w» wz, 14«2y(2012) Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 2, (2012), pp. 79~88 DOI: 10.5532/KJAFM.2012.14.2.079 Author(s) 2012. CC Attribution 3.0 License. Ÿ t p Á w Á Áw * w y w w w (2012 1 9 ; 2012 5 30 ; 2012 6 1 ) Physiological Response and Growth Performance of ParasenecioG firmus under Different Shading Treatments Kyeong-Cheol Lee, Hak-Bong Lee, Wan-Geun Park and Sang-Sup Han* Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Korea (Received January 9, 2012; Revised May 30, 2012; Accepted June 1, 2012) ABSTRACT This study was conducted to investigate the chlorophyll contents, photosynthetic characteristics, chlorophyll fluorescence, and growth performance of Parasenecio firmus under changing light environment. Parasenecio firmus was grown under non-treated (full sunlight) and three different shading conditions (88~93%, 65~75% and 45%~55% of full sunlight) for the experiment. Total chlorophyll content, photochemical efficiency (Fv/Fm), T/R ratio, specific leaf area (SLA), leaf area ratio (LAR), and leaf weight ratio (LWR) were increased with increasing shading level, but decreased dark respiration. Therefore, light absorption and light utilization efficiency were improved under the low intensity light. Plants under 65~75% of full sunlight had best maximum photosynthetic rate and net apparent quantum yield in May. On the other hand, the non-treated plants had lower maximum photosynthetic rate, photochemical efficiency, and chlorophyll content than the treated ones. Parasenecio firmus considered to be a sciophyte, is fairly sensitive to high intensity light. If 88-93% of full sunlight lasts for a long period, photosynthetic capacity will be sharply decreased, though limiting light. These results suggest that growth of Parasenecio firmus adapted to 65~75% of full sunlight. Key words: Photosynthetic rate, Respiration, Sunlight, Stomatal conductance I. y w h w y w ƒ f š, yw ù w ƒ» ù ey ƒwš. p y» ƒ k» t wš, ƒ ù ƒ, k w» ƒ š ƒ š ƒÿ š (Nam and Baik, 2005). ù w š, ü w w w, * Corresponding Author : Sang-Sup Han (sshan@kangwon.ac.kr)
80 Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 2»v w œ xkƒ y š. w ü y w k w y ƒ w, w y ƒ e w y w v ƒ. ¾ š š w w t (Parasenecio firmus) ù w, w pw w»ƒ ú wš, w ù w (Jin and Ahn, 2010). ù ƒ w š, ƒeƒ w ƒ š, œ ƒ x š. t w w s k p (Jin and Ahn, 2010), p (Park et al., 2010) y w k š, y, x y,, y w z (Park et al., 2009) w ƒ š š, y q v w Ÿ ù w. p ü û Ÿy w t œ k T/R,, xkw p, w, Ÿw, w p w (Kim and Lee, 2001b; Kim et al., 2008), t w» w» w Ÿ, y w v ƒ. t Ÿy y w p w z š ƒ ƒ w» œwš w.. 2.1. œ v x y ü ƒ t (Parasenecio firmus) 2010 m r p(1:1) w 25 cm sp q w w ü 1 k w. v w ü s Ÿ Ÿw ( w Ÿ ) w Ÿ w 45~55%( v ), 65~75%( v ), 88~92%( v ) ƒƒ e wš 2011 4 9 l 2011 7 23 ¾ 10 v w Ÿy y d w. y» w 2011 4 1 l 7 31 ¾ d»(hobo H08-004-02, ONSET, USA) l 2 m ƒƒ ew, { Ÿ d»(hd 2102.1, Delta OHM, Italy) w 7 22 v w s 10 Ÿ d w (Fig. 1). 2.2. w xÿ v w y w» w 5 l 7 ¾ w w. w ƒ v 2 w š,, 3 0.1g r w z 10ml DMSO(dimethyl sulfoxide) 20ml 60 C w» o 6 w (Hiscox and Israelstam, 1979). w /ƒ Ÿ ŸŸ (UV/ VIS Spectrophotometer, HP 8453, Hewlett-Packard, U.S.A) w 663nm 645nm q Ÿ d wš, Arnon(1949) a, b w a+b w w. xÿ xÿ d»(chlorophyll fluorometer, OSI 30P, ADC, UK) w w, Ÿw d w d w. d sample clip 20 Ÿ w. d w 2,000µmol m 2 s Ÿ w (Choi and Kim, 1995; Demmig and Björkman, 1987; Cho et al., 2008),»xŸ (Fo), xÿ (Fm), ye(fv=fm-fo) Ÿyw z (Fv/Fm) d w w. 2.3. Ÿw d v Ÿw w» w
Lee et al.: Physiological Response and Growth Performance of ParasenecioG firmus under... 81 { Ÿw d e(ultra Compact Programmable Photosynthesis System, LCpro+, ADC, UK) w 5 l 7 ¾ 20~25 ú d w. d { Ÿw d e LED light source w PPFD(Photosyn-thetic Photon Flux Density) 0, 50, 100, 200, 400, 600, 800, 1,000, 1,200µmol m 2 s, 9 w, 25Û2 C o w 10 l z 2 ¾ 3 Ÿw d w. t Ÿw (net photosynthetic rate; Pn),»œ (stomatal transpiration rate; E),»œ (stomatal conductance; gh 2 O) Caemmerer and Farquhar (1981) w, z (water use efficiency; WUE) Ÿw»œ ù, µmol CO 2 mmol H 2 O ùküš,» CO 2 (air CO 2 concentration; Ca) w s CO 2 (intercellular CO 2 concentration; Ci) Ci Ca ùkþ (Sim and Han, 2003). d w Kume and Ino(1993) w Ÿ-Ÿw š ùkþš, š w Ÿ, Ÿsy, y, Ÿw w. Ÿ-Ÿw š Kok z (Kok, 1948; Sharp et al., 1984)ƒ ù kù PPFD 0~100 µmol m 2 s Ÿ Ÿw ƒ š z y=a+bxƒ,» y r a y š, x r a/b Ÿ,»» b ù kü. w Ÿw ƒ ƒw w (A sat ) w» w x (A sat -a)/bƒ Ÿsy (Kim and Lee, 2001a; Kwon et al, 2009). 2.4. p d v p» w Ÿw x óù 7 23 w w, d w. ew Fig. 1. Diurnal changes of temperature, relative humidity (RH) and light intensity(ppfd) following shading treatments on 22 July.
82 Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 2 LIA 3.2 progrom(version 0.377e, copy. Kazukiyo Yamato) w d w,»(dry-oven) 48 80 o C w d w. d w T/R ( dry weight/ w dry weight), (SLA; specific leaf area = leaf area/leaf dry weight), (LAR; leaf area ratio = leaf area/total dry weight), (LWR; leaf weight ratio = leaf dry weight/total dry weight) w (Cho et al., 2008; Choi et al., 2009). v d w» w SPSS Statistics Program(Version 19.0) w Duncan's multiple range test w. III. š 3.1. v, y v 6 l z 8 ¾ s³ w Ÿ ƒ 27.7 o C, v 27.0 o C, 26.6 o C, 26.1 o C û w š, 54.5%, 60.1%, 63.2.%, 64.1%. v 12 ƒ j, Ÿ w v 3.23 o C û š, 12.9% ùkû (Fig. 1). 3.2. w xÿ Ÿw w a+b w w (Kim et al., 2008) 5 Ÿ ƒ û š, v ƒw w. 6 z v ƒ v w w w š v j ƒw w (Fig. 2). û Ÿ y ù, ü w Ÿ Ÿy û w ùküš(hansen et al., 2002; Valladares et al., 2002), v Fig. 2. Change of chlorophyll content in Parasenecio firmus grown under four different shading treatments. Means with different letters are significantly different at P<0.05, which are testified with one ANOVA test and Duncan's multiple range test. (Values are mean Û S.D., n=3)
Lee et al.: Physiological Response and Growth Performance of ParasenecioG firmus under... 83 w š w (Kim and Lee, 2001b; Jeong and Kim, 1999) w. p Ÿ w w w Ÿ y (Kyparissis et al., 2000; Je et al., 2006) ƒ. Ÿ k t 6 š w, w Ÿ š»œ s» w w ³x w x (leaf scorch) ù š w ƒ. Ÿyw z (Fv/Fm) Ÿ p w w t (Rascher et al., 2000), Ÿw w š w (Cho et al., 2008), Ÿ ü w Ÿyw z û š w (Kitao et al., 2003). x Ÿyw z y v w Fig. 3. Change of chlorophyll fluorescence in Parasenecio firmus grown under four different shading treatments. Means with different letters are significantly different at P<0.05, which are testified with one ANOVA test and Duncan's multiple range test. (Values are mean Û S.D., n=3), 5 Ÿ 0.5 ƒ û Ÿyw z (Fig. 3). w w ù ƒ Ÿ ùe w Ÿ w Ÿ w(photoinhibition) x k w (Kim et al, 2010). Fig. 4. Light response curves of Parasenecio firmus grown under four different shading treatments.
84 Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 2 w v 5 l 7 ¾ Ÿyw z w t p ùkþ ù, w Ÿ Ÿyw z w. 3.3. Ÿw Ÿ-Ÿw š (Fig. 4) mw Ÿ, Ÿsy, Ÿw, w. Ÿ (0~100µmol m 2 s ) Ÿw ù kü t, yw y j Ÿyw y wš (Evans, 1987). v z 1 ù 5 Ÿw 6 7 w»ƒ v w Ÿw y w. 6 7 Ÿw j x w 2011 7 w ƒ ù ú,» d (2011) 2001 l 2010 ¾ 10 s³, s³» 16.8, 26.6 o C, 450.2mm w 2011 20, 24.4 o C, 932mm ùkù y w. w» w v w Ÿ y z ƒ 7 ƒ. Ÿ w Ÿ w Ÿ-Ÿw š»»» š, Ÿsy û, Ÿ Ÿw ƒ û. p ü n w û Ÿ z Ÿw w» w w (Kim and Lee, 2001b). 5 Ÿ Ÿ Ÿsy v w, Ÿw ƒ û ùkþ (Table 1). w Ÿy Ÿ wx (photoinhibitation) Ÿw w (Choi et al, 1995; Kim and Lee, 2001b, Je et al., 2006), Kwon et al.(2009) š w w w. Ÿ wx Ÿw š û w x (Kim and Lee, 2001b), Ÿ ƒ Ÿw w» k(excited state) Ÿw (reaction center) š, w» s s Ÿw» Ÿ y(photooxidation) g ƒ ƒ öe w (Je et al., 2006). v 5 v v w Ÿ ùkþ ù 6 7 v Ÿ ù kû Ÿ œ w š ƒ (Table 1). Table 1. Light compensation point (L comp ), light saturation point (L satp ), dark respiration (D resp ), maximum photosynthesis rate (Pn max ), net apparent quantum yield(φ) of Parasenecio firmus grown under four different shading treatments Season May June July Treatment L comp (µmol m 2 s ) L satp (µmol m 2 s ) D resp Pn max (µmol CO 2 m 2 s ) (µmol CO 2 m 2 s ) (mmol CO 2 mol ) Full sunlight 18.9 Û 11.3 * b ** 253.0 Û 30.6b 0.23 Û 0.06b 2.6 Û 0.2a 11.0 Û 2.6a Shaded 45~55% 02.1 Û 1.7a 211.6 Û 29.6ab 0.05 Û 0.04a 4.6 Û 1.6b 26.7 Û 4.7b Shaded 65~75% 03.0 Û 4.4a 191.6 Û 12.2a 0.12 Û 0.05a 7.8 Û 0.3c 41.7 Û 0.6d Shaded 88~92% 02.4 Û 2.3a 188.0 Û 2.8a 0.08 Û 0.04a 6.5 Û 0.4c 35.0 Û 1.0c Shaded 45~55% 20.9 Û 1.0b 236.8 Û 15.3c 0.43 Û 0.01b 4.4 Û 0.4b 20.6 Û 0.6b Shaded 65~75% 04.7 Û 2.4a 207.5 Û 11.9b 0.13 Û 0.07a 5.4 Û 0.7b 26.5 Û 2.1c Shaded 88~92% 09.8 Û 5.7a 176.2 Û 7.0a 0.08 Û 0.05a 1.4 Û 0.1a 08.2 Û 0.4a Shaded 45~55% 15.8 Û 2.3b 234.8 Û 4.9c 0.32 Û 0.05b 4.4 Û 0.1b 20.0 Û 0.1b Shaded 65~75% 02.0 Û 0.1a 205.5 Û 4.9b 0.06 Û 0.01a 5.6 Û 0.2c 27.6 Û 1.3c Shaded 88~92% 05.3 Û 3.4a 168.3 Û 11.4a 0.05 Û 0.03a 1.4 Û 0.1a 08.5 Û 0.5a * Values are meanûs.d. (n=3) ** Means with different letters are significantly different at P<0.05, which are testified with one ANOVA test and Duncan's multiple range test. Φ
Lee et al.: Physiological Response and Growth Performance of Parasenecio firmus under... 중피음처리구는 모든 월별비교에서 순양자수율과 최 대광합성속도가 가장 높게 유지되는 것을 알 수 있는 데 병풍쌈의 경우 65~75%의 피음처리가 생육에 유리 할 것으로 생각된다. 강피음 처리구는 피음처리가 지속될수록 최대광합성 속도가 낮아지는 경향을 보였으며(Table 1), 광선요구 도보다 적은 광 환경에서 생장함으로서 광합성 능력을 점점 상실해 가는 것으로 생각된다. Kim. (2010)이 보고한 바에 따르면 함박꽃나무와 같은 음수 도 광량이 지나치게 부족한 환경에서는 광합성 기능이 저하된다고 하였는데 이와 유사한 결과이며, 병풍쌈이 성숙하기 전에는 최소한의 채광이 유지되는 반음지 조 et al 85 건이 적절하다고 하는 Jin and Ahn(2010)의 연구와 같은 결과이다. Larcher(1995)가 보고한 바에 따르면 음지식물 (Sciophytes)의 경우는 광보상점이 5~10µmol m s, 광 포화점은 100~200µmol m s 에 분포한다고 하였는데, 피음처리시 병풍쌈의 광보상점과 광포화점이 음지식물 의 분포와 거의 일치하는 것으로 나타났다. 생명유지와 새로운 조직을 구성하기 위한 에너지를 획득하는 과정인 암호흡속도는 차광에 따라 감소되는 경향이 보고된 바 있으며(Noguchi., 1996; Kim., 2008), 병풍쌈 역시 피음처리에 의해 암 호흡속도가 감소하는 경향을 나타냈다(Table 1). 2 2 et et al al Stomatal transpiration rate(e) and stomatal conductance (gh2o) of Parasenecio firmus grown under four different shading treatments. Fig. 5.
86 Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 2 대기로의 수분확산 속도크기를 의미하는 기공전도도 (stomatal conductance; gh O)를 측정하여 기공개폐의 정도를 알 수 있으며, 기공전도도는 광도, 수증기압포 차, 이산화탄소 농도, 기온 그리고 상대습도 등과 같 은 여러 가지 환경인자들의 영향을 받는다(Hinckley and Braatne, 1994). 또한 광합성과 기공전도도는 서 로 밀접한 관련이 있으며(Andrew and William, 1998), 기공전도도의 감소에 따라 증산속도가 감소되고 광합성능력에 영향을 미치게 된다. 전광처리구는 피음처리구에 비해 낮은 기공증산속도 및 기공전도도를 보여 강한 광으로 인해 잎내의 온도 가 높아지게 되고, 이로 인한 잎의 수분결핍이 기공의 닫힘을 야기한 것으로 볼 수 있다(Je., 2006). 이러한 기공개폐기능의 저하는 병풍쌈이 전광처리구에 2 et al 서 엽소현상을 일으키는 요인 중에 하나로 생각된다. 5월의 경우 전광처리구를 제외한 피음처리구 모두 6월 과 7월의 기공증산속도와 기공전도도보다 높은 것을 알 수 있었는데(Fig. 5), 이는 병풍쌈의 경우 5월이 생육에 매우 중요한 시기이며 이 시기에 강한 광을 피해 피음처리로 적당한 광을 제공하면 높은 기공증산 속도와 기공전도도로 인해 광합성반응이 활발해져 광 합성 총량이 증가할 것으로 생각된다 수분이용효율은 5월과 6,7월이 다른 경향을 보였는 데, 6월과 7월은 차광처리 수준에 따라 수분이용효율 역시 감소하는 경향을 보여 Je.(2006)이 보고한 내음성이 강한 죽절초의 경우와 비슷한 결과를 보였다. 수분이용효율은 광합성 동화산물에 대한 수분손실률로 서 기공전도도 감소에 따라 증산량이 감소되고 일시적 et al Water use efficiency(wue) and intercellular(ci)/atmospheric(ca) CO2 concentration of Parasenecio firmus grown under four different shading treatments. Fig. 6.
Lee et al.: Physiological Response and Growth Performance of ParasenecioG firmus under... 87 Table 2. Growth performances of Parasenecio firmus under four different shading treatments Treatment Full sunlight Shaded 45~55% Shaded 65~75% Shaded 88~92% Leaf area (cm 2 ) - * 18.73 Û 6.68 ** a *** 16.98 Û 5.16a 27.91 Û 4.95b Leaf dry weight (g) - 0.170 Û 0.042b 0.087 Û 0.030a 0.135 Û 0.025ab Root dry weight (g) - 0.464 Û 0.112b 0.198 Û 0.057a 0.191 Û 0.019a T/R rate (g g ) - 00.29 Û 0.01a 00.34 Û 0.03a 00.46 Û 0.04b SLA (cm 2 g v1 ) - 108.1 Û 14.1a 198.1 Û 11.9b 207.9 Û 3.8b LAR (cm 2 g ) - 027.9 Û 4.2a 056.5 Û 3.0b 078.9 Û 4.8c LWR (g g ) - 00.26 Û 0.01a 00.29 Û 0.03a 00.38 Û 0.02b * Death. ** Values are meanûs.d. (n=3) *** Means with different letters are significantly different at P<0.05, which are testified with one ANOVA test and Duncan's multiple range test. z ƒ, û»œ z š (Lim et al., 2006). ƒ û x»œ û Ÿw k g z k. ƒ t» w z ùkü ww. ù 5 Ÿ ƒ û z ùkû (Fig. 6),»œ k ù w Ÿ w Ÿ wx Ÿw» ƒw Ÿw j w ùkù š ƒ. w» CO 2 Ci Ca ƒ s CO 2 ƒ s CO 2 z û (Sim and Han, 2003). Ÿw ƒ ƒw» Ci Ca ƒ ƒ z w w. 6 7 v ƒ v w Ci Ca wš (Fig. 6), w Ÿ œ w kƒ Ÿw w š ü CO 2 z w wš w. 3.4. p û Ÿ w w Ÿ w» w j Ÿw û (Kim, 2000; Loach, 1970), T/R ƒw. t v T/R v ƒw, v ƒ j ùkþ (Table 2). w ùkü SLA Ì ùkü j ̃ w, LAR w j j Ÿ ƒ. t SLA LAR v ƒw w Ÿ» w ƒƒ ùš, Ì (Table 2), ù œ ddù, t ù y Ÿ ƒw SLA LAR ƒw ùkü š š (Cho et al., 2008; Choi et al., 2009; Lee and Won, 2007). w w LWR n ùkü (Choi et al., 2009) v n w ƒ j (Table 2), w xk y t w Ÿy w w» w w w. t v w, xÿ, z ƒ g(table 1) û Ÿy Ÿw w z ü T/R, SLA, LAR, LWR ƒ g w Ÿy Ÿ» w xk yƒ ùkùš.
88 Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 2 Ÿy y t w, Ÿw p, xÿ š p w» w w, x w t (full sunlight) 3 v (88~93%, 65~75% and 45%~55% of full sunlight) g. t v ƒw w, Ÿyw z, T/R, SLA, LAR, LWR ƒwš y w, û Ÿ Ÿw w z ùkþ. 5 v ƒ Ÿw ùkþ, v Ÿ ƒ û Ÿw, Ÿyw z, w ùkþ. t w Ÿ w š, Ÿ ww v k w Ÿw j, w w Ÿ 65~75% k Ÿy ww š ƒ. t» ( y: C1006703-02-02) w. REFERENCES Andrew, J. J., and J. D. William, 1998: The coupled response of stomatal conductance to photosynthesis and transpiration. Journal of Experiment Botany 49, 399-406. Arnon, D. I., 1949: Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology 24, 1-15. Caemmerer, S., and G. D. Farquhar, 1981: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153(4), 376-387. Cho, M. S., K. W. Kwon, G. N. Kim, and S. Y. Woo, 2008: Chlorophyll contents and growth performances of the five deciduous hardwood species growing under different shade treatments. Korean Journal of Agricultural and Forest Meteorology 10(4), 149-157. (in Korean with English abstract) Choi, Y. B., and J. H. Kim, 1995: Change in needle chlorophyll fluorescence of Pinus densiflora and Pinus thunbergii treated with artificial acid rain. Journal of Korean Forest Society 84(1), 97-102. (in Korean with Choi, K. R., B. J. Park, and Y. M. Park, 2009: The effect of light regimes on pokeberry(phytolacca americana L.) growth. Journal of Korean Forest Society 29(1), 82-88. (in Korean with Demmig, B. and O. Björkman, 1987: Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O 2 evolution in leaves of higher plants. Planta 171, 171-184. Evans, J. R., 1987: The dependence of quantum yield on wavelength and growth irradiance. Australian Journal of Plant Physiology 14, 69-79. Hansen, U., B. Fiedler, and B. Rank, 2002: Variation of pigment composition and antioxidative systems along the canopy light gradient in a mixed beech/oak forest: a comparative study on deciduous tree species differing in shade tolerance. Trees 16, 354-364. Hinckley, T. M., and J. H. Braatne, 1994: Stomata. In: Wilkinson. R.E(eds) Plant Environment Interactions, Dekker. New York. 323-355pp Hiscox, J. D., and G. F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1332-1334. Je, S. M., S. G. Son, S. Y. Woo, K. O. Byun, and C. S. Kim, 2006: Photosynthesis and chlorophyll contents of chloranthus glaber under different shading treatments. Korean Journal of Agricultural and Forest Meteorology 8(2), 54-60. (in Korean with Jeong, H. H., and K. S. Kim, 1999: Effects of shading on the growth of Hedera rhombea Bean and Pachysandra terminalis Sieb. et Zucc. Korean Journal of Horticultural Science and Technology 17(1), 29-32. (in Korean with Jin, Y. H., and Y. H. Ahn, 2010: Comparison of ecological charateristics of Parasenecio firmus population in korea and china. Journal of the Environmental Sciences 19(2), 197-207. (in Korean with Kim, J. J., 2000: Studies on optimum shading for seedling cultivation of Cornus controversa and C. walteri. Journal of Korean Forest Society 89(5), 591-597. (in Korean with Kim, G. N., M. S. Cho, and S. W. Lee, 2010: Physiological responses of the three deciduous hardwood seedlings growing under different shade treatment regimes. Journal of Bio Environment Control 19(1), 36-48. (in Korean with Kim, S. H., J. H. Saung, Y. K. Kim, and P. G. Kim, 2008: Photosynthetic responses of four oak species to changes in light environment. Korean Journal of Agricultural and Forest Meteorology 10(4), 141-148. (in Korean with Kim, P. G., and E. J. Lee, 2001a: Ecophysiology of photot synthesis 1: Effects of light intensity and intercellular CO 2 pressure on photosynthesis. Korean Journal of Agricultural
Lee et al.: Physiological Response and Growth Performance of ParasenecioG firmus under... 89 and Forest Meteorology 3(2), 126-133. (in Korean with Kim, P. G., and E. J. Lee, 2001b: Ecophysiology of photosynthesis 2: Adaptation of the photosynthetic apparatus to changing environment. Korean Journal of Agricultural and Forest Meteorology 3(3), 171-176. (in Korean with Kitao, M., H. Utsugi, S. kuramoto, R. Tabuchi, K. Fujimoto, and S. Lihpai, 2003: Light-dependent photosynthetic characteristics indicated by chlorophyll fluorescence in five mangrove species native to Pohnpei Island, Micronesia. Physiol. Plantarum 117, 376-382. Kok, B., 1948: A critical consideration of the quantum yield of chlorella photosynthesis. Enzymologia Hague 13(1), 1-56. Kume, A., and Y. Ino, 1993: Comparison of ecolphysiological response to heavy snow in two varieties of Acuba japonica with different areas of distribution. Ecological Reserch 8, 111-121. Kyparissis, A., P. Drilias, and Y. Manetas, 2000: Seasonal fluctuations in photoprotective (xanthophylls cycle) and photoselective (chlorophylls) capacity in eight Mediterranean plant species belonging to two different growth forms. Australian Journal of Plant Physiology 27, 265-272. Kwon, K. W., G. N. Kim, and M. S. Cho, 2009: Physiology responses of the three wild vegetable under different shading treatment. Journal of Korean Forest Society 98(1), 106-114. (in Korean with Larcher, W., 1995: Physiological Plant Ecology, Springer- Verlag, Berlin, 113pp. Lee, C. Y., and J. Y. Won, 2007: Effects of shading treatments on photosynthetic rate and growth in Codonopsis lanceolata Trautv. Korean Journal of Medicinal Crop Science 15(3), 152-156. (in Korean with Lim, J. H., S. Y. Woo, M. J. Kwon, J. H. Chun, and J. H. Shin. 2006: Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean Fir in Mt. Halla. Journal of Korean Forest Society 95(6), 705-710. (in Korean with English abstract) Loach, K., 1970: Shade tolerance in tree seedlings II. Growth analysis of plants raised under artificial shade. New Phytologist 69(2), 273-286. Nam, Y. K., and J. A. Baik, 2005: Status of research and possibility of development about endemic wild vegetables in korea. Korean Society for People, Plant, and Environment 8(1), 1-10. (in Korean with Noguchi, K., K. Sonoike, and I. Terashima, 1996: Acclimation of respiratory properties of leaves of Spinacia oleracea L., a sun species, and of Alocasia macrorrhiza (L.) G. Don., a shade species, to changes in growth irradiance. Plant Cell Physiology 37(3), 377-384. Park., H. J., Agung Nugroho, J. H. Lee, J. D. Kim, W. B. Kim, K. R. Lee, and J. S. Choi, 2009: HPLC analysis of caffeoylquinic acids in the extract of Cacalia firma and Peroxynitrite scavenging effect. Korean Journal of Pharmacognosy 40(4), 365-369. (in Korean with English abstract) Park, W. G., Y. S. Kim, H. B. Lee, Y. S. Kim, N. J. Kim, and N. Y. Kim, 2010: Seed characteristics of Parasenecio firmus kom. and its growth comparison among forest stands. Journal of Forest Science 26(3), 219-223. (in Korean with Rascher, U., M. Liebig, and U. Lttge, 2000: Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell and Environment 23, 1397-1405. Sharp, R. E., M. A. Matthews, and J. S. Boyer, 1984: Kok effect and the quantum yield of photosynthsis. Plant Physiology 79, 95-101. Sim, J. S., and S. S. Han, 2003: Ecophysiological characteristics of deciduous oak species (III) -Photosynthetic responses of leaves to change of light intensity- Journal of Korean Forest Society 92(3), 208-214. (in Korean with English abstract) Valladares, F., J. M. Chico, I. Aranda, L. Balaguer, P. Dizengremel, E. Manrique, and E. Dreyer, 2002: The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linkes to a greater physiological plasticity. Trees 16, 395-403. http://www.kma.go.kr/ (2011.11.3)