ª Œª Œ 31ƒ 6B Á 2011 11œ pp. 565 ~ 575 ª (IBI) sƒ (QHEI) y w w x p» sƒ Evaluation on Functional Assessment for Fish Habitat of Underground type Eco-Artificial Fish Reef using the Index of Biological Integrity (IBI) and Qualitative Habitat Evaluation Index (QHEI) xá Á«xÁ y Ahn, Chang HyukÁJoo, Jin ChulÁKwon, Jae HyeongÁSong, Ho Myeon Abstract The purpose of this study was to quantitatively evaluate the expression of both multi-metric qualitative habitat evaluation index (QHEI) and biological integrity index (IBI) for artificial structures eco-artificial fish reef (EAFR) for fishes asylum and habitat. Especially, both experimental evaluation and biological verification were performed in Water and Environmental Center's outdoor test-bed of Korea Institute of Construction Technology located in Andong-city, Gyeongsangbuk-do. The experimental conditions reflecting the situation of domestic river include the flow rate (e.g., 0.0~1.5 m s 1 ), the width (e.g., 1.0~3.0 m), the depth (e.g., 0.05~0.70 m), and variable bed materials. Both QHEI and IBI were monitored for 8 months from May to December 2010. Whereas QHEI values were highest at experimental points of the E~F with an average of 83.1, those were lowest at B~C with an average of 78.1. However, QHEI values inside EAFR were more than 98.9, regardelss of space and time, and indicated more than the highest good of the state (Good) in the habitat. Overally, IBI values showed similar trend with QHEI, but were 44.2 in the winter dry season, compared to 32.8 of QHEI values. IBI values Also, IBI values inside EAFR were greater than those at the experimental channel by 5.7 to 11.4% and 18.7 to 34.8% in flow and stagnant conditions, respectively, indicating that EAFR can secure asylum and habitat for fish during the dry season. For comprehensive aquatic ecosystem assessment, the experimental channel showed generally fair conditions (Fair~Good), whereas EAFR showed good conditions (Good), suggesting that EAFR can be applied to aquatic ecosystem restoration and improvement. Keywords : aquatic ecosystem assessment, Index of Biological Integrity (IBI), Qualitative Habitat Evaluation Index (QHEI), eco-artificial fish reef (EAFR) sƒ (Qualitative Habitat Evaluation Index, QHEI) (Index of Biological Integrity, IBI) v y œ p sƒ w. w, ûz w w w» Áy x l x y w ³ sƒ w. sƒ» w w x p ü w w w w, k k w 0.0~1.5 m s 1, s 1.0~3.0 m, 0.05~0.70 m, w w w 2010 5 ~12 8 l w. QHEI x E~F s³ 83.1 ƒ ùkûš, B~C 78.1 ƒ û ùkû. w p Áœ 98.9 ùkü ƒ y k(good) w. IBI QHEI w ql ùkü ù» y k(good) 44.2 32.8 ùkü x. w, k p IBI x ƒƒ 5.7~11.4%, 18.7~34.8% sƒ ùkü, ù» y ƒ w. w k sƒ xw m y k(fair~good) ùkü, p y k(good) k y ƒ w w. w : k sƒ,, sƒ, p z Áw» Áy y (E-mail : chahn@kict.re.kr) w» Áy y (E-mail : jcjoo@kict.re.kr) z Áw» Áy y (E-mail : jhkwon@kict.re.kr) Áw» Áy y (E-mail : hmsong@kict.re.kr) 31ƒ 6B 2011 11œ 565
1. 1.1 t» y y w w û, k y ƒ (½, 1989;, 1991;, 1997). k k w l sƒ v w, x ¾» w yw (U.S. EPA, 1991). ù k k, w, xk ƒƒ y w t w ùkü, p yw sƒ œ y k sƒw y üsw (Barbour et al., 1996; Judy et al., 1984; Karr, 1981; Karr et al., 1986). w š w y w k sƒ w v jm(algae), (benthos), y w t» (biological criteria) w (USEPA, 1988; Van Putten, 1989). k sƒw» w,, t,, x s v ƒ w k sƒƒ ü w (, 2009). y w š w 1981 IBI (Index of Biotic Integrity) š, 1986 ¾ 12 k p š w ww z(karr et al., 1986), 1991 35 w k sƒ y w (Karr and Dionne, 1991). IBI» ƒ y w ü, k, t, s yw mw k sƒwš w (Karr, 1981; Yider and Smith, 1999). w y w, yw, w Ÿ w w» IBI» y w w y xw» w (Teel et al., 2004).» IBI» y w w» ƒ w (plant), (vegetation), (macrophyte), (benthos), v jm(zooplankton), v jm(phytoplankton), w û,, v e, y š (Beck et al., 2010; Astin et al., 2007;, 2001;, 2000; Ganasan and Hughes, 1998; Kozumi and Matsumiya, 1997; Huguency et al., 1996; Harris, 1995; Hocutte et al., 1994; Gutierrez, 1994; Oberdorff and Porcher, 1994). w w xkw p w t sƒ QHEI (Qualitiative Habitat Evaluation Index) 1983 Ohio EPA w». QHEI w y sƒw x rw y wš. p, IBI w w p y w š w sƒ w, s sƒ» ƒ, m sƒ, sƒ ww» w k w y (Walton et al., 2007; Miltner et al., 2004; An et al., 2002). 1.2 p w (t, 2010). m z,, y, y,», k» y ww š (½, 2011; û», 2010). w, ƒ v jm (meiofauna) t wš, s ƒ, w y œw (Kusuda and Noboru, 2009). p e ã (Misgurnus sp.) j w e, w w ƒ (Harding et al., 2007). û 2007~2009 78 œ w y» w ( û», 2010). w m, w ù y k» w œ œ w, d w. m k» w œ y w x p w w.» m p w, ( Ë) e w, w y w» y, œq mw, œ (w», 2010). p k, œ, k l sww y, š y,, kœ w w. y w k» y, w y, œw m ù p»» swwš j, s ƒ œ y w k œ y» t ww (y, 2010). w sƒ w y p w š w w d ƒ w w k sƒ w. p» y w w y Ÿ w y. w ww x x IBI QHEI» t y w v y œ 566 ª Œª Œ
틀둠벙의 정량적인 생태 기능 평가를 목적으로 하였다. 2. 재료 및 방법 2.1 동일한 지점에서 비교 모니터링 하였다(Fig. 2). 실험하천은 자연 하천의 상류~하류의 특징을 재현하기 위해 크게 5구간 (A~F)으로 나누어 각기 다른 유속, 하폭, 수심, 하상재료 등 을 배치하였다. 전체 조건은 유속 0.0~1.5 m s, 폭 1.0~3.0 m, 수심 0.05~0.70 m이며, 하상재료는 호박돌(>256 mm), 큰 자갈(64~256 mm), 자갈(2~64 mm), 모래(0.06~2.0 mm) 등을 활용하였으며 구간별 자세한 정보는 (Table 1)에 나타내었다(OhioEPA, 2006; 건교부, 2005). 가동시간은 2010년 5월부터 12월까지 8개월간이며 실험 측정 시점은 비강우시인 2010년 5월 13일, 6월 10일, 7월 15일, 8월 5일, 9월 3일, 10월 7일, 11월 4일, 12월 16일 을 기점으로 하였다. 실험장은 국내 유량변화와 다양한 환경 적 영향을 고려하기 위해 유량을 흐름 및 정체 상태의 각기 다른 환경 상태를 나타내도록 1개월 단위로 번갈아가며 조 절 한 후, 각 상태에 따라 초음파 유속계(FlowTacker ADV, USA Sontek)를 활용하여 1 m 1 m 단위의 격자별로 유속을 측정하여 등고선 형태로 나타내었다. 최종적으로 방 틀둠벙의 서식처 기능은 제시된 IBI 및 QHEI 기법을 활용 하여 평가하였다. 1 연구지점 및 실험장 조성 Fig. 1 The study site in the Nakdong River 본 연구는 경상북도 안동시 남후면 하아리에 소재한 한국 건설기술연구원의 수자원 환경실험센터에서 수행되었다(Fig. 1). 길이 20.0 m, 폭 4.0 m, 최대수심 1.5 m의 콘크리트 사 각 수조에 인공적으로 실험 하천을 조성하여 자연 상태의 상류~하류 구간을 축소 재현하였으며, 좌안에 지하 매립형 사각 집수정 형태의 방틀둠벙(eco-artificial fish reef)을 설 치하고, 그 기능 평가를 위해 실험하천과 방틀둠벙을 구간별 방틀둠벙 설치 본 연구에서 활용한 방틀둠벙은 목재(두께 5 cm)를 활용하 여 1 m (가로 1 m 세로 1 m 높이 1.2 m) 규격으로 제작 되어 실험수로의 좌측 호안에 총 19조를 시공하였다. 방틀둠 벙은 실험수로의 하상을 기준으로 약 90 cm를 지하로 매립 하였으며 30 cm는 하상위에 존재하도록 조성하였다. 방틀둠 2.2 3 Fig. 2 Experimental design of the pilot plant (X point is sampling point) Table 1. Physical condition of experiment Physical parameters Section distance (m) Width (m) Water velocity (m/s) Water depth (m) Bed material Division 第 卷第 號 31 6B A~B 2 1 1.0~1.5 0.05~0.10 Boulder Upper 年 月 2011 11 B~C 3 1 0.4~1.0 0.05~0.10 Cobble Middle C~D 5 2 0.2~0.4 0.10~0.20 Gravel 567 D~E 5 2~3 0.05~0.2 0.20~0.25 Gravel Down E~F 5 3 0.05 > 0.25~0.70 Sand Total 20 1~3 0.0~1.5 0.05~0.70 Variable Stream
Table 2. The list of fish fauna in the study sites Species Tolerance guild Trophic guild Abundance and condition ES AS TNI RA (%) Body length (cm) Coreoleuciscus splendidus NS/SS/RBS H 75 14.7 8~10 Niwaella multifasciata NS/SS/RBS I 75 14.7 8~10 Misgurnus anguillicaudatus NS/RBS/TS O 15 2.9 10~12 Rhinogobius brunneus NS/RBS I 80 15.7 4~5 Acheilognathus koreensis NS/WCS/SS O 60 11.8 6~7 Carassius carassius NS/WCS/TS O 15 2.9 8~14 Rhynchocypris oxycephalus NS/WCS/SS I 160 31.4 5~6 Coreoperca herzi NS/RBS/WCS/SS C 20 3.9 10~14 Opsariichthys uncirostris amurensis NS/WCS/SS C 10 2.0 12~15 Total 510 100 Variable *abbreviations are as follows; NS=Native species, RBS=Riffle benthic species, WCS=Water column species, SS=Sensitive species, TS=Tolerant species, O=Omnivores, I=Insectivores, C=Carnivores, H=Herbivores, TNI=Total number of Individuals, ES=Exotic species, AS=anomalies species, RA=Relative abundance) Table 3. Assessing population for The standard of the Index of Biological Integrity (IBI) and application of experiment fishes in the pilot plant Division Tolerance guild Trophic guild Abundance and condition NS RBS WCS SS TS O I C TNI ES AS Standard by IBI >67% >67% >67% >67% <5% <20% >45% >5% >67% 0% 0% This study 100% 52.0% 52.0% 78.4% 5.9% 17.6% 61.8% 5.9% Variable 0.0% 0% x v ƒ,, š w xk Ë ew. p ü» œ w p( Ì 9mm) (0.06~2.0 mm) Ì 10 mmƒ w. 2.3 y d ( 3) x x d w. x w ( l 20 m ) w, (DO), ph,» (conductivity)» YSI t YSI550A YSI63 y w x d w. w (BOD), (SS), Chl-a, (TN), (TP) w polyethylene (2L) Standard Method(APHA, 1995) BOD DO d, SS, Chl-a m, ƒƒ ŸŸ g y w x w. 2.4 x x k ƒ w ww ü m 9 (Coreoleuciscus splendidus, Niwaella multifasciata, Misgurnus anguillicaudatus, Rhinogobius brunneus, Acheilognathus koreensis, Carassius carassius, Rhynchocypris oxycephalus, Coreoperca herzi, Opsariichthys uncirostris amurensis) 510 11 IBI w» (Tolerance guild, Trophic guild, Abundance and condition) w ww w x w. x w 10 yw z ww, IBI w x p (Table 2) (Table 3) ùkü (Karr, 1981; Barbour et al., 1999;, 2001;, 2000). m (NS) x t ùkü x w ww w. (RBS) d w (WCS) ƒƒ (riffle benthic) (pool) w ùkü IBI» ü w (Harris, 1995). w (SS) U.S.EPA (1993) (1994) w y w, ü (TS) w w t ƒ ƒw» w (, 1990; ½, 1993). m (O) w š w Áyw w w t ƒw š š. m (TNI) w Áyw w t w. m (C) w w w t ƒ w p (Karr, 1981; Ohio EPA, 1989;, 2000). (TNI) t sƒw w, (ES) (AS) y k t 568 ª Œª Œ
w w eƒ w û ùkü (U.S.EPA, 1991). x Wading method(ohioepa, 1989)» w, Catch per unit of effort(cpue) w y w. š w y w» w 24 w m (Hoop netting, j» 27 27 45 cm, 5 5 mm) e w, y n ( 5 5 mm), ( 4 4 mm) y w. x z w w w x 60 e w, x w z w l w (, 2008; Steve et al., 1995). 2.5 sƒ(ibi) sƒ (QHEI) (Index of Biological Integrity, IBI) y sƒ y w y w. w kw p 11 w ey w (Karr, 1981; Barbour et al., 1999;, 2001;, 2000). sƒ t (Tolerance guild, I 1 ), (Trophic guild, I 2 ), t (Abundance and condition, I 3 ) 3ƒ j ƒƒ m (NS: Total number of native fish species, I 1-1 ), (RBS: Number of water column species in pool, I 1-2 ), (pool) d w (WCS: Number of water column species in pool, I 1-3 ), w (SS: Number of sensitive species, I 1-4 ), ü (TS: Percent individuals as tolerent species, I 1-5 ), m (O: Proportion of individuals as native omnivores, I 2-1 ), m (I: Proportion of individuals as native insectivore, I 2-2 ), m (C: I 2-3, Proportion of individuals as native carnivores), (TNI: Total number of individuals in sample, I 3-1 ), (ES: Proportion of individuals as exotic spesies, I 3-2 ), (AS: Proportion of individuals with anomalies, I 3-3 ) 11w w. IBI U.S. EPA» w ƒƒ w w w, k(exellent, 53~55), y k(good, 43~47), m k(fair, 35~39), y k(poor, 23~29), y k(very Poor, 7~17) w (Karr, 1981; U.S.EPA, 1993;, 2001;, 2000). sƒ y sƒ (Qualitative Habitat Evaluation Index, QHEI) y w y w, ü p (multi-metric) w w (Plafkin et al., 1989; Barbour et al., 1999;, 2005). sƒ w w ü v p (Substrate structure and vegetation coverage, Q 1 ), p (Channel characteristics, Q 2 ), p (Bank characteristics and structure, Q3) 3ƒ j ƒƒ w w (Q 1-1 ), v (Q 1-2 ), x(, )(Q 1-3 ), w k(q 1-4 ), ³ (Q 1-5 ), w m (Q 2-1 ), (Q 2-2 ), w š (Q 2-3 ), y (Q 3-1 ), s(q 3-2 ) 10w w. sƒ ƒ w z w w w š, U.S.EPA(1993; 2006)» w k(exellent, 134~165), y k(good, 91~124), m k(fair, 48~81), y k(poor, 8~38) w. (1) QHEI w. w, ƒ œ w x, ü» w (sediment)» d w. w l ü» GF/C(pore size 0.45 µm)vl w (dry weight), 550 C 4 (Ash Free Dry Weight, AFDW)w w (APHA, 1995). Qualitative Habitat Evaluation Index (QHEI) = Q 1-1 + Q 1-2 + ~ + Q 3-1 + Q 3-2 (1)»y, Q 1-1 =Substrate/Embeddedness (20), Q 1-2 =Instream cover (20), Q 1-3 =Velocity/depth combination (20), Q 1-4 =Channel flow status (20), Q 1-5 =Dam construction impact (20), Q 2-1 =Bottom scouring & sediment deposition (15), Q 2-2 =Channel alteration (15), Q 2-3 =Frequency of riffles or bends, (15), Q 3-1 = Bank stability/vegetative protection (10), and Q 3-2 =Riparian vegetative zone width (10) 3. x š 3.1 sƒ(qhei) x j, p, j 3ƒ œ ù q dw 0.0~1.5 m s ùkü 1 (Fig. 3). (species) w wù, œ w A~B 1.0~1.5 m s 1, B~C 0.4~1.0 m s 1, C~D 0.2~0.4 m s 1, D~E 0.05~0.2 m s 1, E~F 0.05 m s w x» w 1 s., w s,, w xw (A~B), (B~C), w (C~F) j w w š, w s ƒw. xw ƒ k(flow case) k(stagnant case) w ƒ w 2010 5, 6, 8, 9, 11 ƒ k 0.0~1.5 m s w ùkü 1, 2010 7, 10, 12 k 0.05 m s w 1. 31ƒ 6B 2011 11œ 569
Fig. 3 Water velocity verification results in the pilot plant (up: flow case, down: impounded case) Fig. 4 Qualitative Habitat Evaluation Index (QHEI) in study site (A: Monthly pattern analysis using QHEI criteria for experiment channel and Eco-artificial fish reef (EAFR), B: Space analysis result by QHEI in experiment channel and EAFR (N=8), C: AFDW result for experiment channel downstream (N=3). D: AFDW result of experiment channel by upstream to downstream) (Fig. 4)에 제시되었듯이 본 연구의 서식지 평가지수 (QHEI)의 구간적 결과는 E~F지점이 평균 83.1(fair, 범위: 79.9~86.0)로 가장 높게 나타났고, B~C지점에서 78.1(fair, 범위: 73.6~81.0)로 가장 낮게 나타났다. 하지만 방틀둠벙은 상 하류의 구분 없이 101.1(good, 범위: 98.9~103.9)으로 전체 지점 중 가장 높은 결과를 보였다. 실험하천을 상류, 중류, 하류로 구분하였을 때 상대적으로 상류에서 하류 방향 으로 갈수록 QHEI가 높아지는 경향을 나타냈으며, 흐름상태 와 정체상태에서 QHEI는 각각 0.31 m, 0.37 m 의 구간 별 상승률을 보였다. 반면 방틀둠벙은 구간별 차이 없이 일 1 1 정한 수공간을 확보하고 있어 QHEI는 비교적 동일한 수치 를 나타냈다. 계절적 변화에 따른 QHEI 값은 전체적으로 일정한 값을 기록하다가 동절기로 접어들수록 서서히 낮아지는 경향을 나 타냈다. 이는 하상 구조 변화, 유량상태, 서식처의 수변공간 의 피복도 변화 등의 원인으로 사료된다. 특히, 하상 구조 변화는 본 연구의 서식지 평가에서 12.1%의 비중을 차지하 는 중요한 부분 중 하나이며 AFDW로 하상 유기물 분석을 한 결과, 7월과 10월의 두 번에 걸쳐 약 0.5 mg cm 이 상의 높은 유기물 증가를 나타내었다. 유기물의 성분은 형광 570 2 大韓土木學會論文集
x (Axioskop2, ZEISS, Germany) w v jm(algae) (detritus) (data not shown). w» 5 l 10 ¾ ƒw ƒ 12 w, œ A~C 0.5 mg cm 2 ü ƒ 0.4 m s 1 w w w s³ 1.0 mg cm 2 ùkü. w» ƒ kƒ w, x ù ü w v jm w. w k AFDW w sƒw x QHEI w š œ w ƒw ù p Áœ j w w ùkü.» t w œ œw y y w š(kusuda and Noboru, 2009) w, x ƒ w ü w ùkü. 3.2 sƒ sƒ y w w» w yw w. x ûz w ù w 8,000 m 3 x z y w š, ƒ ƒ¾ e y d (www.me.go.kr, Fig. 5 Water quality of the Nakdong River (Andong 3, 2004~2010) and study site (2010) 31ƒ 6B 2011 11œ 571
Fig. 6 Index of Biological Integrity (IBI) results in study site(a: Monthly pattern analysis using IBI criteria for experiment channel and Eco-artificial fish reef (EAFR), B: Space analysis result by IBI in experiment channel and EAFR) (P: Poor, F: Fair, G: Good, E: Exellent) 3 ) 7 s³ x w w mw w (Fig. 5) ùkü. ù x w SS, TP, TN w ùkü BOD, Chl-a x e» w. x ƒƒ, x ƒ ew gj p w ƒ w x w d v jm w y». w v jm ü BOD ƒ w v jm y ƒ 7 z ph. ƒ y k yw kƒ w w w (Plafkin et al., 1989;, 2000;, 2005). Coreoperca herzi Opsariichthys uncirostris amurensis w 94.1% ³ (diatom) ƒ w» Chl-a» l œ w t. Chl-a 8 15.6 µg L 1 ƒ» w 10 ¾ 14.2 µg L 1 w w ƒ» 4.5 µg L 1 û» w BOD, TN, TP w ql. 75%ƒ ³ Melosira sp., Asterionella sp., Synedra sp.. v jm sww w TP y» 7 0.15 mg/l w s s³ 0.05 mg L 1» w w y» (y, 2009) ùkü. w e phù DO ƒƒ 7.4~8.2, 9.2~10.3 mg L 1 ùkü d yw y ùkü. 3.3 sƒ(ibi) w (IBI) sƒ w xw, Áw œ p, p (Fig. 6). w IBI w, w ew w ù kþ (Stevens, 2008;, 2005; An et al.;, 2000; U.S.EPA, 1993). y IBI» û QHEI w ql ùkþ. w w 38.5 37.5 ùkü m k(fair, : 35~39) š w 34.4 ùkü m k y k (Poor~Fair, : 29~35) ùkü. IBI z w x» l s³ -0.96/ w xk R 2 0.899 ùkü ùkü., (bird) w x, QHEI y,»k x. w p x IBI w w ql, 12» s³ 44.2(Good, : 43~47) s³ 32.8 ùkü x. y w, w œ y (pool) w w w. p, k x y yw w yœ y ƒ p v w p.» xw 314 ƒ, p 633 2 ƒ. k xw p ƒƒ 227, 399 p 1.75 ƒ ù k ƒƒ 15, 87 5.8 ƒ w. A~F ¾ œ k k IBI s³ ƒƒ 37.9, 34.9 ùkü kƒ k 8.6% sƒ, p k s³ 42.2» w xw e. p ù 572 ª Œª Œ
Table 4. Comparing and analyzing assessment results of case study by using Qualitative Habitat Evaluation Index (QHEI) and Index of Biological Integrity (IBI) criteria QHEI IBI 2010 Month Average 5 6 7 8 9 10 11 12 Flow operation ø ø ø ø ø - Experiment Channel 83.5 83.8 78.7 82.9 81.8 77.0 82.3 76.6 80.8 EAFR 102.0 101.0 101.3 100.3 98.9 103.9 99.9 101.6 101.1 Increase rate(%) 22.2 20.5 28.7 21.0 20.9 34.9 21.4 32.6 25.1 Experiment Channel 39.9 39.7 37.2 37.4 37.7 34.8 35.0 32.8 36.8 EAFR 43.0 44.2 44.2 41.4 40.2 43.4 37.0 44.2 42.2 Increase rate(%) 7.8 11.4 18.7 10.6 6.7 24.8 5.7 34.8 15.1» y» ƒ w p, k IBI p x 5.7~11.4% z ùkü k IBI p e w 18.7~34.8% z ew. 3.4 w k sƒ QHEI IBI w š w k sƒ (Table 4) w. w x y k š w 8 QHEI x s³ 80.8, p 101.1 ùkþ. p p 7, 10, 12 k x s³ 32.1% sƒ z ùkü k 21.2% (Table 4). IBI x p ƒƒ s³ 35.9, 42.2 ùkü s³ 17.5% z ùkþ. w k w s³ 31.5% z 10.5% k» p z ùkþ. QHEI IBI š w sƒ (Fig. 7). x sƒ y k(poor) m y k (Fair~good) ùkü, p m k(fair) y k(good) x y Fig. 7 Regression analysis of annual mean Index of Biological Integrity (IBI) against the Qualitative Habitat Evaluation Index (QHEI) (P: Poor, F: Fair, G: Good, E: Exellent, N=40) w. p p IBI sƒ y k(good) IBI sƒ 62.5%ƒ y k (Good) w m w œ k w» w w. p w œ sƒw» w x k sƒ w w y Ÿ w y w» š (Marcus et al., 2010). w z m» l» y w ü x w ƒ w. 4. v y œ p k» sƒ w x x ³ w y w IBI QHEI» t y w. xw QHEI w, œ w Áœ ùkþ. Karr et al.(1986) sƒ ü y w y (natural variation) ƒ š w w, y y(anthropogenic variation)» sƒ w e w š w. w sƒ w» w m ƒ» sƒ» v w, p xw w w w w Áœ w sƒ ùkü. w p» d ƒ j w, w y k (lotic ecosystem) ƒ vù w ww, k (lentic ecosystem) œw w œ. p,» w k IBI p xw 18.7~34.8% ùkü k 5.7~11.4% s³ 3.1 ùkþ. š k p 31ƒ 6B 2011 11œ 573
xw 1.75, k 5.8 ùkü p v» w. w p gj p y w ù 2 Á w w ƒ w d y ƒ w, ƒÿ š y l(urban water circulating system or blue-network) œ w y ww. QHEI IBI» y w sƒ ww, x m k(fair) ùkü p y k(good) ùkü. w p xw ¾ (1.2 m) w k y w, š œ Á sƒ j w y k ùkü, k k w w. w, sƒ sƒ» Áy w k yw vù p» ³ x mw sƒá w. mw QHEI IBI» k d k w sƒ w (tool) y w». ww œ w (y )» w, w. š x ½, (1993) w. e. ½ x, x, Ÿ (2010) ksƒ x(integrative star-plot area) w. w wz, w wz, 43«, 3y, pp. 356-368. ½ x, w, Ÿ (2007) w w k w k sƒ. w wz, w wz, 40«, 3y, pp. 370-378. ½, x, x, x, ³, ½ (2011) ù» ã vù» sƒ. w y wz, w y wz, 30«, 1y, pp. 37-42. ½, x, ³ (2009) œ k» sƒ. 2009 w tz, w w wzáw y wz, pp. 557. ½, x, ³ (2010) œ. 2010 w tz, w w wzáw y wz, pp. 581., ½ t, Ÿ (2008) p w š k sƒ. w y wz, w y wz, 24«, 2y, pp. 156-163. y (2007-2009) œ y x. š, w». y (2010) œ w (y )». š, w». x, x, ½ ³ (2010) ey p. 2010 w tz, w w wzáw y wz, pp. 325. Ÿ, ½ x(2005) sƒ» s ƒ w kw. w w z, w wz, 38«, 3y, pp. 361-371. Ÿ,,, ½ x, y,,, ½ (2006) ù w w kw y sƒ. w y wz, w y wz, 22 «, 5y, pp 796-804. Ÿ, x, (2001) (Index of biological integrity) sƒ (Qualitative habitat evaluation index) w s y sƒ, w wz, w wz, 34«, 3y, pp. 153-165. x(2009) ù» - QUAL2K, w, w. x, Ÿ, y t, ³(2000) w y (Index of biological integrity, IBI) sƒ. w kwz, w kwz, 18«, 2y, pp. 215-226.,, «, y, Ÿ, (2006) x w w w w y sƒ, w y wz, w y wz, 22 «, 5y, pp. 768-783. x, ½, x, ³ (2010) k w e w m p. 2010 w tz, w m wz, pp. 204. (2005) w» Áw. š, m. Ÿx, y, ½y, w (2003) q y v jm w y. w wz, w wz, 36«, 2y, pp. 139-149. w y œ (2010) kw» e.» š, y. y, ½ù,, Ÿ,, ½,»(2006) ù w y sƒ xy. w y w z, w y wz, 22«, 5y, pp. 757-767. y. ½ù,, Ÿ,, ½ (2006) (Epilithic Diatom) w ü w (,, ) w sƒ. w y wz, w y wz, 22«, 5y, pp. 784-795. B. Michael Walton, Mark Salling, James Wyles, and Julie Wolin (2007) Biological integrity in urban streams, Toward resolving multiple dimensions of urbanization. Landscape and Urban Planning, Vol. 79, pp. 110-123. Bob, Taft and Joseph, P. Koncelik. (2006) Methods for assessing habitat in flowing waters: using the qualitative habitat evaluation index (QHEI). Technical Report, U.S.EPA. Carolyn, J.M. Brown, Brendan, W. Knight, Mark, E. McMaster, Keely, R. Munkittrick, Ken, D. Oakes, Grald, R. Tetreault, and Mark, R. Servos (2011) The effects of tertiary treated municipal wastewater on fish communities of a small river tributary in Southern Ontario, Canada. Environmental pollution, Vol. 159, pp. 1923-1931. Bae, D.-Y., Hema, K. Kumar, Han, J.-H., Kim, J.-Y., Kim, K.-W., Kwon, Y.-H., and An, K.-G. (2010) Integrative ecological health assessments of an acid mine stream and in situ pilot test for wastewater treatments. Ecological Engineering, Vol. 36, pp. 653-663. David Bedoya, Vladimir Novotny, and Elias S. Manolakos (2009) Instream and offstream environmental conditions and stream biotic integrity importancce of scale and site similarities for learning and prediction. Ecological Modeling, Vol. 220, pp. 2393-2406. Di, Ahu and Jianbo, Chang (2008) Annual variations of biotic integrity in the upper Yantze River using an adapeted index of biotic integrity (IBI). Ecological Indicators, Vol. 8, pp. 564-572. Douglas, D. Kane, Steven, I. Gordon, Mohiuddin Munawar, Murray, N. Charlton, and David, A. Culver (2009) The planktonic index of biotic integrity (P-IBI): An approach for assessing 574 ª Œª Œ
lake ecosystem health. Ecological Indicators, Vol. 9, pp. 1234-1247. Williams, J.B. and Poff, N.L. (2006) Infornatics software for the ecologist's toolbox; A basic example. Ecological Informatics, Vol. 1, pp. 325-329. Indiana Department of Environmental Management (2006) Biologocal studies section qualitative habitat evaluation index (QHEI) similarities for learning and prediction. Ecological Modeling, Vol. 220, pp. 2393-2406. John, J. Mack. (2007) Developing a wetland IBI with statewide application after multiple testin iterations. Ecological Indicators, Vol. 7, pp. 867-881. Joseph, C.S. and Robert, M.G. (1997) Comparison of three qualitative habitat indices and there applicability to prairie streams. North American Journal of Fisheries Society, Vol. 17, pp. 348-361. Jung Chen Huang, William, J. Mitsch, and Li, Zhang. (2009) Ecological restoration design of a stream on a college campus in central Ohio. Ecological engineering, Vol. 35, pp. 329-340. Kang, S.H. (2004) Index of biological integrity for water environmental assesment of nature-friendly river work. Korea Society of Environmental Engneers, Vol. 9, No. 4, pp. 168-174. Carpenter, K.E., Johnson, J.M., and Buchanan, C. (2006) An index of biotic integrity based on the summer polyhaline zooplankton community of the Chesapeake Bay. Marine Environmental Research, Vol. 62, pp. 165-180. LeAnne, E. Astin. (2007) Developing biological indicators from diverse data; The Potomac Basin-wide index of benthic integrity (B-IBI). Ecological Indicators, Vol. 7, pp. 895-908. Lieven, Bervoets, Guy, Knaepkens, Marcel, Eens, and Bonny, Blust. (2005) Fish community responses to metal pollution. Environmental Pollution. Environmental Pollution, Vol. 138, pp. 338-349. Marcus, W., Beck, Lorin, K., Hatch, Bruce Vondracek, and Ray, D. Valley. (2010) Development of a macrophyte-based index of biotic integrity for Minnesota lakes. Ecological Indicators, Vol. 10, pp. 968-979. Southerland, M.T., Rogers, G.M., Kline, M.J., Morgan, R.P., Boward, D.M., Kazyak, P.F., Klauda, R.J., and Stranko, S.A. (2007) Improving biological indicators to better assess the condition of streams. Ecological Indicators, Vol. 7, pp. 751-767. Naicheng Wu, Britta Schmalz, and Nicola Fohrer. (2001) Development and testing of a phytoplankton index of biotic integrity (P- IBI) for a German lowland river. Ecological Indicators National Biological Service Environmental Management Technical Center. (1995) Long term resource monitoring program procedures: Fish monitoring Ohio, EPA. (1989) Biological criteria for the protection of aquatic life. Vol., Standardized biological field sampling and laboratory method for assessing fish and micro invertebrate communities. U.S.A Paul, L.A. and James R.K. (1986) Applying an index biotic integrity based on stream-fish communities: considerations in sampleing and Interpretation. North American Journal of Fisheries Society, Vol. 6, pp. 418-429. Rovert, L. Miltner, Dale, White, and Chris, Yoder. (2004) The biotic integrity of streams in urban and suburbanizing landscapes. Landscape and Urban Planning, Vol. 69, pp. 87-100. Robert, A.D., Karen, R.M., David, B.H., David, L.V.M., and Michael D.B. (2002) An index of biological integrity for northern mid-atlantic slope drainages. Transactions of the American Fisheries Society, Vol. 131, pp. 1044-1060. Sarah, J. Miller, Denice, H. Wardrop, Wendy, M. Mahaney, and Robert P. Brooks. (2006) A plant-based index of biological integrity (IBI) for headwater wetlands in central Pennsylvania. Ecological Indicators, Vol. 6, pp. 290-312. Stevens, C. and Council, T. (2008) A fish-based index of biological integrity for assessing river condition in central Alberta. Technical Report, T-2008-001, produced by the Alberta Conservation Association, Sherwood Park and Lethbridge, Alberta, Canada. 29 pp Teels, B.M., Mazanti, L.E., and Rewa, C.A. (2004) Using an IBI to assess effectiveness of mitigation measures to replace loss of a wetland-stream ecosystem. Wetlands, Vol. 6, pp. 375-384. Kanno, Y., Vokoun, J.C., and Beauchene, M. (2010) Development of dual fish multi-metric imdices of bio;ogical condition for streams with characteristic thermal gradients and low species richness. Ecological Indicators, Vol. 10, pp. 565-571. ( : 2011.9.6/ : 2011.11.7/ : 2011.11.7) 31ƒ 6B 2011 11œ 575