r vp o n p n p r p p nkp r v n nl r r vp r p ƒže p p n, p v q k e de } l p [13-15]. ˆ q p r nl r r sp r, v qp s, r p r p r s rq ƒže p r n p r tn n p. ˆ r p r r s rq ƒže p p r e n p l r l n qp p 5~10% p k [16]. l l coconut shell ˆ coal char ˆp r } l p l p r, l} l p l rl r pt ƒže p r q n l r r l l s m. v m l p l r p m, Boehm l p l r qp p s m kp r l r qp r p s m. x x rp 1170 m /gp 2 coconut shell ˆ 1077 m 2 /g p coal char ˆ(Samchully Carbotech Co.)p o k r } l r pt ƒže p r v n m. r p s p o p v CMC (carboxylmethycellulose sodium salt)m PTFE (polytetrafluroethylene, 60% dispersion in water. Aldrich), n v n mp p PP(poly propylene), r vp 1M TEABF4(tetraethylammonium tetrafluoroborate) mp n PC (polycarbonate)r kp n m. o p } o l v (Daejung Chem. & Metals Co., Ltd. 97%), m (Matsuneon Chem. Ltd., 35%), (Samchun pure chem. Co., Ltd. 97%), m (HCl : HNO 3 p p 3:1) n m. ˆp p kp r o l NaOH (Shinyo Pure Chem. Co., Ltd.), NaHCO 3 (Seoul Chem. Industry. Co., Ltd), Na 2 CO 3 (Wako Pure Chem. Industries Ltd.)p titrant n mp 0.1 N HCl tnk(daejung Chem. & Metals Co., Ltd) back-titrant n m. e. } m ˆp p mr r v v l } 150 o C m l 24 e k se. } ˆp rl o l v } m ˆp v o l dm m 10 o C/min 500 ~ 1000 o C v dm 1e k l} m. Micromeritics p ASAP 2020 modelp m e q n l } m l} l p ˆp r l m p, Boehm l p l l} m l r qp p k s r m.»yw p sƒ } m l} ˆp jet-millp pn l, rq carbon black, r CMC/PTFE l e planetary mill, aluminum foill Ž k v s l 150 o Cl 24e k s l r q n m. s r p n l glove box kl coin cellp rq mp rq cellp 23 o C ov cut-off rkp 0.1 ~ 2.5 V }p 5 p p C-Rate 2C 6 w p 0.5C l CC-CV r e p m. r p r pp o l IM6(Zahner, Germany) n l scan rate 50 mv/s l 0~2.5V p 10 p v r r m. x š y k p Coconut shell ˆ coal char ˆp jet-mill y k z o p p r o l v, m, m nkp okp pn l coconut shell coal char ˆp } m. 20 gp ˆl 200 mlp n kp 60 o Cl 2e k eˆ p Fig. 1. Particle size distribution of coconut shell based AC and coal char based AC.

Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons 139 l r v n l r p m. Jet-mill p Fig. 1l ˆ l. p pq 10 µm p l t m, pq coconut shell ˆp 7.2 µm, coal char ˆp 7.7 µm r ˆ lp r pt ƒže p r q n rr v p p pl. Fig. 2p p v l ˆ r p rn p ˆ p. Coconut shell ˆ coal char ˆp r v n mp, n p 66 70 F/gpl, n p 39m 36 F/ccm. 100 p Ë rp, n p 54m 66 F/gp mp n p 32m 34 F/cc l n n t 82m 94%p r pp ˆ l. n p n n,, r l rp l p l r, ƒže rs pl q erp p ƒže p l vr rp m p t en o tn v n l rp m. Coconut shell ˆ o coal char shell ˆ o l l p kr p p coconut shell ˆp p coal char ˆl l p p. Table 1l o n coconut shell ˆ coal char ˆp ICP (Inductively Coupled Plasma)l p ˆ pnp p ˆ l. Coconut shell ˆl,, k p p p sq p l r rl pm p p qnl p l r v p e s r pp pl ln p v, coal char ˆp p rp r o pp r l n p r r p p Ž l. Fig. 3 coconut shell ˆ coal char ˆ o Fig. 2. Specific capacitance of coconut based AC and coal char based AC with different acid treatments. Fig. 3. Cyclic voltammograms of coconut shell based AC (A) and coal char based AC (B). Scan rate: 50 mv/s

140 Jingyu Wu et al. / Carbon Letters Vol. 9, No. 2 (2008) 137-144 Table 1. Ash contents of coconut shell based AC and coal char based AC Al Na Mg Si P K Ca Fe Total Coconut AC 16 25 10 5 7 229 12 3 307 Coal char 19 5 3 4 1 7 26 7 72 r p mp p CV (cyclic voltammogram) ˆ p. Coal char ˆp r p n mp, ~ p p 0.2 V l ˆ l p l p r vp qnl p coin cellp l ~ p p. 10 p coconut shell ˆ coal char ˆp CV l p ro yl p e v, p r p v rl r tp p r k p r kp l pp pl p p Ž. CV l p p rp p p n p ˆ 10 p v ˆl n p l, coconut shell ˆp n p coal char ˆl l ˆ lp Fig. 2l ˆ m p ˆ l. y k p ˆ o p p r l l p ƒže p pp e kr p eˆ o l Coconut shell ˆ coal char ˆp, m, v, m p } m. } ˆp ƒže p r v n mp } v kp o m l p v l rn rn p Fig. 4m Fig. 5l ˆ l. } ˆp n p o Fig. 4. Gravimetric capacitance of coconut based AC (A) and coal char based AC (B) with different acid treatments. Fig. 5. Volumetric capacitance of coconut based AC (A) and coal char based AC (B) with different acid treatments.

Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons 141 Table 2. Specific surface area of coconut based AC and coal char based AC with different acid treatment Sample SSA(m 2 /g) S mi (m 2 /g) S mi /SSA(%) S ext (m 2 /g) S ext /SSA(%) Coconut AC 1170 1087 92.9 83 7.1 H 2 SO 4 1189 1115 93.8 6.2 HCl+HNO 3 1203 1115 92.7 88 7.3 HNO 3 HCl 1331 1178 1236 1104 92.9 93.7 95 7.1 6.3 Coal char AC 1077 884 82.1 193 17.9 H 2 SO 4 1443 1180 81.8 263 18.2 HCl+HNO 3 1111 931 83.8 180 16.2 HNO 3 HCl 1184 1253 964 798 81.4 63.7 220 455 18.6 36.3 SSA: BET surface area; S mi : micropore area; S ext : external surface area l sp ˆ l, tl m } ˆp r v n p q p rn p ˆ. m } ˆp r v n p coconut shell ˆ coal char ˆp n p 75m 79 F/gp ˆ p 100 p n p 63 71 F/gp ˆ l. v } ˆp r v n mp n p m } ˆ d v p kr p l. p v } ˆp l p rp r p p n kp r v n nl r r vp rp o tv o n r v tl r r vp rp l n p [25]. } ˆp n p v p } rp l p r l o p q l n p v l rp v l, ˆ rs rl ˆ v k p r q p p sq p p l p l l n p p p p Ž. Table 2 } l ˆ e p rp r p. } ˆp n p v mp n p o l p ˆ l. wy k p } ˆp ƒže p r q n mp n p o l l v lp r p l n p r ˆ l. } l r l p p r p } l p l ˆ l n rp l p p Ž. v } ˆp rn n p d p p p pl. v } l p l ˆp l p, Fig. 6. Contents of acidic surface functional group of coconut based AC (A) and coal char based AC (B) with different heat treatment temperatures after HNO 3 treatment.

142 Jingyu Wu et al. / Carbon Letters Vol. 9, No. 2 (2008) 137-144 p l} l p r p f r qp ƒ Že p l m p q m. ˆp kp Boehm p pn l r mp e Fig. 6l ˆ l. Coconut shell ˆ coal char ˆ v } p l lactone group phenolic hydroxyl group v l. l } m p v l lactone groupp coconut shell ˆ coal char ˆl ˆ l l} l lactone groupp p k pl. phenolic hydroxyl groupp n, v ˆl p ˆ l, coal char p nl rp np, coconut shell p n l 1000 o C vp l} l np r v k ˆ l. p o p s l p r, sv s, ~rp p s m k l sn p, p l ƒ vp p n. p p l} m l p ˆ 800 o C p l kp r kv p p. v } ˆp l v m l l} l r q n mp p v l rn rn p Fig. 7 8l ˆ l. v } coconut shell ˆ coal char ˆp l} m d l rn p v lp p n m. p Fig. 9l l} m l n 100 p Ë r p n p ˆ l. l} m 800 o Cp coconut shell ˆ coal char ˆ p n p 90 82 F/gp q p n p ˆ lp, 100 p n p 85m 76 F/g 94%m 93%p Ë r pp ˆ l. l} Fig. 7. Gravimetric capacitance of coconut based AC (A) and coal char based AC (B) with different heat treatment temperatures after HNO 3 treatment. Fig. 8. Volumetric capacitance of coconut based AC (A) and coal char based AC (B) with different heat treatment temperatures after HNO 3 treatment.

Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons 143 m 800 o C p l n p p k p l. Coconut shell ˆ coal char ˆp n 800 o Cl 42m 37 F/cc ˆ lp, 100 p 40 34 F/cc ˆ p p rn p q p ˆ l. n p l} m p v l v p l} m p v l ˆ p re p pmp kp v m p Ž, 800 o C p l n p p 800 o C p l ˆ p p kp l} m kvl s p p pmp kp p. Table 3p l} m l r r p. o l l }, l} ˆp rp v mp, l} m l 900 o C p l rp s j v } ˆl l l } ˆp micropore rp tl mesoporem macropore rp v ˆ l. Fig. 9. Specific capacitance with different heat treatment temperatures. (A): Gravimetric capacitance, (B): volumetric capacitance Coconut shell coal char n ˆp r } l p l p r, l} l p l rl l r q rs m. rs r qp r p t ƒže p r q p r r p s r q p r p l p p p ll. 1. Coconut shell coal char ˆp p } lp r pt ƒže p r q n mp r Table 3. Specific surface area and porosity parameters of samples Sample SSA(m 2 /g) S mi (m 2 /g) S ext (m 2 /g) V tot (cm 3 /g) V mi (cm 3 /g) V mi /V tot (%) D/nm Coconut HNO 3 500 o C 700 o C 800 o C 900 o C 1000 o C 1170 1331 1225 1245 1258 1257 1253 1087 1236 1103 1118 1132 1137 1129 83 95 121 127 126 120 124 0.471 0.537 0.497 0.506 0.511 0.509 0.509 0.427 0.488 0.436 0.442 0.447 0.448 0.446 91 91 88 87 87 88 88 1.61 1.61 1.62 1.63 1.62 1.62 1.63 Coal HNO 3 500 o C 700 o C 800 o C 900 o C 1000 o C 1077 1184 1188 1234 1209 1218 1118 884 964 925 956 943 947 862 193 220 264 278 266 271 256 0.463 0.509 0.508 0.529 0.517 0.521 0.480 0.363 0.396 0.3 0.387 0.382 0.384 0.350 78 78 73 73 1.72 1.72 1.71 1.71 1.71 1.71 1.72 SSA: BET surface area; S mi : micropore area S ext : external surface area; V tot : total volume; V mi : micropore volume; D: average pore diameter

144 Jingyu Wu et al. / Carbon Letters Vol. 9, No. 2 (2008) 137-144 l n p p CV pl p p r q p np r v k k. 2. ˆp } n rp v l n p v mp, l p l p kr p kr. l} l p l p k p micropore mesoporem macropore v l l m p 800 o C r l l} p v m. 3. v } l} l p l, rl ˆp r q n n n p p l coconut shell ˆp v 800 o C l} r q n 90 F/g, 42 F/cc 100 p 85 F/g, 40 F/ccp 94%p pp ˆ l o ˆ n p p ˆ l. š x [1] Kwon, O. J.; Jung, Y. H.; Oh, S. M. J. Power sources 2004, 125, 221. [2] Lee, J.; Kim, J.; Lee, Y.; Yoon, S.; Oh, S. M.; Hyeon, T. Chem. Mater. 2004, 16, 3323. [3] Bonnefoi, L.; Simon, P.; Fauvarque, J. F.; Sarrazin, C.; Dugast, A. J. Power Source 1999, 79, 37. [4] Tanahashi, I.; Yoshida, A.; Nishino, A. Denki Kagaku 1988, 56, 892. [5] Park, S. J.; Jung, W. Y. J. Colloid Interface Sci. 2002, 250, 93. [6] Inagaki, M.; Radovic, L.R. Carbon 2002, 40, 2263. [7] Burke, A. J. Power sources 2000, 91, 37. [8] Qiao, W. M.; Korai, Y.; Mochida, I.; Hori, Y.; Maeda, I. Carbon 2002, 40,351. [9] Qu, D. J. Power Source 2002, 109, 403. [10] Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143, 3791. [11] An, K. H.; Jeon, K. K.; Heo, J. K.; Lim, S. C.; Bae, D. J.; Lee, Y. H. J. Electrochem. Soc. 2002, 149, 1058. [12] Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652. [13] Park, S. J.; Jang, Y. S. J. Colloid Interface Sci. 2002, 249, 458. [14] Park, S. J.; Seo, M. K.; Rhee, K. Y. Carbon 2003, 41, 592. [15] Park, S. J.; Seo, M. K.; Rhee, K. Y. J. Phys. Chem. B. 2003, 107, 13100. [16] Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937.