18103.fm

Similar documents
19(1) 02.fm

12.077~081(A12_이종국).fm

10(3)-10.fm

605.fm

82-01.fm

10(3)-09.fm

304.fm

untitled

14.531~539(08-037).fm

< DC1A4C3A5B5BFC7E22E666D>

10(3)-12.fm

9(3)-4(p ).fm

18211.fm

14.fm

fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

16(5)-03(56).fm

12(4) 10.fm

10(3)-02.fm

82.fm

12(2)-04.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

untitled

12(3) 10.fm

10(1)-08.fm

( )-113.fm

50(4)-10.fm

11(5)-12(09-10)p fm

07.051~058(345).fm

(163번 이희수).fm

14(2) 02.fm

16(5)-06(58).fm

( )-94.fm

4.fm

16(1)-3(국문)(p.40-45).fm

10.063~070(B04_윤성식).fm

64.fm

( )-83.fm

15.101~109(174-하천방재).fm

15(2)-07.fm

16(5)-04(61).fm

57.fm

93.fm

DBPIA-NURIMEDIA

16(2)-7(p ).fm

00....

3.fm

27(5A)-07(5806).fm

( )-36.fm

8(2)-4(p ).fm

50(1)-09.fm

14(4) 09.fm

69-1(p.1-27).fm

fm

04-42(1)-09(김동원).fm

41(6)-09(김창일).fm

416.fm

23(2) 71.fm

03-서연옥.hwp

49(6)-06.fm

50(5)-07.fm

75.fm

( )32.fm

07.045~051(D04_신상욱).fm

한 fm

18(3)-09(34).fm

32(4B)-04(7455).fm

13.fm

한 fm

83.fm

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

51(4)-13.fm

( )-101.fm

DBPIA-NURIMEDIA

( )-84.fm

04.fm

17(2)-00(268).fm

83-07.fm

<30332DB9E8B0E6BCAE2E666D>

03.fm

04-46(1)-06(조현태).fm

[ ]-13.fm

82-02.fm

fm

Microsoft Word - KSR2013A320

87.fm

8(3)-15(p ).fm

62.fm

143.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

50(6)-09.fm

歯03-ICFamily.PDF

17(4)-04(41).fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

26(1)-11(김기준).fm

한 fm

17.393~400(11-033).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

11(1)-15.fm

Transcription:

J. of the Korean Sensors Society Vol. 18, No. 1 (009) pp. 8 3 VO w PCM yá Á Á Ÿ Built-in protection circuit module by using VO temperature sensors K. H. Song, J. B. Choi, M. W. Son, and K. S. Yoo Abstract Most portable mobile devices employ rechargeable lithium-ion batteries. This lithium-ion battery usually suffers from the possibility of explosion due to heat generation from surrounding atmosphere or internal deficiency during charging or at overuse. To solve these problems, most rechargeable batteries have a built-in protection circuit module (PCM). The resistance of a properly processed VO critical temperature sensor (CTS) is changed dramatically at a critical temperature of around 68 o C, which can replace some bi-metal, NTC, or PTC sensors embedded in PCM. Such VO CTS consumes a very small current at the level of natural discharge. Experimental results showed that this CTS could be applied to a PCM as the PCM could protect the battery while keeping its power consumption at minimum. Key Words : vanadium oxide, critical temperature sensor, protection circuit module 1. ƒ w j MIT(Metal-insulator transi- ú y»» IT w tion) p ùkü. w w s, p, mp3, le, PMP { Ÿw,» y ùkü ƒ þƒ»»ƒ w.»» p l w. ù p hysteresis p ùkü. p» w 10 ~10 5 order w l w»» w w w y CTR(Critical temperature l ü ƒ w š resistor) š w. CTR z ùkü t. w l ƒ s w x y ù [1]. j» w. w l s w» w Vanadium-Oxygen system w PCM(Protection circuit module) w PCM w y VO, VO, V O 3, V 3 O 5, V O 5 ƒ w. PCM w V 3 O 5 VO V n O n 1 (4 n 8) Magneli k, NTC, PTC w wš w ƒ š PTCƒ š.. VO 68 o C» (sensing mech- yw anism)ƒ VO, VO, TiO,. V-O- Fe O 3, NbO, NiO 3 y V w œ w w w». y, w w œw (Department of Materials Science and Engineering, University of Seoul) Corresponding author: ksyoo@uos.ac.kr (Received : October 1, 008, Revised : December 0, 008 Accepted : December 7, 008) š. y VO 68 o C w ƒ ƒ ƒw 68 o C w ƒ w x []. ù y w w ƒ - w p ( w jumping j») w, ù y /z y 8

VO w PCM 9 t š [3,4]. p l š PTC, PCM t CTR VO z wš NMOS Field Effect Transistor(NMOSFET) w l ü»» z w p d sƒw.. x š V O 5 (99.6 %, Aldrich) w, High Energy Ball-milling (FRITSCH, Planetary mill P-6) w w q vehicle(56 wt% a-terpinel, 7 wt% - butoxy ethoxy, 11.5 wt% polyvinyl butyral-co-vinyl alcohol-co-vinyl acetate, 16.5 wt% polyethylene glycol) wì 1 : 0.65 (q : vehicle) Shaker (FINEPCR, Vortex mixer) w 1 y ww r p(paste)y w. yw r p silk-screen printing ù»q z x. w» w w Fig. ùkü, (a) ù» œ 60 o C 10 w z q y ù z s k, (b) N» 500 o C, 1 w [5,6]. p ƒ w š, (c) w ƒ w VO NMOSFETƒ y. œ» (annealing tube furnace) w. y» w z y VO x. V O 5 VO y V O 5 V 3 O 7 V 4 O 9 V 6 O 13 100 o C¾ 3 o C/min w. p 55 o C~75 o C 0.1 o C/ Fig. 1. VO sensor resistance and NMOS gate voltage according to the temperature change. jumping j»)ƒ 10 4 order d ew y w [5,8]., VO z NMOSFET y Fig. 3 VO w y z ùkü. w 68 o C w R1 VO ƒ w(r1 = 3 MΩ) w NMOSFETƒ OFF VO y ù š [7]. l p(v g ) VO 1. µa» p» w - w p ƒ l V g ƒ d w. yw d w. 68 o C Climatic Chamber(Vötsch, VC 4018) w 5 ~ R1 VO ƒ û w(r1 = 300 Ω) w VO 1 ma ƒ NMOSFETƒ ON š l V d w w min - w p V d l s l»» yw» d w. w., 68 o C d NMOSFET w NMOSFET p 0.4 Vƒ š, one chipy w, y NMOSFET 68 o C p 0.4 V e y w. NMOSFETƒ. 3. š Fig. 4 VO NMOSFETƒ y p [Fig. (4a)] p [Fig. (4b)] Fig. 1 VO - w w. p NMOSFET p ùkü w NMOSFET - (I-V) p VO. wp 5 o C 80 o C w r ( w w y p k w š, 9 J. Kor. Sensors Soc., Vol. 18, No. 1, 009

송건화 최정범 손명우 유광수 30 Fig. 3. Power-off protection circuit module using VO temperature sensors. Fig.. (a) VO temperature sensor, (b) Temperature sensor combined with semiconductor device, (c) Semiconductor-type temperature sensor integrated the VO thick film and MOS transistor. 단일 NMOSFET의 소자특성과 비교 되었다. 온도센서 의 등가회로 구성은 Fig. 3과 같다. Fig. 4(a)는 드레인 전압이 0.05 V와 1 V에서 수행된 게이트 전압 변화에 따른 드레인 전류 특성변화(I -V )의 시뮬레이션 결과 이다. VO 센서가 1.5 MΩ 이상의 높은 저항을 갖는 상전이 온도 이하에서는 NMOSFET의 게이트 전극에 Fig. 4. (a) Gate voltage vs. drain current, (b) Drain voltage 문턱전압(threshold voltage)인 0.08 V 이상의 전압이 vs. drain current. 인가되지 않기 때문에 소자가 구동되지 않는다. 상전이 온도 이상에서는 VO 센서의 저항이 300 Ω 이하로 급 이상의 전압이 인가된다. 또한 증가하는 게이트 전극 격히 감소하기 때문에 게이트 전극에 문턱전압 0.08 V 전압에 따라서 드레인 전류의 증가를 확인 할 수 있다. D G 센서학회지 제 권 제 호 18 1, 009 30

VO w PCM 31 VO w y NMOSFET ƒ on/off w e p y w. Fig. 4(b) NMOSFET p p (I D -V D ) y ùküš. l l 0. V p ƒ j ww. w VO ƒ w ƒ ƒw y w. VO w y w NMOSFET p w ƒ w y w ù, 10 4 A w p y w. VO NMOSFETƒ y e w p ƒ d w š, PCM ƒ y w. 4. VO V O 5 z w y w z PCM w y VO NMOSFET p, z w xw p l PCM l ü y w w w s ƒ p w. š x [1] C. H. Griffiths and H. K. Eastwood, Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide, J. Appl. Phys., vol. 45, no. 5, pp. 01-06, 1974. [] K. S. Yoo, J. M. Kim, and H. J. Jung, Electrical properties of semiconducting VO -based critical temperature sensors, J. Kor. Ceram. Soc., vol. 30, no. 10, pp. 866-870, 1993. [3] Y. Muraoka, Y. Ueda, and Z. Hiroi, Large modification of the metal-insulator transition temperature in strained VO films grown TiO substrates, J. Phys and Chem. of Solids, vol. 63, pp. 965-967, 00. [4] Y. Ningyi, L. Jinhua, and L. Chenglu, Valence reduction process from sol-gel V O 5 to VO thin films, Appl. Surf. Sci., vol. 191, pp. 176-180, 00. [5] K. H. Song and K. S. Yoo, Characterization of VO thick-film critical temperature sensors by heat treatment conditions, J. Kor. Sensors Soc., vol. 16, no. 6, pp. 407-41, 007. [6] Dachuan, Niankan, Jingyu, and Xiulin, High quality vanadium dioxide films prepared by an inorganic sol-gel method, Materials Research Bulletin, vol. 31, no. 3, pp. 335-340, 1996. [7] J. H. Kang, H. B. Shim, S. H. Park, K. H. Song, and K. S. Yoo, Temperature vs. resistance properties of the VO -based critical temperature sensors, Proceedings of the International Sensors Conference. pp. 46-47, 004. [8] J. Verkelis, Z. Bliznikas, K. Breive, V. Dikinis, and R. Sarmaitis, Vanadium oxides thin films and fixed-temperature heat sensor with memory, Sensors and Actuators A, vol. 68, pp. 338-343, 1998. y( ) 1957 1 15 1984 w œw 1991 w w (œw ) 005 ~ x w w 1984 ~ 000 ( ) VCR 000 ~ 00» ( ) 00 ~ x p p t :, d l ( Ž) 1980 5 11 007 w œw 007 8 ~ x w w 31 J. Kor. Sensors Soc., Vol. 18, No. 1, 009

3 yá Á Á Ÿ ( ) 1984 10 31 008 w œw 008 3 ~ x w w Ÿ (œ ) 1957 1 15 1981 w w» œw 1983 w» œw (œw ) 1991 8 ù w œ w (œw ) 1983 ~ 1984 x ( ) 1984 ~ 1987 w w»» 1991 ~ 1995 w w» 1995 ~ x w œ w 1998 ~ x w wz r,,,, («) 00 ~ x w wz w, r, («) z 005 ~ 007 w» 007 ~ x w œ w w / w 007 ~ x w œ w x z z :,,, wz 18«1y, 009 3