Journal of the Korean Ceramic Society Vol 47, No, pp 6~67, 010 DOI:104191/KCERS010476 The Properties and Uniformity Change of Amorphous SiC:H Film Deposited using Remote PECVD System with Various Deposition Conditions Sung Hyuk Cho, Yoo Youl Choi, and Doo Jin Choi Department of Advanced Material Science and Engineering, Yonsei University, Seoul 10-749, Korea (Received March 8, 010; Revised May 15, 010; Accepted May 17, 010) v yw» w w ky³ p ³ y xá Á w œw (010 8 ; 010 5 15 ; 010 5 17 ) ABSTRACT a-sic has been thought as an ideal candidate for conventional silicon at many applications However, the uniformity problem of deposition has been a obstacle for conventional use of a-sic:h films a-sic:h films were deposited on (100) silicon wafer by RPE- CVD system in various temperature HMDS and H gas were used as a precursor and a carrier gas, respectively The flow rate of HMDS source and C H dilution gas was fixed in order to study the carbon effect on the film stoichiometric and bonding properties The plasma power varied from 00 to 400 W We used three types of source delivery line to control the uniformity and film properties of deposited film We showed that the change of source delivery line has effect on the film uniformity of deposited film and this change of line did not affect on film properties Also, the change of deposition conditions has effect on the film uniformity Key words : SiC, PECVD, HMDS, Plasma, Uniformity 1 ky³», yw,, j ˆ w MEMS v w» g w p» g š, š,» w y w ky ³ j ƒÿ š ù œ x ³ w ƒ w» ky³ j ww š yw», rl ) v yw» ) w 1) ky³ š p w w, š, š w y w w ƒ š v yw»» yw» Corresponding author : Doo Jin Choi E-mail : drchoidj@yonseiackr Tel : +8--1-85 Fax : +8--65-588 w œ š œ ky³ ƒÿ š v yw» w ky³ ƒ sw»» p 4) ƒ ƒ v w (monomer) w š yw ƒw»q wš x w» v yw» v yw» v y v w ƒ w ƒ z 5,6) w w HMDS(hexamethyldisilane) w v yw» y ky³ w ü k wš š w» w C H» w 50 ~ 450 C o w ƒƒ»» y 6
v yw» w w ky³ p ³ y 6 ³ y d w X-ray photoelectron spectroscopy (XPS) w w p w š Ì ellipsometry w w x ky³ v yw» w (100) g r š v ƒ š ƒ w š v 156 MHz radio frequency v» š v e(matching) e» Susceptor 1016 cm š v y 0 cm HMDS (hexamethyldisilane, (CH ) 6 Si, 98%, Aldrich) w ƒ» w ky³ ü k œ ü k š w C H» w š, C H» mass flow controller(mfc) w w HMDS» y g w x š, C H,» ƒƒ 00 sccm, 50 sccm, sccm š y ³ y» w ƒ xk w Susceptor ky³ w w š susceptor thermocouple w wš xw w susceptor ü e ³ w» w g xk ƒ susceptor Fig 1 Time dependency of growth rate with temperature 50 o C, P P = 50 W HMDS : H : Ar = 06 : : 00 sccm e 50 o C 450 o C š Ì x 10 š w Ì ellipsometer (Gaertner L117 C, x - Ÿ, λ =68 nm) w d w ü ³,, k w w p XPS w d wš w š Fig 1 50 o C ƒ y v ùkü r e susceptor» Fig m w 50 o C 10 Fig Schematic diagram of direct gas inlet line and deposition thickness at different deposition position using direct gas inlet line at deposition of 00 o C and C H rate of 10 sccm 47«y(010)
64 xá Á ¾» w ƒ ƒ 10 z l ƒ w ƒw p 10 5 ̃ ellipsometry d 100 Å Ì š 10 z š 10 z z 10 x wš»q Si r t» w ƒ Simpson»q SiOC w ƒ» w Si t Silyl (Si-H) Crosslinkerƒ š šw 7) SiO /O /Ar discharge v w yw w r SiHx O yƒ w w w š š w 8) ü w y w» ü O ƒ w SiHx SiOH w ww»» SiH crosslinker» w crosslinker» Si-O-C ww ¼ v w CHn O wƒ w»ƒ š Si-Ox ù Si-CHn, Si-OH w SiHx w š z t w œ CHn w ky³» ƒ 10 ̃ 50 o C ƒ 00 o C r, 10 ³ w w q w 10 wš xw Fig» x» susceptor ƒ Ì ùkü ƒ Ì 4 ƒ y š ù 4 w ƒ x ƒ w ùkù»» š z v q ƒ w Ì ƒw Ì r ƒ j» m w»» susceptor ù ƒ v r ù v w y y z»q» p» ƒ š w y y»» w v v ƒ ƒ w wš ù»» w ù Ì»» w š z w û ³ ùkü T max T Uniformity min 1 = ----------------------- -------- 100 T Avr e û ³ ƒ û w Fig 1 ³ v q 60~85 400 W s ³ Ì Ì ƒ w w ³» w Fig» w x w Fig susceptor ƒƒ e Ì ùkü v q 00 W 00 W ƒƒ e r ƒ j š ƒƒ e ƒ ùkû xk» ó v»» ƒ v ƒ ƒ w v š»» ƒ»» v w w š y y y y w š y y»q ƒ ƒw w» x k y»q x ³ w Ì ù Fig v q ƒ 400 W w ³ ƒ v q 400 W v q ƒ w w š y y w š x r» Á ̃ ùkù w»»ww ƒ» w ¼ (sheath) w ̃ û ƒ» w ³ 00 W 00 W 4~1 û w ³ s³ Ì ù v q ƒ ³ 5 ³ ƒ w v q ƒ v q v ƒ»» w v w wz
원거리 플라즈마 화학기상증착법을 사용하여 증착한 비정질 탄화규소 막의 증착조건에 따른 특성 및 증착 균일도 변화 Fig Fig 4 65 Schematic diagram of bended gas inlet line and deposition thickness at different deposition position using bended gas inlet line at deposition of 00oC and CH rate of 10 sccm Schematic diagram of ring shape source bended line and deposition thickness at different deposition position using ring shape gas inlet line at deposition of 00oC and CH rate of 10 sccm 마 생성 영역의 쿼츠에 오염이 굉장히 심해지고 파티클 에 의한 문제가 심해지는 모습을 보였다 에서는 이 런 문제를 해결하기 위하여 높은 플라즈마 파워에서의 더 좋은 증착 균일도를 위하여 제작한 사각형 모양의 원료 기체 전달 라인의 모식도와 의 각 위치에서의 증 착 두께를 나타내었다 높은 플라즈마에서의 활발한 분해 및 활성화 작용으로 인한 증착 균일도의 변화를 줄이기 위하여 기존의 굽힘형 원료기체 전달 라인과는 다르게 플 라즈마 생성 영역 아래쪽으로 기체를 분사하도록 제작하 였고 중앙에 가까운 부분의 양 방향에 두개의 분사 구멍 Fig 4 susceptor 을 넣고 원료기체 및 희석기체의 고갈 효과를 고려하여 끝부분에는 두개의 분사 구멍을 좀더 밀착하여 제작하였 다 이 원료 기체 전달 라인을 사용하여 막을 증착한 결 과를 보면 막의 증착 두께가 굉장히 균일함을 알 수 있 다 그러나 와 의 경우 증착된 막의 균일도는 가장 적게 증착된 막과 가장 많이 증착된 막의 증착두께 차이가 약 정도로 굉장히 작으나 막의 증착 속도 는 굉장히 느려졌음을 보여준다 이것은 원료 기체와 희 석 기체가 플라즈마 생성 영역에서 아래로 분사됨으로 인 하여 플라즈마에 의한 원료기체 및 희석 기체의 분해 및 00 W 00 W 100 Å 제 47 권 제 호(010)
66 xá Á Table 1 Composition of Each Film when using Bended Source Line and Ring Shape Line Measured by XPS C O Si Bended line 555 79 656 Tetragonal bended line 546 1048 706 Fig 5 Change of sp /(sp +sp ) ratio and thickness uniformity at the different deposition temperature y yƒ š w yw w ̃» ù 400 W w v q ³ 17 x» 400 W w ³ ƒ š ƒx» w v q w ̃ ƒ»» ƒ e w w» š z e w ù š ƒ Table 1 x» ƒx» w susceptor w XPS mw k, ³, ùkü t XPS 9) w PECVD w Si»q k wš w y XPS w k» w, ƒƒ peak C1s XPS narrow scan spectra deconvolutionw Gaussian-Lorentzian distribution mw w ƒx» 10) w k % š % ù x d ü ƒ» w y š w û v q x» š ³ v ƒ ƒw v q w w w Fig 5 ü sp sp k w y Ì ³ ùk ü v k w w XPS» w 9)» w sp sp k w sp /(sp +sp ) ùkü Ì ³ ƒ T max ƒ T min ùkü 11) 50 C o 450 C ƒ ƒw ü o sp k w w sp k w 450 Cƒ o sp k w w k t yw sp sp y y 1-14) sp carbon creation reaction CH CH +CH CH CH CH CH CH(CH ) +H E a =707 kcal/mol, H=14 kcal/mol sp carbon creation reaction CH CH CH =CH +H E a =50 kcal/mol, H=401 kcal/mol û y y ƒ û sp ù y y ƒ œ sp y ù sp w w w» ƒ sp y û w ƒ sp w j š w sp w ¾ ƒ w sp w sp w w ƒ š w sp w j l ³ w e 15,16) Fig 5 sp w 50 C o sp w 450 C Ì ³ o ƒ 0 Å 6 Å ƒ ù ù sp w ƒw sp sp w y w wš ƒ sp w ̃ w 50 C ƒ o Ì ƒ Ì ƒ 74 Å ùkù sp w y y sp w ƒw š w ƒ w ³ ƒ w wz
v yw» w w ky³ p ³ y 67 w sp w ƒ w ƒ ƒ š y w ³ ƒ š ƒ ù sp ù sp w wùƒ w ƒ ƒw š ³ ƒ ù 4 x»» ww y yw ³ y w w w v w ³ ù w w v ww ƒ ƒ ³ ƒ š v q ƒ w ³ r ƒ f w v v w š qpj w v»q ww v q ƒ w w» š z vw» w v qpj»»ww y w w w ƒ yw w w ƒ yw ̃ yw ƒ yw w sp sp w yw ƒƒ w w ³ ƒ sp w ë ƒ y sp w ³ ƒ Acknowledgment w w w REFERENCES 1 A Ellison, J Zhang, W Magnusson, A Henry, Q Wahab, J P Bergman, C Hemmingsson, NT Son, and E Janzen, Fast Sic Epitaxial Growth in a Chimney CVD Reactor and HTCVD Crystal Growth Developments, Mater Sci Forum, 8-4 11-6 (000) A K Costa, SS Camargo Jr, C A Achete, and R Carius, Characterization of Ultra-hard Silicon Carbide Coatings Deposited by RF Magnetron Sputtering, Thin Solid Films, 77-78 4-48 (000) T Y Lin, J G Duh, C K Chung, and H Niu, Fabrication of Low-Stress Plasma Enhanced Chemical Vapor Deposition Silicon Carbide Films, Jpn J Appl Phys, Part 1 9 666-71 (000) 4 E Bertran, E Martinez, G Viera, J Farjas, and P Roura, Mechanical Properties of Nanometric Structures of Si/SiC, C/SiC and C/SiN Produced by PECVD, Diamond Related Mater, 10 [-7] 1115-0 (001) 5 A M Wrobel, S Wickramanayaka, K Kitamura, Y Nakanishi, and Y Hatanaka, Structure-Property Relationships of Amorphous Hydrogenated Silicon-Carbon Films Produced by Atomic Hydrogen-Induced CVD from a Single-Source Precursor, Chemical Vapor Deposition, 6 [6] 15- (000) 6 A M Wrobel, A Walkiewicz-Pietzykowska, J E Klemberg-Sapieha, Y Hanaka, T Aoki, and Y Nakanishi, Remote Hydrogen Plasma Chemical Vapor Deposition of Silicon-carbon Thin-film Materials from a Hexamethyldisilane Source: Characterization of the Process and the Deposits, J Appl Polym Sci, 86 1445-58 (00) 7 T R E Simpson and J L Keddie, Evidence From Infrared Ellipsometry for Covalent Bonding at a Polymer/polymer Interface With Relevance to Lock-up in Pressure-sensitive Adhesive Laminates, The J Adhesion, 79 107-18 (00) 8 S M Han and E S Aydil, Plasma and Surface Diagnostics During Plasma-enhanced Chemical Vapor Deposition of SiO from SiH 4 /O /Ar Discharges, Thin Solid Films, 90-91 47-4 (1996) 9 H-S Jung and H-H Park, Studies on the Structure and Bonding State of Nitric Amorphous Carbon (a-cnx) Films by Reactive rf Magnetron Sputtering, Thin Solid Films, 77-78 0-5 (000) 10 Chastain, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation Physical Electronic Division, 199 11 S H Cho, Y J Lee, D J Choi, and T S Kim, The Deposition Behavior of SiC: H Films Deposited using a Remote PECVD System with an HMDS Precursor and CH Dilution Gas, J Ceram Process Res, 8 [6] 9-96 (007) 1 K Sato, H Haruta, and Y Kumashiro, Ab Initio Molecular-orbital Study on the Surface Reactions of Methane and Silane Plasma Chemical Vapor Deposition, Phys Rev, 55 15467-70 (1997) 1 S H Cheng, K Sato, and Y Kumashiro, Plasma-chemical Vapor Deposition of Wide Band Gap a-sic:h films: An ab initio Molecular-orbital Study, J Appl Phys, 87 401-5 (000) 14 K Sato, S H Cheng, H Haruta, T Yokayama, and Y Kumashiro, Substrate Temperature Dependence of the Surface Reaction Mechanism of Methane Plasma Chemical Vapor Depositon : Experimental and Ab Initio Molecular Orbital Study, Jpn J Appl Phys, 9 84-46 (000) 15 J Robertson and E P O reilly, Electronic and Atomic Structure of Amorphous Carbon, Phys Rev B, 5 946-57 (1987) 16 J Robertson, Electronic Structure and Bonding of a-c:h, Mater Sci Forum, 5-5 15-50 (1990) 47«y(010)